Universitext

Editorial Board
(North America):
S. Axler
K.A. Ribet

Claudio Procesi

Lie Groups

An Approach through Invariants and Representations

Claudio Procesi
Dipartimento di Matematica
"G. Castelnouvo"
Università di Roma "La Sapienza"
00185 Rome
Italy
procesi@mat.uniromal.it

Editorial Board
(North America):

S. Axler
Mathematics Department
San Francisco State University
San Francisco, CA 94132
USA
axler@sfsu.edu

K.A. Ribet
Mathematics Department
University of California at Berkeley
Berkeley, CA 94720-3840
USA
ribet@math.berkeley.edu

Mathematics Subject Classification 2000: Primary: 22EXX, 14LXX
Secondary: 20GXX, 17BXX
Library of Congress Cataloging-in-Publication Data
Procesi, Claudio.
An approach to Lie Theory through Invariants and Representations / Claudio Procesi. p. cm.- (Universitext)

Includes bibliographical references and index
ISBN-13: 978-0-387-26040-2 (acid-free paper)
ISBN-10: 0-387-26040-4 (acid-free paper)

1. Lie groups. 2. Invariants. 3. Representations of algebras. I. Title.

QA387.P76 2005
$512^{\prime} 482$ - dc 22
2005051743

ISBN-10: 0-387-26040-4 e-ISBN: 0-387-28929-1 Printed on acid-free paper.
ISBN-13: 978-0387-26040-2
©2007 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (TXQ)
987654321
springer.com

