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Introduction 

The subject of Lie groups, introduced by Sophus Lie in the second half of the nine
teenth century, has been one of the important mathematical themes of the last century. 
Lie groups formalize the concept of continuous symmetry, and thus are a part of the 
foundations of mathematics. They also have several applications in physics, notably 
quantum mechanics and relativity theory. Finally, they link with many branches of 
mathematics, from analysis to number theory, passing through topology, algebraic 
geometry, and so on. 

This book gives an introduction to at least the main ideas of the theory. Usually, 
there are two principal aspects to be discussed. The first is the description of the 
groups, their properties and classifications; the second is the study of their represen
tations. 

The problem that one faces when introducing representation theory is that the 
material tends to grow out of control quickly. My greatest difficulty has been to try 
to understand when to stop. The reason lies in the fact that one may represent almost 
any class of algebraic if not even mathematical objects. In fact it is clear that even 
the specialists only master part of the material. 

There are of course many good introductory books on this topic. Most of them 
however favor only one aspect of the theory. I have tried instead to present the basic 
methods of Lie groups. Lie algebras, algebraic groups, representation theory, some 
combinatorics and basic functional analysis, which then can be used by the various 
specialists. I have tried to balance general theory with many precise concrete exam
ples. 

This book started as a set of lecture notes taken by G. Boffi for a course 
given at Brandeis University. These notes were published as a "Primer in Invariant 
Theory" [Pr]. Later, H. Kraft and I revised these notes, which have been in use and 
are available on Kraft's home page [KrP]. In these notes, we present classical invari
ant theory in modem language. Later, E. Rogora and I presented the combinatorial 
approach to representations of the symmetric and general linear groups [PrR]. In 
past years, while teaching introductory courses on representation theory, I became 
convinced that it would be useful to expand the material in these various expositions 
to give an idea of the connection with more standard classical topics, such as the 
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theory of Young symmetrizers and Clifford algebras, and also not to restrict to clas
sical groups but to include general semisimple groups as well. 

The reader will see that I have constantly drawn inspiration from the book of 
H. Weyl, Classical Groups [W]. On the other hand it would be absurd and quite 
impossible to update this classic. 

In his book Weyl stressed the relationship between representations and invari
ants. In the last 30 years there has been a renewed interest in classical methods of 
invariant theory, motivated by problems of geometry, in particular due to the ideas 
of Grothendieck and Mumford on moduli spaces. The reader will see that I do not 
treat geometric invariant theory at all. In fact I decided that this would have deeply 
changed the nature of the book, which tries to always remain at a relatively elemen
tary level, at least in the use of techniques outside of algebra. Geometric invariant 
theory is deeply embedded in algebraic geometry and algebraic groups, and several 
good introductions to this topic are available. 

I have tried to explain in detail all the constructions which belong to invariant 
theory and algebra, introducing and using only the essential notions of differential 
geometry, algebraic geometry, measure theory, and functional analysis which are 
necessary for the treatment here. In particular, I have tried to restrict the use of alge
braic geometry and keep it to a minimum, nevertheless referring to standard books 
for some basic material on this subject which would have taken me too long to dis
cuss in this text. While it is possible to avoid algebraic geometry completely, I feel 
it would be a mistake to do so since the methods that algebraic geometry introduces 
in the theory are very powerful. In general, my point of view is that some of the 
interesting special objects under consideration may be treated by more direct and 
elementary methods, which I have tried to do whenever possible since a direct ap
proach often reveals some special features which may be lost in a general theory. A 
similar, although less serious, problem occurs in the few discussions of homotopy 
theory which are needed to understand simply connected groups. 

I have tried to give an idea of how 19'^-century algebraists thought of the subject. 
The main difficulty we have in understanding their methods is in the fact that the 
notion of representation appears only at a later stage, while we usually start with it. 

The book is organized into topics, some of which can be the subject of an entire 
graduate course. The organization is as follows. 

The first chapter establishes the language of group actions and representations 
with some simple examples from abstract group theory. The second chapter is a quick 
look into the theory of symmetric functions, which was one of the starting points of 
the entire theory. First, I discuss some very classical topics, such as the resultant 
and the Bezoutiant. Next I introduce Schur functions and the Cauchy identity. These 
ideas will play a role much later in the character theory of the symmetric and the 
linear group. 

Chapter 3 presents again a very classical topic, that of the theory of algebraic 
forms, a la CapelU [Ca]. 

In Chapter 4,1 change gears completely. Taking as pretext the theory of polar
izations of Capelli, I systematically introduce Lie groups and Lie algebras and start 
to prove some of the basic structure theorems. The general theory is completed in 
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Chapter 5 in which universal enveloping algebras and free Lie algebras are discussed. 
Later, in Chapter 101 treat semisimple algebras and groups. I complete the proof of 
the correspondence between Lie groups and Lie algebras via Ado's theorem. The 
rest of the chapter is devoted to Cartan-Weyl theory, leading to the classification of 
complex semisimple groups and the associated classification of connected compact 
groups. 

