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Abstract. In this paper we define the geometric quantization of a generalized complex

manifold and we show how this quantization procedure contains as a particular case
the geometric quantization program for symplectic and Poisson manifolds.

1. Introduction

Let M be a 2n-dimensional compact manifold and let J be a generalized complex struc-
ture on it, i.e. an integrable almost complex structure on the generalized tangent bundle
TM = TM ⊕ T ∗M , which is orthogonal with respect to the natural symmetric pairing on
TM or, equivalently, a Dirac structure L ⊂ TCM such that L⊕ L̄ = TCM , L ∩ L̄ = {0},
where integrability is meant with respect to the Courant bracket [5][6][8]. Generalized
complex manifolds include, as particular cases, complex, Poisson and symplectic mani-
folds, and they have attached to them important algebraic structures. In particular, the
maximal isotropic L, with the Courant bracket, defines a Lie algebroid on M whose anchor
map is the projection onto the tangent part. The associated Lie algebroid cohomology is
the usual Dolbeault cohomology if the generalized complex structure comes from an ac-
tual complex structure on M and, in the symplectic case, it is nothing but the de Rham
cohomology of differential forms on the manifold. Also, there is a natural Poisson algebra
structure defined on (a convinient subalgebra of) the algebra of smooth functions on M
which, when considered the generalized structures defined by the usual ones, coincides
with their corresponding Poisson algebras [5]. In this paper we consider the geometric
quantization of such algebras, seen as a continuation of the geometric prequantization
program of Weinstein and Zambon for Dirac structures [18] and a generalization of the
quantization for compact symplectic manifolds introduced by Vergne et al [16][17].

After some preliminaries on the algebraic characterizations of Dirac structures and the
Poisson algebra associated to generalized complex manifolds (following closely the presen-
tation of [5] and [8]) we will recall in section 3 the main ingredients in our definition of
geometric quantization and, in 3.2, we give our definition and study its implications in
some basic examples. Throughout all the paper we work with Courant brackets without
twisting, this is because the prequantization condition we assume on the generalized com-
plex manifolds cannot be stated the way we use it when there is a twisting by a 2-form
in the bracket defining the Lie algebroid. The main features of this quantization setting
work, in consequence, on exact Courant algebroids without twisting.

2. Generalized Complex Geometry

2.1. Local model. Let V be a finite-dimensional real vector space and consider the dou-
bled vector space V = V ⊕ V ∗. There is on V a the natural symmetric pairing

〈X ⊕ ξ, Y ⊕ η〉+ =
1
2

(ξ(Y ) + η(X)) , (1)
1



2 ALEXANDER CARDONA

that we will use to identify V ∼= V∗, and a natural antisymmetric pairing given by

〈X ⊕ ξ, Y ⊕ η〉− =
1
2

(ξ(Y )− η(X)) . (2)

Definition 2.1. A Generalized Complex Structure on V is an endomorphism

J : V → V
satisfying:

(i) J2 = −1,
(ii) J∗ = −J.

It is easy to see from this definition that having a generalized complex structure on V
is equivalent to having a complex structure J on V which is orthogonal with respect to the
inner product (1), i.e. J∗J = 1.

There are other characterizations of generalized complex structurs on vector spaces, based
on the so-called linear Dirac structures [5][6]. Indeed, let us consider now the complexifi-
cation of V, namely VC = V ⊗ C, and the extensions of J and 〈, 〉+ to VC, which we will
continue to denote by J and 〈, 〉, respectively. Let

L =
{
α ∈ VC | J(α) = iα

}
,

then, by orthogonality 〈α, β〉 = 〈Jα, Jβ〉 = −〈α, β〉, so that 〈α, β〉 = 0. Thus, L is
isotropic and dim L = dim V = m, so it is maximal isotropic and L∩ L̄ = {0}. Conversely,
let L < VC be a maximal isotropic complex subspace such that L∩ L̄ = {0}, then L̄ ∼= L∗,
L ⊕ L̄ ∼= V ⊕ V ∗ and we can associate to it a generalized complex structure JL on V by
multiplication by i on L and multiplication by −i on L̄. Since lineal Dirac structures are
precisely maximal isotropic subspaces with respect to (1), in general,

Proposition 2.1. A generalized complex structure on V is completely determined by a
linear Dirac structure L of VC such that L ∩ L̄ = {0}.

