List of papers of Bernardo Uribe

Back to main page


Preprints

  1. Segal's Spectral Sequence in Twisted Equivariant K-theory for proper and discrete actions, (j.w. N. Barcenas, J. Espinoza and M. Velasquez)
  2. Multiplicative Structures on the Twisted K-theory over Finite Groups, (j.w. C. Galindo and I. Gutierrez)
  3. Equivariant principal bundles and their classifying spaces, (j.w. W. Lueck) To appear in Algebraic and Geometric Topology.
  4. Equivariant extensions of differential forms for non-compact Lie groups, (j.w. H. Garcia-Compean and P. Paniagua) To appear in Contemporary Mathematics "Proceedings of the celebration of the 50th anniversary of CINVESTAV.
  5. Orbifold Topological Quantum Field Theories in Dimension 2, (j.w. A. Gonzalez, E. Lupercio and C. Segovia)
  6. T-duality and exceptional generalized geometry through symmetries of dg-manifolds, (j.w. E. Lupercio and C. Rengifo)
  7. Universal twist in Equivariant K-theory for proper and discrete actions, (j.w. N. Barcenas, J. Espinoza and M. Joachim) To appear in Proceedings of the London Mathematical Society.

Published in Journals

  1. Group actions on dg-manifolds and Exact Courant Algebroids, Communications in Mathematical Physics: Volume 318, Issue 1 (2013), Page 35-67
  2. Hochschild cohomology and string topology of global quotient orbifolds, (j.w. A. Angel and E. Backelin), Journal of Topology 5 (2012) 593--638.
  3. Chern - Weil homomorphism in twisted equivariant cohomology, (j.w. A. Caviedes and S. Hu), Differential Geom. Appl. 28 (2010), no. 1, 65--80
  4. Extended manifolds and extended equivariant cohomology (j.w. S. Hu), J. Geom. Phys. 59 (2009), no. 1, 104--131
  5. Stringy orbifold product in K-theory for abelian global quotients, (j.w. Edward Becerra), Trans. Amer. Math. Soc. 361 (2009), no. 11, 5781--5803
  6. Orbifold String Topology (w. E. Lupercio, M. Xicotencatl) Geometry and Topology 12 (2008) No. 4, 2203--2248
  7. Orbifold Virtual Cohomology of the Symmetric Product (j.w. David Riveros), Bulletin of the Mexican Mathematical Society. 3a. Serie Volumen 14 Numero 1, 2008
  8. Chen-Ruan Cohomology of cotangent orbifolds and Chas-Sullivan String Topology (j.w. A. Gonzalez, E. Lupercio, C. Segovia, M. Xicotencatl) Math. Res. Lett. 14 (2007), no. 3, 491--501.
  9. The loop orbifold of the symmetric product (w. E. Lupercio, M. Xicotencatl) J. of Pure and Applied Algebra 211 (2007) 293-306.
  10. Stringy Chern classes of singular varieties (w. T. de Fernex, E. Lupercio, T. Nevins). Advances in Mathematics Volume 208, Issue 2 , 30 January 2007, Pages 597-621
  11. Holonomy for Gerbes over Orbifolds (w. E. Lupercio). Journal of Geometry and Physics 56 (2006), no. 9 , 1534--1560
  12. Orbifold cohomology of the symmetric product. Comm. Anal. Geom. 13 (2005), no. 1, 113--128.
  13. An introduction to gerbes on orbifolds (w. E. Lupercio). Ann. Math. Blaise Pascal 11 (2004), no. 2, 155--180.
  14. Inertia orbifolds, configuration spaces and the ghost loop space (w. E. Lupercio). Q. J. Math. 55 (2004), no. 2, 185--201.
  15. Gerbes over orbifolds and twisted $K$-theory (w. E. Lupercio). Comm. Math. Phys. 245 (2004), no. 3, 449--489.

Published in Proceedings of Conferences

  1. Topological Quantum Field Theories, Strings, and Orbifolds (w. E. Lupercio) Geometric and topological methods for quantum field theory, 73--98, Contemp. Math., 434, Amer. Math. Soc., Providence, RI, 2007.
  2. A Localization Principle for Orbifold Theories (w. T. de Fernex, E. Lupercio, T. Nevins). Recent developments in algebraic topology, 113--133, Contemp. Math., 407, Amer. Math. Soc., Providence, RI, 2006.
  3. Differential Characters on Orbifolds and String Connections (w. E. Lupercio) Gromov-Witten theory of spin curves and orbifolds, 127--142, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2006.
  4. Deligne cohomology for orbifolds, discrete torsion and B-fields (w. E. Lupercio). Geometric and topological methods for quantum field theory (Villa de Leyva, 2001), 468--482, World Sci. Publishing, River Edge, NJ, 2003.
  5. Loop groupoids, gerbes, and twisted sectors on orbifolds (w. E. Lupercio). Orbifolds in mathematics and physics (Madison, WI, 2001), 163--184, Contemp. Math., 310, Amer. Math. Soc., Providence, RI, 2002.