To the ladies of my life,
Liliana, Silvana, Michela, Martina

Contents

Introduction xix
Conventional Notations xxiii
1 General Methods and Ideas 1
1 Groups and Their Actions 1
1.1 Symmetric Group 1
1.2 Group Actions 2
2 Orbits, Invariants and Equivariant Maps 4
2.1 Orbits 4
2.2 Stabilizer 5
2.3 Invariants 7
2.4 Basic Constructions 7
2.5 Permutation Representations 8
2.6 Invariant Functions 10
2.7 Commuting Actions 11
3 Linear Actions, Groups of Automorphisms, Commuting Groups 11
3.1 Linear Actions 11
3.2 The Group Algebra 13
3.3 Actions on Polynomials 15
3.4 Invariant Polynomials 16
3.5 Commuting Linear Actions 17
2 Symmetric Functions 19
1 Symmetric Functions 19
1.1 Elementary Symmetric Functions 19
1.2 Symmetric Polynomials 21
2 Resultant, Discriminant, Bézoutiant 22
2.1 Polynomials and Roots 22
2.2 Resultant 25
2.3 Discriminant 27
3 Schur Functions 28
3.1 Alternating Functions 28
3.2 Schur Functions 29
3.3 Duality 31
4 Cauchy Formulas 31
4.1 Cauchy Formulas 31
5 The Conjugation Action 34
5.1 Conjugation 34
3 Theory of Algebraic Forms 37
1 Differential Operators 37
1.1 Weyl Algebra 37
2 The Aronhold Method, Polarization 40
2.1 Polarizations 40
2.2 Restitution 41
2.3 Multilinear Functions 43
2.4 Aronhold Method 44
3 The Clebsch-Gordan Formula 45
3.1 Some Basic Identities 45
4 The Capelli Identity 48
4.1 Capelli Identity 48
5 Primary Covariants 52
5.1 The Algebra of Polarizations 52
5.2 Primary Covariants 53
5.3 Cayley's Ω Process 55
4 Lie Algebras and Lie Groups 59
1 Lie Algebras and Lie Groups 59
1.1 Lie Algebras 59
1.2 Exponential Map 61
1.3 Fixed Points, Linear Differential Operators 63
1.4 One-Parameter Groups 65
1.5 Derivations and Automorphisms 68
2 Lie Groups 69
2.1 Lie Groups 69
3 Correspondence between Lie Algebras and Lie Groups 71
3.1 Basic Structure Theory 71
3.2 Logarithmic Coordinates 75
3.3 Frobenius Theorem 77
3.4 Simply Connected Groups 80
3.5 Actions on Manifolds 81
3.6 Polarizations 82
3.7 Homogeneous Spaces 83
4 Basic Definitions 86
4.1 Modules 86
4.2 Abelian Groups and Algebras 87
4.3 Nilpotent and Solvable Algebras 88
4.4 Killing Form 89
5 Basic Examples 90
5.1 Classical Groups 90
5.2 Quaternions 92
5.3 Classical Lie Algebras 93
6 Basic Structure Theorems for Lie Algebras 95
6.1 Jordan Decomposition 95
6.2 Engel's Theorem 95
6.3 Lie's Theorem 96
6.4 Cartan's Criterion 97
6.5 Semisimple Lie Algebras 98
6.6 Real Versus Complex Lie Algebras 98
7 Comparison between Lie Algebras and Lie Groups 99
7.1 Basic Comparisons 99
5 Tensor Algebra 101
1 Tensor Algebra 101
1.1 Functions of Two Variables 101
1.2 Tensor Products 102
1.3 Bilinear Functions 103
1.4 Tensor Product of Operators 103
1.5 Special Isomorphisms 105
1.6 Decomposable Tensors 106
1.7 Multiple Tensor Product 106
1.8 Actions on Tensors 108
2 Symmetric and Exterior Algebras 109
2.1 Symmetric and Exterior Algebras 109
2.2 Determinants 110
2.3 Symmetry on Tensors 111
3 Bilinear Forms 114
3.1 Bilinear Forms 114
3.2 Symmetry in Forms 114
3.3 Isotropic Spaces 115
3.4 Adjunction 116
3.5 Orthogonal and Symplectic Groups 117
3.6 Pfaffian 118
3.7 Quadratic Forms 119
3.8 Hermitian Forms 121
3.9 Reflections 122
3.10 Topology of Classical Groups 124
4 Clifford Algebras 125
4.1 Clifford Algebras 125
4.2 Center 129
4.3 Structure Theorems 130
4.4 Even Clifford Algebra 131
4.5 Principal Involution 133
5 The Spin Group 133
5.1 Spin Groups 133
6 Basic Constructions on Representations 137
6.1 Tensor Product of Representations 137
6.2 One-dimensional Representations 138
7 Universal Enveloping Algebras 139
7.1 Universal Enveloping Algebras 139
7.2 Theorem of Capelli 142
7.3 Free Lie Algebras 143
6 Semisimple Algebras 145
1 Semisimple Algebras 145
1.1 Semisimple Representations 145
1.2 Self-Adjoint Groups 146
1.3 Centralizers 147
1.4 Idempotents 149
1.5 Semisimple Algebras 150
1.6 Matrices over Division Rings 151
1.7 Schur's Lemma 151
1.8 Endomorphisms 152
1.9 Structure Theorem 153
2 Isotypic Components 154
2.1 Semisimple Modules 154
2.2 Submodules and Quotients 156
2.3 Isotypic Components 156
2.4 Reynold's Operator 157