Natural examples of linear Dirac structures are the graphs of presymplectic and Pois-
son structures on vector spaces, they were inroduced by Weinstein in order to study the
geometry of Dirac theory of constraints [6]. Notice that, if W is a vector subspace of V ,
taking its annihilator W ◦ in V ∗ we have a maximal isotropic LW = W ⊕W ◦. In general,
if i : W ↪→ V denotes the inclusion and ε ∈ ΛW ∗, the space

Lε
W = {X ⊕ ξ ∈ W ⊕ V ∗ | i∗ξ = iXε}

is an extension of the form

0 → W ◦ → Lε
W → W → 0,

then Lε
W
∼= W ⊕W ◦ is maximal isotropic. Moreover, every maximal isotropic in V is of

the form Lε
W for some W and ε [8]. The codimension of W in V , k = n−dim W , is called

the type of the generalized complex structure associated to Lε
W . It follows from these

characterizations of linear Dirac structures that a vector space has a generalized complex
structure if and only if it has even dimension n = dim V = 2m.

Example 2.1. Let (V, J) be a vector space together with a complex structure. Then J
induces a natural generalized complex structure JJ on V given by

JJ =
(
−J 0
0 J∗

)
, (3)

where J∗ : V ∗ → V ∗ denotes the dual map. In this case the maximal isotropic associated
to JJ is the given by

LJ = L0
V0,1

= V0,1 ⊕ V ∗
1,0,

where V1,0 = {X ∈ V C | J(X) = iX} = V 0,1. Thus, the associated generalized complex
structure associated to a complex structure is type m.
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Example 2.2. Let (V, ω) be a symplectic vector space. Then ω induces a natural gener-
alized complex structure Jω on V given by

Jω =
(

0 −ω−1

ω 0

)
, (4)

where ω−1 denotes the inverse isomorphism to the natural map ω : V → V ∗ : X 7→ ιXω.
Then, the maximal isotropic space associated to it is

Lω = Lω
V C = {X − iω(X) | X ∈ V C}.

Thus, the associated generalized complex structure associated to a symplectic structure is
type 0.

Spinors on generalized complex vector spaces. Let V be a finite-dimensional real
vector space and consider the doubled vector space V = V ⊕ V ∗ and its Clifford algebra
Cl(V) defined by the quotient of the tensor algebra by elements of the form α2 = 〈α, α〉+,
where α = X ⊕ ξ ∈ V and the inner product is the one given in (1). There is a natural
spinor space, S = Λ•V ∗, and a natural spinor representation for Cl(V) given as follows

(X ⊕ ξ) · ϕ = ιXϕ + ξ ∧ ϕ, (5)

where ϕ ∈ Λ•V ∗. Since the natural volume element in Cl(V) satisfies ω2 = 1, it induces
a grading in the spinor space S = S+ ⊕ S− ∼= ΛevV ∗ ⊕ ΛoddV ∗. Now, given a nonzero
element ϕ in S, the space

Lϕ = {α ∈ V | α · ϕ = 0}
is isotropic in V. If we consider V C, we call the spinor ϕ ∈ Λ•V ∗⊗C a pure spinor when Lϕ

is maximal isotropic and, in such a case, it is possible to describe each maximal isotropic
L in V through a unique line KL ⊂ ΛkV ∗ ⊗ C of pure spinors, where k denotes the type
of the associated generalized complex structure [4]. Namely, if Lε

W is a maximal isotropic
and W ◦ the annihilator of W , taking a basis {θ1, . . . , θk} for W ◦ and B ∈ Λ2V ∗ ⊗ C
such that i∗B = −ε, then the characteristic pure spinor line KLε

W
is the generated by

ϕ = eBθ1 ∧ · · · ∧ θk [8].

2.2. Generalized Complex Structures on Manifolds. Let M be a smooth manifold
and consider its generalized tangent bundle TM = TM⊕T ∗M with inner product induced
by (1). We will say that J is a generalized almost complex structure on M if it is an
almost complex structure on TM which is orthogonal with respect to the inner product
introduced above. Equivalently, considering the complexification TCM = TM ⊗C of TM ,
a generalized almost complex structure is defined by an almost Dirac structure L < TCM
such that L ∩ L̄ = {0} so that, via the inner product, L∗ ∼= L̄ and TCM ∼= L⊕ L̄.