Chapter 5 is quite elementary. I decided to include it since the use of tensor 
algebra and tensor notation plays such an important role in the treatment as to deserve 
some lengthy discussion. In this chapter I also discuss Clifford algebras and the spin 
group. This topic is completed in Chapter 11. 

Chapter 6 is a short introduction to general methods of noncommutative algebra, 
such as Wedderbum's theorem and the double centralizer theorem. This theory is 
basic to the representation theory to be developed in the next chapters. 

Chapter 7 is a quick introduction to algebraic groups. In this chapter I make fair 
use of notions from algebraic geometry, and I try to at least clarify the statements 
used, referring to standard books for the proofs. In fact it is impossible, without a 
rather long detour, to actually develop in detail the facts used. I hope that the inter
ested reader who does not have a background in algebraic geometry can still follow 
the reasoning developed here. 

I have tried to stress throughout the book the parallel theory of reductive algebraic 
and compact Lie groups. A full understanding of this connection is gained slowly, 
first through some classical examples, then by the Cartan decomposition and Tannaka 
duality in Chapter 8. This theory is completed in Chapter 10, where I associate, to a 
semisimple Lie algebra, its compact form. After this the final classification theorems 
are proved. 

Chapter 8 is essentially dedicated to matrix coefficients and the Peter-Weyl the
orem. Some elementary functional analysis is used here. I end the chapter with basic 
properties of Hopf algebras, which are used to make the link between compact and 
reductive groups. 

Chapter 9 is dedicated to tensor symmetry. Young symmetrizers, Schur-Weyl 
duality and their applications to representation theory. 

Chapter 10 is a short course giving the structure and classification of semisimple 
Lie algebras and their representations via the usual method of root systems. It also 
contains the corresponding theory of adjoint and simply connected algebraic groups 
and their compact forms. 

Chapter 11 is the study of the relationship between invariants and the representa
tion theory of classical groups. It also contains a fairly detailed discussion of spinors 
and terminates with the analytic proof of Weyl's character formula. 

The last four chapters are complements to the theory. In Chapter 12 we dis
cuss the combinatorial theory of tableaux to lead to Schiitzenberger's proof of the 
Littlewood-Richardson rule. 

Chapter 13 treats the combinatorial approach to invariants and representations 
for classical groups. This is done via the theory of standard monomials, which is 
developed in a characteristic-free way, for some classical representations. 
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Chapter 14 is a very short gUmpse into the geometric theory, and finally Chap
ter 15 is a return to the past, to where it all started: the theory of binary forms. 

Many topics could not find a place in this treatment. First, I had to restrict the 
discussion of algebraic groups to a minimum. In particular I chose giving proofs 
only in characteristic 0 when the general proof is more complicated. I could not 
elaborate on the center of the universal enveloping algebra, Verma modules and all 
the ideas relating to finite and infinite-dimensional representations. Nor could I treat 
the conjugation action on the group and the Lie algebra which contains so many 
deep ideas and results. Of course I did not even begin to consider the theory of real 
semisimple groups. In fact, the topics which relate to this subject are so numerous 
that this presentation here is just an invitation to the theory. The theory is quite active 
and there is even a journal entirely dedicated to its developments. 

Finally, I will add that this book has some overlaps with several books, as is 
unavoidable when treating foundational material. 

I certainly followed the path already taken by others in many of the basic proofs 
which seem to have reached a degree of perfection and upon which it is not possible 
to improve. 

The names of the mathematicians who have given important contributions to Lie 
theory are many, and I have limited to a minimum the discussion of its history. The 
interested reader can now consult several sources like [Bor2], [GW]. 

I wish finally to thank Laura Stevens for carefully reading through a preliminary 
version and helping me to correct several mistakes, and Alessandro D'Andrea, Figa 
Talamanca and Paolo Papi for useful suggestions, and Ann Kostant and Martin Stock 
for the very careful and complex editing of the final text. 

Claudio Procesi 
Universita di Roma La Sapienza 

July 2006 



Conventional Notations 

When we introduce a new symbol or definition we will use the convenient symbol 
:= which means that the term introduced on its left is defined by the expression on 
its right. 

A typical example could be P := {x G N | 2 divides x}, which stands for P is by 
definition the set of all natural numbers x such that 2 divides x. 

The symbol n : A -^ B denotes a mapping called n from the set A to the set B. 
Most of our work will be for algebras over the field of real or complex numbers. 

Sometimes we will take a more combinatorial point of view and analyze some prop
erties over the integers. Associative algebras will implicitly be assumed to have a 
unit element. When we discuss matrices over a ring A we always identify A with the 
scalar matrices (constant multiples of the identity matrix). 

We use the standard notations: 

N, Z, Q, M, C 

for the natural numbers (including 0), the integers, rational, real and complex num
bers. 