2.5 Double Centralizer Theorem 158
2.6 Products 159
2.7 Jacobson Density Theorem 161
2.8 Wedderburn's Theorem 162
3 Primitive Idempotents 162
3.1 Primitive Idempotents 162
3.2 Real Algebras 165
7 Algebraic Groups 167
1 Algebraic Groups 167
1.1 Algebraic Varieties 167
1.2 Algebraic Groups 169
1.3 Rational Actions 171
1.4 Tensor Representations 172
1.5 Jordan Decomposition 173
1.6 Lie Algebras 174
2 Quotients 175
2.1 Quotients 175
3 Linearly Reductive Groups 179
3.1 Linearly Reductive Groups 179
3.2 Self-adjoint Groups 182
3.3 Tori 183
3.4 Additive and Unipotent Groups 184
3.5 Basic Structure Theory 186
3.6 Reductive Groups 188
4 Borel Subgroups 190
4.1 Borel Subgroups 190
8 Group Representations 195
1 Characters 195
1.1 Characters 195
1.2 Haar Measure 196
1.3 Compact Groups 198
1.4 Induced Characters 200
2 Matrix Coefficients 201
2.1 Representative Functions 201
2.2 Preliminaries on Functions 203
2.3 Matrix Coefficients of Linear Groups 205
3 The Peter-Weyl Theorem 205
3.1 Operators on a Hilbert Space 205
3.2 Peter-Weyl Theorem 213
3.3 Fourier Analysis 214
3.4 Compact Lie Groups 216
4 Representations of Linearly Reductive Groups 217
4.1 Characters for Linearly Reductive Groups 217
5 Induction and Restriction 221
5.1 Clifford's Theorem 221
5.2 Induced Characters 222
5.3 Homogeneous Spaces 223
6 The Unitary Trick 224
6.1 Polar Decomposition 224
6.2 Cartan Decomposition 225
6.3 Classical Groups 229
7 Hopf Algebras and Tannaka-Krein Duality 230
7.1 Reductive and Compact Groups 230
7.2 Hopf Algebras 231
7.3 Hopf Ideals 235
9 Tensor Symmetry 241
1 Symmetry in Tensor Spaces 241
1.1 Intertwiners and Invariants 241
1.2 Schur-Weyl Duality 243
1.3 Invariants of Vectors 244
1.4 First Fundamental Theorem for the Linear Group (FFT) 245
2 Young Symmetrizers 247
2.1 Young Diagrams 247
2.2 Symmetrizers 248
2.3 The Main Lemma 250
2.4 Young Symmetrizers 2 252
2.5 Duality 254
3 The Irreducible Representations of the Linear Group 1 255
3.1 Representations of the Linear Groups 255
4 Characters of the Symmetric Group 256
4.1 Character Table 256
4.2 Frobenius Character 262
4.3 Molien's Formula 263
5 The Hook Formula 266
5.1 Dimension of M_{λ} 266
5.2 Hook Formula 267
6 Characters of the Linear Group 268
6.1 Tensor Character 268
6.2 Character of $S_{\lambda}(V)$ 269
6.3 Cauchy Formula as Representations 270
6.4 Multilinear Elements 271
7 Polynomial Functors 273
7.1 Schur Functors 273
7.2 Homogeneous Functors 274
7.3 Plethysm 277
8 Representations of the Linear and Special Linear Groups 278
8.1 Representations of $S L(V), G L(V)$ 278
8.2 The Coordinate Ring of the Linear Group 279
8.3 Determinantal Expressions for Schur Functions 280
8.4 Skew Cauchy Formula 281
9 Branching Rules for S_{n}, Standard Diagrams 282
9.1 Mumaghan's Rule 282
9.2 Branching Rule for S_{n} 285
10 Branching Rules for the Linear Group, Semistandard Diagrams 288
10.1 Branching Rule 288
10.2 Pieri's Formula 289
10.3 Proof of the Rule 290
10 Semisimple Lie Groups and Algebras 293
1 Semisimple Lie Algebras 293
$1.1 \operatorname{sl}(2, \mathbb{C})$ 293
1.2 Complete Reducibility 295
1.3 Semisimple Algebras and Groups 297
1.4 Casimir Element and Semisimplicity 298
1.5 Jordan Decomposition 300
1.6 Levi Decomposition 301
1.7 Ado's Theorem 308
1.8 Toral Subalgebras 309
1.9 Root Spaces 312
2 Root Systems 314
2.1 Axioms for Root Systems 314
2.2 Regular Vectors 316
2.3 Reduced Expressions 319
2.4 Weights 322
2.5 Classification 324
2.6 Existence of Root Systems 329
2.7 Coxeter Groups 330
3 Construction of Semisimple Lie Algebras 332
3.1 Existence of Lie Algebras 332
3.2 Uniqueness Theorem 336
4 Classical Lie Algebras 337
4.1 Classical Lie Algebras 337
4.2 Borel Subalgebras 341
5 Highest Weight Theory 341
5.1 Weights in Representations, Highest Weight Theory 341
5.2 Highest Weight Theory 343
5.3 Existence of Irreducible Modules 345
6 Semisimple Groups 347
6.1 Dual Hopf Algebras 347
6.2 Parabolic Subgroups 351
6.3 Borel Subgroups 354
6.4 Bruhat Decomposition 356
6.5 Bruhat Order 362
6.6 Quadratic Equations 367
6.7 The Weyl Group and Characters 370