Definition 2.2. [5] Consider an even-dimensional manifold M . The Courant bracket on
TM is the defined by

[X ⊕ ξ, Y ⊕ η]C = [X, Y ] + LXη − LY ξ − 1
2
d(ιXη − ιY ξ), (6)

where X ⊕ ξ, Y ⊕ η ∈ Γ(TM). We say that a generalized almost complex structure J on
M is a generalized complex structure if its maximally isotropic subbundle L is Courant
involutive, i.e. its space of sections Γ(L) is closed under the Courant bracket.

Recall that a Lie algebroid with anchor map a : A → TM is a vector bundle A → M
on M with Lie bracket [, ]A on Γ(A) such that a : Γ(A) → Γ(TM) ∼= V ect(M) defines a
Lie algebra homomorphism, i.e.

a([A,B]A) = [a(A), a(B)], A, B ∈ Γ(A) (7)

and the Leibniz rule
[A, fB]A = f [A,B]A + (a(A)f)B, (8)
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is satisfied, where A,B ∈ Γ(A), f ∈ C∞(M) (for general facts on Lie algebroids see [2]).
Given a Lie algebroid A → M with Lie bracket [, ]A and anchor a on Γ(A), it is possible
to generalize the usual definition of exterior derivative to get a Lie algebroid derivative

dA : Ωk
A(M) → Ωk+1

A (M),

where Ωk
A(M) = Γ(ΛkA∗), by

dAσ(A0, . . . , Ak) =
k∑

i=0

(−1)ia(Ai)σ(A0, . . . , Âi, . . . , Ak)

+
∑
i<j

(−1)i+jσ([Ai, Aj ]A, A0, . . . , Âi, . . . , Âj , . . . , Ak), (9)

where σ ∈ Ωk
A(M), Ai ∈ Γ(A).

Given an even-dimensional manifold M and a generalized complex structure J with asso-
ciated maximally isotropic subbundle L < TCM , so that TCM ∼= L ⊕ L̄, restricting the
Courant bracket on TCM to L we have a Lie algebroid structure [5][8]. Let (L, [ , ]C , πTM )
be the Lie algebroid on M associated with a generalized complex structure J. Putting for
f ∈ C∞(M, C)

dLf = df + iJ(df), (10)
which corresponds to the L∗-part of df in the decomposition TCM ∼= L ⊕ L∗, we extend
dL to complex functions on M , obtaining a complex

0 → C∞(M, C) ∼= Ω0
L(M) dL−→ Γ(L∗) ∼= Ω1

L(M) dL−→ · · · dL−→ Ωn
L(M) → 0,

where n denotes the rank of the bundle L.

Proposition 2.2. The Lie algebroid exterior derivative is a first order elliptic differential
operator, it satisfies d2

L = 0, so that (Ω•(L), dL) is an elliptic differential complex.

Proof. Notice that, by definition, if A,B ∈ Γ(L) then J(A) = iA and J(B) = iB, so

d2
Lf(A,B) = dL(df + iJ(df))(A,B),

thus, as follows from (9),

d2
Lf(A,B) = a(A)(df + iJ(df))(B)− a(B)(df + iJ(df))(A)− (df + iJ(df))([A,B]C),

but, decomposing A = X − iJ(X), B = Y − iJ(Y ) gives

d2
Lf(A,B) = X(df + iJ(df))(Y − iJ(Y ))− Y (df + iJ(df))(X − iJ(X))

− (df + iJ(df))([X, Y ]− iJ([X, Y ])),

but (df + iJ(df))(Y − iJ(Y )) = df(Y ) and so on, so that d2
Lf(A) = d2f(X, Y ) = 0. The

same holds for any rank higher than 1 using the definition of dL.

In order to check ellipticity, let us compute the symbol of dL. By definition [1], if P
is a differential operator of order k its principal symbol σP is given by

σP (x, ξ) = lim
t→∞

1
tk

(
e−itfPeitf

)
(x),

where f ∈ C∞(M) is such that df(x) = ξ. Then,

σdL
(x, ξ) = lim

t→∞

1
t

(
e−itfdLeitf

)
(x) = lim

t→∞

1
t

(
e−itf [iteitf (df)L∗ ∧+eitfdL]

)
(x),

so that
σdL

(x, ξ) = i(dLf)(x)∧ = i(df)L∗(x)∧,

which can also be written
σdL

(x, ξ) = iπ∗(ξ)∧,
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where π∗ : T ∗CM → L∗ denotes the dual to the projection π : L → TCM , i.e. π∗(ξ) =
ξ + iJ(ξ). It is clear that π∗(ξ) 6= 0 whenever ξ ∈ T ∗M is not zero, because TCM = L⊕ L̄
and then ξ = x + x̄ for some x 6= 0 in L. Therefore, dL is elliptic �

We denote by H•
L(M) the cohomology associated to the elliptic complex (Ω•L(M), dL),

often called L-cohomology of M . It follows that

Proposition 2.3. [8] The generalized cohomology associated to the generalized complex
structure Jω, which is Courant involutive since dω = 0 for a symplectic manifold (M,ω),
is the complex de Rham cohomology of M , i.e.

H∗
Lω

(M) = H∗
dR(M, C).

The generalized cohomology associated to the generalized complex structure JJ of a complex
manifold (M,J) is the Dolbeault cohomology of M , i.e.

H∗
LJ

(M) = H∗
∂̄(M).

2.3. The Poisson Algebra. The Poisson algebra associated to a Dirac structure L on a
manifold M has been defined by Courant and Weinstein (see [5][6]), generalizing the usual
definition for symplectic and Poisson manifolds.

Definition 2.3. A function f ∈ C∞(M) is called L-admissible if there exists a vector
field Xf on M such that Xf ⊕ df is a section of L. When such a vector field exists,
it is called a Hamiltonian vector field associated to f , and the Poisson bracket between
functions f, g ∈ C∞

L (M) (the space of L-admissible functions over M) is defined by

{f, g} = Xf (g). (11)

Proposition 2.4. [5] With the above defined Poisson bracket, the algebra C∞
L (M) is a

Poisson algebra, the Poisson algebra associated to the Dirac structure L.

Remark 2.1. In the case we work with a Dirac structure Lω coming from a symplectic
structure ω on M , see (4), we have that, since ω is non degenerate, C∞

L (M) = C∞(M)
and the Poisson bracket coincides (up to a constant) with the usual Poisson bracket in
symplectic geometry. However, in the case of generalized structures coming from a complex
structure J on M , the Dirac structure is given by LJ = T0,1M ⊕ T ∗1,0M , where T1,0M =
{X ∈ TM | J(X) = iX}. Since, point by point, the annihilator of T0,1M is T ∗1,0M , the
Poisson bracket in this case is identically zero, so the Poisson algebra is trivial.

Remark 2.2. In the symplectic case Jω(df) = −ω−1(df) = −Xf , where Xf denotes the
usual symplectic Hamiltonian vector field associated to f , so that dLf = −iXf + df . In
[8] the generalized Hamiltonian vector field associated to f ∈ C∞(M) is defined as the
section of TM given by

Xf + ξf = J(df). (12)

The Poisson bracket of two smooth functions f and g is then defined as the smooth map
given by {f, g} = Xf (g). In this framework we recover exactly the symplectic case as
before, but in the complex case there is a difference: the Poisson bracket is zero because
there are no hamiltonian vector fields after this definition in the complex case.
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3. Geometric Quantization of Generalized Complex Structures

Given a symplectic manifold (M,ω) with an associated Poisson algebra (C∞(M), {, }),
modeling the classical phase space for a dynamical system. A geometric quantization of
such a Poisson algebra means a map

C∞(M) → End(Γ(E))

f 7→ f̂ ,

where Γ(E) denotes the space of sections of a Hermitian vector bundle E → M , modelling
wave functions, which satisfies the Dirac quantization conditions [19]:

1. The application f 7→ f̂ is linear
2. If f is constant then f̂ must be the multiplication (by the constant f) operator
3. If {f, g} = h then

[f̂ , ĝ] = −iĥ. (13)

In the Kostant-Souriau geometric approach to quantization [9][11][14], the first step to-
wards a geometric quantization of a symplectic manifold (M,ω) is to build a prequan-
tization bundle, i.e. a complex line bundle L π→ M endowed with a connection ∇ with
curvature 2πiω. Such a bundle exists if and only if the class of 1

2π ω in H2(M, R) is in
the image of H2(M, Z) under the inclusion in H2(M, R) (see e.g. [11][19]). When this
integrality condition is verified, the Hilbert space of prequantization H(M,L) is the com-
pletion of the space formed by the square integrable sections s : M → L, with the inner
product