6.8 The Fundamental Group 371
6.9 Reductive Groups 375
6.10 Automorphisms 376
7 Compact Lie Groups 377
7.1 Compact Lie Groups 377
7.2 The Compact Form 378
7.3 Final Comparisons 380
11 Invariants 385
1 Applications to Invariant Theory 385
1.1 Cauchy Formulas 385
1.2 FFT for $S L(n, \mathbb{C})$ 387
2 The Classical Groups 389
2.1 FFT for Classical Groups 389
3 The Classical Groups (Representations) 392
3.1 Traceless Tensors 392
3.2 The Envelope of $O(V)$ 396
4 Highest Weights for Classical Groups 397
4.1 Example: Representations of $S L(V)$ 397
4.2 Highest Weights and U-Invariants 398
4.3 Determinantal Loci 399
4.4 Orbits of Matrices 400
4.5 Cauchy Formulas 403
4.6 Bruhat Cells 404
5 The Second Fundamental Theorem (SFT) 404
5.1 Determinantal Ideals 404
5.2 Spherical Weights 409
6 The Second Fundamental Theorem for Intertwiners 410
6.1 Symmetric Group 410
6.2 Multilinear Spaces 412
6.3 Orthogonal and Symplectic Group 413
6.4 Irreducible Representations of $S p(V)$ 415
6.5 Orthogonal Intertwiners 416
6.6 Irreducible Representations of $S O(V)$ 419
6.7 Fundamental Representations 422
6.8 Invariants of Tensor Representations 425
7 Spinors 425
7.1 Spin Representations 426
7.2 Pure Spinors 427
7.3 Triality 434
8 Invariants of Matrices 435
8.1 FFT for Matrices 435
8.2 FFT for Matrices with Involution 436
8.3 Algebras with Trace 438
8.4 Generic Matrices 440
8.5 Trace Identities 441
8.6 Polynomial Identities 445
8.7 Trace Identities with Involutions 446
8.8 The Orthogonal Case 449
8.9 Some Estimates 451
8.10 Free Nil Algebras 452
8.11 Cohomology 453
9 The Analytic Approach to Weyl's Character Formula 456
9.1 Weyl's Integration Formula 456
10 Characters of Classical Groups 461
10.1 The Symplectic Group 461
10.2 Determinantal Formula 465
10.3 The Spin Groups: Odd Case 468
10.4 The Spin Groups: Even Case 469
10.5 Weyl's Character Formula 469
12 Tableaux 475
1 The Robinson-Schensted Correspondence 475
1.1 Insertion 475
1.2 Knuth Equivalence 479
2 Jeu de Taquin 481
2.1 Slides 481
2.2 Vacating a Box 487
3 Dual Knuth Equivalence 488
4 Formal Schur Functions 494
4.1 Schur Functions 494
5 The Littlewood-Richardson Rule 495
5.1 Skew Schur Functions 495
5.2 Clebsch-Gordan Coefficients 496
5.3 Reverse Lattice Permutations 497
13 Standard Monomials 499
1 Standard Monomials 499
1.1 Standard Monomials 499
2 Plücker Coordinates 501
2.1 Combinatorial Approach 501
2.2 Straightening Algorithm 504
2.3 Remarks 505
3 The Grassmann Variety and Its Schubert Cells 508
3.1 Grassmann Varieties 508
3.2 Schubert Cells 512
3.3 Plücker equations 513
3.4 Flags 514
$3.5 \quad B$-orbits 515
3.6 Standard Monomials 517
4 Double Tableaux 518
4.1 Double Tableaux 518
4.2 Straightening Law 519
4.3 Quadratic Relations 523
5 Representation Theory 525
5.1 U Invariants 525
5.2 Good Filtrations 529
$5.3 S L(n)$ 531
5.4 Branching Rules 532
$5.5 S L(n)$ Invariants 533
6 Characteristic Free Invariant Theory 533
6.1 Formal Invariants 533
6.2 Determinantal Varieties 535
6.3 Characteristic Free Invariant Theory 536
7 Representations of S_{n} 538
7.1 Symmetric Group 538
7.2 The Group Algebra 540
7.3 Kostka Numbers 541
8 Second Fundamental Theorem for $G L$ and S_{m} 541
8.1 Second Fundamental Theorem for the Linear Group 541
8.2 Second Fundamental Theorem for the Symmetric Group 542
8.3 More Standard Monomial Theory 542
8.4 Pfaffians 545
8.5 Invariant Theory 548
14 Hilbert Theory 553
1 The Finiteness Theorem 553
1.1 Finite Generation 553
2 Hilbert's 14 ${ }^{\text {th }}$ Problem 554
2.1 Hilbert's $14^{\text {th }}$ Problem 554
3 Quotient Varieties 555
4 Hilbert-Mumford Criterion 556
4.1 Projective Quotients 556
5 The Cohen-Macaulay Property 559
5.1 Hilbert Series 559
5.2 Cohen-Macaulay Property 561
15 Binary Forms 563
1 Covariants 563
1.1 Covariants 563
1.2 Transvectants 565
1.3 Source 566
2 Computational Algorithms 568
2.1 Recursive Computation 568
2.2 Symbolic Method 572
3 Hilbert Series 575
3.1 Hilbert Series 575
4 Forms and Matrices 579
4.1 Forms and Matrices 579
Bibliography 583
Index of Symbols 587
Subject Index 589