(s, s′) =
∫

M

〈s, s′〉 ε,

where ε = 1
2π dp1 ∧ · · · ∧ dpn ∧ dq1 ∧ . . . ∧ dqn is the element of volume of the symplectic

manifold M . In this setting, to each observable f ∈ C∞(M) we associate an Hermitian
operator according to the Konstant-Souriau representation

f̂ = f − 2πi∇Xf
,

where Xf denotes the Hamiltonian vector field generated by f . This prequantization
should be promoted to a quantization of the symplectic manifold by means of a polariza-
tion (see [9][19] for details).

This setting for quantization has been generalized by Vergne, Guillemin and others (see
[16][17] and references therein), stressing the importance of the almost complex structure
J on M and the induced Spinc-Dirac operator on the Clifford bundle of forms. Indeed,
given an almost complex structure J on a prequantizable manifold (M,ω), compatible
with the symplectic form and inducing a decomposition of the (complexification of the)
tangent bundle as TCM = T1,0M ⊕T0,1M , the canonical Clifford bundle associated to the
Spinc-structure on M is [12]

SJ(M) = Λ•TCM ⊗K
1
2
J
∼= Ω0,•(M)⊗ (ΛnT ∗CM)

1
2 , (14)

where KJ = ΛnT ∗CM is the canonical bundle associated to (M,J). Thus, provided a
Hermitian connection on the canonical bundle KJ , there exists an associated Spinc-Dirac
operator

∂ : Ω0,+
L (M) → Ω0,−

L (M)

over the bundles of L-valued differential forms on M , where L → M denotes the prequan-
tization line bundle. If Ind(∂) denotes the index bundle of ∂ over M , the quantization of
the (Poisson algebra on the) manifold M is defined as the bundle

Q(M) = Ind(∂) = Ker(∂)− CoKer(∂) (15)
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over M . This definition of quantization is the suitable one in connection with symplectic
reduction and representation theory, i.e. given an equivariant Hamiltonian action on M
with a moment map, in this context it has been shown that quantization commutes with
reduction [13].

3.1. The Weinstein-Zambon prequantization representation. Let (M, J) be a gen-
eralized complex manifold, let L < TCM be the Lie algebroid associated to J on M ,
(C∞

L (M), {, }) the Poisson algebra of L-admissible functions and H•
L(M) the L-cohomology

associated to the elliptic complex (Ω•(L), dL). Consider the natural antisymmetric pairing
〈 , 〉− on TM given by (2), and let us denote by ΩL its associated 2-form on L, i.e. the given
by its restriction to L. Recall that the pullback of the anchor map πTM : Γ(L) → Γ(TM)
induces a map

π∗TM : Ω•dR(M) → Ω•(L)

descending to a map between de Rham and Lie algebroid cohomology π∗TM : H•
dR(M) →

H•
L(M) [2] and dLΩL = 0. Following [18], we say the generalized complex manifold (M, J)

to be prequantizable if
[ΩL] ∈ π∗TM (i∗(H2

dR(M, Z))), (16)

where i : Z → R denotes the inclussion, i.e. if there exist a real integral 2-form Ω on M
such that

ΩL = π∗TMΩ + dLβ (17)

where β ∈ Γ(L∗).

Remark 3.1. Notice that, if the generalized complex structure is the one defined by a sym-
plectic structure, the 2-form Ω is the symplectic form and β = 0, so that the prequantization
condition becomes the usual geometric Kostant-Souriau prequantization condition for M .
In the same manner, when the generalized complex structure is the graph of a Poisson
bivector over M , this condition coincides with Vaisman’s geometric prequantization condi-
tion for Poisson manifolds [15]. However, notice that the prequantization condition cannot
be verified in the case in which the generalized complex structure comes from a genuine
complex structure on M , so that there is no prequantization in the complex case. This fact
is compatible with the fact pointed out previously that the Poisson algebra itself is trivial
in the complex case.

As it was the case in the symplectic setting, the significance of the prequantization con-
dition above is that, whenever it is satisfied, it is possible associate with the prequantizable
manifold a line bundle L → M with a Hermitian connection ∇ such that its curvature
form is Ω and, as a consequence, we obtain a representation of the Poisson algebra (11) on
the space of operators acting on sections of such a bundle. In the case of Dirac structures,
using covariant derivatives associated to Lie algebroids (see [7]), a similar representation
is obtained in [18]. Namely, given a vector bundle E → M and a Lie algebroid A over M ,
a A-covariant derivative on sections of E is a map

∇A : Γ(A)⊗ Γ(E) → Γ(E)

giving rise to a linear differential operator, satisfying the usual rules, and such that

∇A
α (fϕ) = f∇A

α ϕ + (a(α)(f))ϕ, (18)

where a denotes the anchor map and α ∈ Γ(A), ϕ ∈ Γ(E) and f ∈ C∞(M). In particular,
Lemma 6.2 in [18] follows the same in the case of generalized complex structures to have

Proposition 3.1. Let (M, J) be a generalized complex manifold and let L < TCM be
the Lie algebroid associated to J on M . If Ω is a closed integral 2-form on M and ∇ a
connection on a Hermitian line bundle L with curvature 2πiΩ and the integrality condition
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(17) is satisfied, then π∗TMΩ = ΩL + dLα for α ∈ Γ(L∗), and the L-connection ∇L defined
by

∇L
· = ∇πT M (·) − 2πi〈·, α〉〉, (19)

where 〈, 〉〉 denotes the duality pairing in L, has curvature 2πiΩL.

With the result above at hand, from section 6 in [18] it follows that, given a prequanti-
zable generalized complex manifold (M, J) with associated Dirac structure L, the Poisson
algebra of L-admissible functions on the manifold can be represented on L-flat sections of
L with respect to the L-connection ∇L. Namely, if we define

ΓL(L) = {s ∈ Γloc(L) | ∇L
Y⊕0 = 0 ∀Y ∈ L ∩ TM} (20)

where ∇L is the L-connection given by (19), then

C∞
L (M) → End(ΓL(L))

f 7→ f̂ = f − 2πi∇L
Xf⊕df ,

where Xf denotes any Hamiltonian vector field associated to f , is a representation of the
Poisson algebra of L-admissible functions. It is clear that in the symplectic case we retrieve
the Kostant-Souriau representation mentioned earlier, altogether with its generalization
to the Poisson case given in [15].

3.2. Quantization of generalized complex structures. Let us now consider a pre-
quantizable generalized complex manifold (M, J), with prequantum bundle and Hermitian
connection (L,∇). In particular, J : TM → TM is an (integrable, with respect to the
Courant bracket) almost complex structure on the generalized tangent bundle, and it is
characterized by a Dirac structure L < TCM . Since L ∩ L̄ = {0}, via the inner product,
L∗ ∼= L̄ and TCM ∼= (L⊕ L̄). Recall that L is a Lie algebroid on M and therefore there is
a differential complex associated to it, namely (Ω•L(M), dL), the Lie algebroid differential
complex defined in (9), whose L-cohomology is denoted H•

L(M).

Recall that the Dirac structure L can be also specified through a spinor line subbun-
dle KL ⊂ Λ•T ∗CM , which is annihilated by the action of L by Clifford multiplication. This
line KL is the canonical line bundle associated to the generalized complex structure spec-
ified by L. There is a relation between the complex of differential forms on M —in which
sections of KL are included— and the L-complex defined by the Lie algebroid structure
of L that we describe as follows [8]. Consider the spaces

Ωj
KL

(M) = Γ(ΛjL∗ ·KL) ∼= Γ(ΛjL∗ ⊗KL), (21)

of KL-valued L-forms on M . Then,

Ω0
KL

(M) = Γ(KL), Ω1
KL

(M) = Γ(L∗ ·KL) ∼= Γ(TM)⊗ Γ(KL), (22)

since L-sections annihilate KL and Ω2m
KL

(M) = Γ(Λ2mL∗·KL) ∼= Γ(detL∗)⊗Γ(KL) = KL∗ ,
the pure spinor line associated to the complementary Dirac structure L∗. As a matter of
fact [8], there is a chain complex

0 → Ω0
KL

(M) ∂̄L−→ Ω1
KL

(M) ∂̄L−→ · · · ∂̄L−→ Ω2m
KL

(M) → 0, (23)

defined as follows: Since KL ⊂ Ω•(M) we can take usual exterior derivatives on elements of
the canonical line associated to the generalized complex structure and, moreover, Courant
integrability of L is equivalent to ask

d : Γ(KL) → Γ(L∗ ⊗KL),
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to satisfy d2 = 0. Thus, coupling d to the Lie algebroid exterior derivative dL to extend it
to Ωj