Introduction

The subject of Lie groups, introduced by Sophus Lie in the second half of the nineteenth century, has been one of the important mathematical themes of the last century. Lie groups formalize the concept of continuous symmetry, and thus are a part of the foundations of mathematics. They also have several applications in physics, notably quantum mechanics and relativity theory. Finally, they link with many branches of mathematics, from analysis to number theory, passing through topology, algebraic geometry, and so on.

This book gives an introduction to at least the main ideas of the theory. Usually, there are two principal aspects to be discussed. The first is the description of the groups, their properties and classifications; the second is the study of their representations.

The problem that one faces when introducing representation theory is that the material tends to grow out of control quickly. My greatest difficulty has been to try to understand when to stop. The reason lies in the fact that one may represent almost any class of algebraic if not even mathematical objects. In fact it is clear that even the specialists only master part of the material.

There are of course many good introductory books on this topic. Most of them however favor only one aspect of the theory. I have tried instead to present the basic methods of Lie groups, Lie algebras, algebraic groups, representation theory, some combinatorics and basic functional analysis, which then can be used by the various specialists. I have tried to balance general theory with many precise concrete examples.

This book started as a set of lecture notes taken by G. Boffi for a course given at Brandeis University. These notes were published as a "Primer in Invariant Theory" [Pr]. Later, H. Kraft and I revised these notes, which have been in use and are available on Kraft's home page [KrP]. In these notes, we present classical invariant theory in modern language. Later, E. Rogora and I presented the combinatorial approach to representations of the symmetric and general linear groups [PrR]. In past years, while teaching introductory courses on representation theory, I became convinced that it would be useful to expand the material in these various expositions to give an idea of the connection with more standard classical topics, such as the
theory of Young symmetrizers and Clifford algebras, and also not to restrict to classical groups but to include general semisimple groups as well.

The reader will see that I have constantly drawn inspiration from the book of H. Weyl, Classical Groups [W]. On the other hand it would be absurd and quite impossible to update this classic.

In his book Weyl stressed the relationship between representations and invariants. In the last 30 years there has been a renewed interest in classical methods of invariant theory, motivated by problems of geometry, in particular due to the ideas of Grothendieck and Mumford on moduli spaces. The reader will see that I do not treat geometric invariant theory at all. In fact I decided that this would have deeply changed the nature of the book, which tries to always remain at a relatively elementary level, at least in the use of techniques outside of algebra. Geometric invariant theory is deeply embedded in algebraic geometry and algebraic groups, and several good introductions to this topic are available.

I have tried to explain in detail all the constructions which belong to invariant theory and algebra, introducing and using only the essential notions of differential geometry, algebraic geometry, measure theory, and functional analysis which are necessary for the treatment here. In particular, I have tried to restrict the use of algebraic geometry and keep it to a minimum, nevertheless referring to standard books for some basic material on this subject which would have taken me too long to discuss in this text. While it is possible to avoid algebraic geometry completely, I feel it would be a mistake to do so since the methods that algebraic geometry introduces in the theory are very powerful. In general, my point of view is that some of the interesting special objects under consideration may be treated by more direct and elementary methods, which I have tried to do whenever possible since a direct approach often reveals some special features which may be lost in a general theory. A similar, although less serious, problem occurs in the few discussions of homotopy theory which are needed to understand simply connected groups.

I have tried to give an idea of how $19^{\text {th }}$-century algebraists thought of the subject. The main difficulty we have in understanding their methods is in the fact that the notion of representation appears only at a later stage, while we usually start with it.

The book is organized into topics, some of which can be the subject of an entire graduate course. The organization is as follows.

The first chapter establishes the language of group actions and representations with some simple examples from abstract group theory. The second chapter is a quick look into the theory of symmetric functions, which was one of the starting points of the entire theory. First, I discuss some very classical topics, such as the resultant and the Bézoutiant. Next I introduce Schur functions and the Cauchy identity. These ideas will play a role much later in the character theory of the symmetric and the linear group.

Chapter 3 presents again a very classical topic, that of the theory of algebraic forms, à la Capelli [Ca].

In Chapter 4, I change gears completely. Taking as pretext the theory of polarizations of Capelli, I systematically introduce Lie groups and Lie algebras and start to prove some of the basic structure theorems. The general theory is completed in

Chapter 5 in which universal enveloping algebras and free Lie algebras are discussed. Later, in Chapter 10 I treat semisimple algebras and groups. I complete the proof of the correspondence between Lie groups and Lie algebras via Ado's theorem. The rest of the chapter is devoted to Cartan-Weyl theory, leading to the classification of complex semisimple groups and the associated classification of connected compact groups.

Chapter 5 is quite elementary. I decided to include it since the use of tensor algebra and tensor notation plays such an important role in the treatment as to deserve some lengthy discussion. In this chapter I also discuss Clifford algebras and the spin group. This topic is completed in Chapter 11.

Chapter 6 is a short introduction to general methods of noncommutative algebra, such as Wedderburn's theorem and the double centralizer theorem. This theory is basic to the representation theory to be developed in the next chapters.

Chapter 7 is a quick introduction to algebraic groups. In this chapter I make fair use of notions from algebraic geometry, and I try to at least clarify the statements used, referring to standard books for the proofs. In fact it is impossible, without a rather long detour, to actually develop in detail the facts used. I hope that the interested reader who does not have a background in algebraic geometry can still follow the reasoning developed here.

I have tried to stress throughout the book the parallel theory of reductive algebraic and compact Lie groups. A full understanding of this connection is gained slowly, first through some classical examples, then by the Cartan decomposition and Tannaka duality in Chapter 8 . This theory is completed in Chapter 10, where I associate, to a semisimple Lie algebra, its compact form. After this the final classification theorems are proved.

Chapter 8 is essentially dedicated to matrix coefficients and the Peter-Weyl theorem. Some elementary functional analysis is used here. I end the chapter with basic properties of Hopf algebras, which are used to make the link between compact and reductive groups.

Chapter 9 is dedicated to tensor symmetry, Young symmetrizers, Schur-Weyl duality and their applications to representation theory.

Chapter 10 is a short course giving the structure and classification of semisimple Lie algebras and their representations via the usual method of root systems. It also contains the corresponding theory of adjoint and simply connected algebraic groups and their compact forms.

Chapter 11 is the study of the relationship between invariants and the representation theory of classical groups. It also contains a fairly detailed discussion of spinors and terminates with the analytic proof of Weyl's character formula.

The last four chapters are complements to the theory. In Chapter 12 we discuss the combinatorial theory of tableaux to lead to Schützenberger's proof of the Littlewood-Richardson rule.

Chapter 13 treats the combinatorial approach to invariants and representations for classical groups. This is done via the theory of standard monomials, which is developed in a characteristic-free way, for some classical representations.

Chapter 14 is a very short glimpse into the geometric theory, and finally Chapter 15 is a return to the past, to where it all started: the theory of binary forms.

Many topics could not find a place in this treatment. First, I had to restrict the discussion of algebraic groups to a minimum. In particular I chose giving proofs only in characteristic 0 when the general proof is more complicated. I could not elaborate on the center of the universal enveloping algebra, Verma modules and all the ideas relating to finite and infinite-dimensional representations. Nor could I treat the conjugation action on the group and the Lie algebra which contains so many deep ideas and results. Of course I did not even begin to consider the theory of real semisimple groups. In fact, the topics which relate to this subject are so numerous that this presentation here is just an invitation to the theory. The theory is quite active and there is even a journal entirely dedicated to its developments.

Finally, I will add that this book has some overlaps with several books, as is unavoidable when treating foundational material.

I certainly followed the path already taken by others in many of the basic proofs which seem to have reached a degree of perfection and upon which it is not possible to improve.

The names of the mathematicians who have given important contributions to Lie theory are many, and I have limited to a minimum the discussion of its history. The interested reader can now consult several sources like [Bor2], [GW].

I wish finally to thank Laura Stevens for carefully reading through a preliminary version and helping me to correct several mistakes, and Alessandro D'Andrea, Figà Talamanca and Paolo Papi for useful suggestions, and Ann Kostant and Martin Stock for the very careful and complex editing of the final text.

Claudio Procesi
Università di Roma La Sapienza
July 2006

Conventional Notations

When we introduce a new symbol or definition we will use the convenient symbol $:=$ which means that the term introduced on its left is defined by the expression on its right.

A typical example could be $P:=\{x \in \mathbb{N} \mid 2$ divides $x\}$, which stands for P is by definition the set of all natural numbers x such that 2 divides x.

The symbol $\pi: A \rightarrow B$ denotes a mapping called π from the set A to the set B.
Most of our work will be for algebras over the field of real or complex numbers. Sometimes we will take a more combinatorial point of view and analyze some properties over the integers. Associative algebras will implicitly be assumed to have a unit element. When we discuss matrices over a ring A we always identify A with the scalar matrices (constant multiples of the identity matrix).

We use the standard notations:

$$
\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}
$$

for the natural numbers (including 0), the integers, rational, real and complex numbers.