KL
(M) = Γ(ΛjL∗ ⊗KL) as

∂̄L(λ⊗ ϕ) = dLλ⊗ ϕ + (−1)deg(λ)λ⊗ dϕ, (24)

we have a Lie algebroid module structure on KL over the differential algebra (Ω•L(M), dL),
i.e. it gives rise to a differential operator

∂̄L : Ωj
KL

(M) → Ωj+1
KL

(M) (25)

called generalized Dolbeault operator, which is actually a Lie algebroid connection for the
module KL [7][8]. Since in the complex case it reproduces (with a different grading)
the usual Dolbeault cohomology for complex manifolds, the cohomology associated to
the differential complex (Ω•KL

(M), ∂̄L), which is elliptic from the definition (24), is called
generalized Dolbeault cohomology.

Remark 3.2. Since Ω0
KL

(M) = KL, Ωj
KL

(M) = Γ(ΛjL∗ ⊗KL), we have a Z-grading on
Ω•(M)⊗ C, namely

Ω•(M) = Ω0
KL

(M)⊕ Ω1
KL

(M)⊕ · · · ⊕ Ω2m
KL

(M).

It follows that there is an isomorphism

Ω•(M) ∼= Ω•L(M)⊗KL. (26)

Consider now the Mukai pairing of differential forms

(, ) : Ω•(M)⊗ Ω•(M) → det(T ∗M)

given by (ϕ, ρ) = [ϕ> ∧ ρ]dim M . This pairing induces a nondegenerate pairing

(, ) : Ωj
KL

(M)⊗ Ω2m−j
KL

(M) → det(T ∗M)

which, for j = 2m, gives rise to an isomorphism detT ∗M ∼= Ω2m
KL

(M) ⊗ Ω0
KL

(M). It
follows from (26) and the definition of Ω0

KL
(M) that

Ω•(M)⊗ det(TM)
1
2 ∼= Ω•L(M)⊗ det(L)

1
2 , (27)

which indicates that SL(M) = Ω•(M)⊗ det(TM)
1
2 is a natural choice for the spin bundle

associated to the Clifford algebra of TM through the action (5) (compares with (14) in the
complex case). Moreover, the Mukai pairing can be seen as a nondegenerate bilinear form

(, ) : SL(M)⊗ SL(M) → C∞(M)

on such a bundle.

Finally, we arrive to our definition of quantization for generalized complex manifolds.
Let Ωj

KL
(M,L) = Γ(ΛjL∗ ⊗KL ⊗L) the space of “L-forms” on M with values in the line

bundle KL ⊗ L, and consider the spaces

Ω+
KL

(M,L) =
⊕

j

Ω2j
KL

(M,L), Ω−KL
(M,L) =

⊕
j

Ω2j+1
KL

(M,L).

Coupling the generalized Dolbeault operator (25) with a connection ∇ on L gives rise to
an elliptic operator

∂̄L : Ω+
KL

(M,L) → Ω−KL
(M,L). (28)

Definition 3.1. Let (M, J) be a prequantizable generalized complex manifold, with pre-
quantum bundle and Hermitian connection (L,∇). Let L be the Dirac structure charac-
terizing J and (Ω•KL

(M,L), ∂̄L) the associated elliptic complex described before. Then, the
quantization of the Poisson algebra given by (11) is the bundle

Q(M,L) = Ind(∂̄L) = Ker(∂̄L)− CoKer(∂̄L). (29)
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As a consequence of this definition we have that, for a manifold with a generalized
complex structure induced from a symplectic form, the quantization coincides with the
one given by Vergne in (15). However, notice that if the generalized complex structure is
purely complex, there is no quantization associated to it.

Remark 3.3. Notice that we have worked the case in which there is no twisting in the
Courant bracket given by (6). Indeed, if the Courant bracket has a twisting given by a
closed 2-form on M , the 2-form ΩL used to define the prequantization condition (17) is
no longer dL-closed.
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pp. 187–219, Univ. Luxembourg, 2005.

[19] Woodhouse, N. Geometric Quantization. Oxford University Press, 1992.

Mathematics Department, Universidad de Los Andes, A.A. 4976 Bogotá, Colombia.
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