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A THEOREM ON HOLONOMY

BY
W. AMBROSE AND I. M. SINGER

Introduction. The object of this paper is to prove Theorem 2 of §2, which
shows, for any connexion, how the curvature form generates the holonomy
group. We believe this is an extension of a theorem stated without proof by
E. Cartan [2, p. 4]. This theorem was proved after we had been informed of
an unpublished related theorem of Chevalley and Koszul. We are indebted
to S. S. Chern for many discussions of matters considered here.

In §1 we give an exposition of some needed facts about connexions; this
exposition is derived largely from an exposition of Chern [5] and partly from
expositions of H. Cartan [3] and Ehresmann [7]. We believe this exposition
does however contain one new element, namely Lemma 1 of §1 and its use in
passing from H. Cartan’s definition of a connexion (the definition given in §1)
to E. Cartan’s structural equation.

1. Basic concepts. We begin with some notions and terminology to be
used throughout this paper. The term “differentiable” will always mean what
is usually called “of class C=.” We follow Chevalley [6] in general for the
definition of tangent vector, differential, etc. but with the obvious changes
needed for the differentiable (rather than analytic) case. However if ¢ is a
differentiable mapping we use ¢ again instead of d¢ and 8¢ for the induced
mappings of tangent vectors and differentials. If M is a manifold, by which
we shall always mean a differentiable manifold but which is not assumed
connected, and m & M, we denote the tangent space to M at m by M,. If W
is a vector field at M we denote its value at m by W(m), and if %, - - -, %
is a coordinate system of M we always write X!, - - -, X* for the cor-
responding partial derivatives, i.e. X?=9/dx;. We use the word “diffeo” for a
1:1 differentiable mapping of one manifold onto another whose inverse is
also differentiable and call the manifolds diffemorphic. If I, W’ are vector
fields we write [W, W'] for WIW' — W'W (opposite to [6]). R* will always
denote k-dimensional Euclidean space of all k-tuples of real numbers and
01, - + -, 0 will always denote the canonical unit elements there, i.e. §;
= (815, 025, * * , Onj).

Let G be a Lie group (i.e. a differentiable group) acting differentiably and
effectively on a manifold F. If fEF and g&G we write gf for the image of f
under the action of g&G and if ¢ is a tangent vector at f we write gt for the
image of ¢ (which will be a tangent vector of gf) under g. If O is a manifold
we denote by (O, F, G) the family of all transformations of OXF—OXF
of the form: (o, f)—(o, ¢(0, f)) when ¢ is any differentiable mapping of OX F—F
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such that, for each 0&0, the transformation: f—t(o, f) coincides with the
action of some g&G.

DEFINITION. A bundle is a collection (B, M, F, G, w, ¢) where B, M, F are
manifolds, G is a Lie group acting differentiably and effectively on F, 7 is a
differentiable mapping of B onto M, and ¢ is a collection of mappings. It is
further assumed that

(1) each ¢ &P is a diffeo of some OXF, where O is an open submanifold
of M, onto m1(0),

(2) (wo@d)(o, f)=o0for all (o, [YEOXF,

() if ¢, YEP, ¢: OXF—B, : PXF—B, 04P(1), then (¢~ o) | ((0NP)
XF)&(0NP, F, G),

(4) the domains of the ¢ in ® cover B,

(5) the family ® is maximal with respect to (1), (2), (3).

Then B is called the bundle space, M the base space, G the group, = the
projection, ® the family of strip maps of the bundle. In the special case where
F and G are the same manifold and G acts as itself by left translation, the
bundle is called a principal bundle and denoted by (B, M, G, w, ®).

If ¢ is a strip map taking 0 X F—B, then for each m SO we define ¢n: F
—B, by ¢u(f) =¢(m, f). If ¢, ¢ are strip maps and m& M is such that both
¢m and ¥, are defined, then the definition of (O, F, G) and (3) show ¢,,' o ¥,,
coincides with the action of some g&G on F and in the case of a principal
bundle this means that ¢,;' 0 ¥», is a left translation by some g&G.

DEFINITION. A tangent vector ¢ at a point in a bundle is vertical ff(?)
wt=0. The linear space of vertical vectors at b&B will be denoted by 7.

A vector field 4 in the fiber F which is invariant under the action of G
gives rise, in a way we shall now describe, to a vertical vector field Q on B
(by a vertical vector field we mean one that assigns a vertical vector at each
point). To define Q(b) consider any strip map ¢: OX F—B, such that b
CH(OXF). If ¢u(f)=b we define Q(b) =¢nA(f). This definition is inde-
pendent of the strip map ¢ because if ¥ is another such strip map then
®n' O ¥n agrees with the action of some g&G. Hence Yu(f) =¢n(gf) for all
fE Fand then, using the invariance of 4, we have Y4 (f) =¢ngd (f) =dnd (gf).
If 4 is differentiable, then so is W and the mapping thus defined, taking
A—W, preserves brackets (these properties are immediate from the fact
that the strip maps ¢ are diffeos). In particular, if the bundle is a principal
bundle, the invariant vector fields on the fiber are the left invariant vector
fields of the group G and these constitute the Lie algebra L of G. Hence in
this case the mapping taking A—W is an iso(®) of the Lie algebra L of G onto
a Lie algebra of vertical vector fields on B. Throughout this paper we shall,

(1) 04 P means 0 and P have a non-null intersection. Similarly O”P will mean 0 and P
have a null intersection.

(?) ff means: if and only if.

() We shall omit the appendage “morphism” from an obvious maximal set of words.
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in the case of a principal bundle (and principal bundles will be the only ones
we shall seriously consider), reserve the letter ¢ for this iso and the letter
for its image ¢(L). If ¢ is a vertical vector at & B, then it is trivial that
there exists a unique Q& Q such that Q(b) =t; we then say Q is generated by ¢
and if Q=¢(4) we also say A4 is generated by ¢.

If (B, M, G, w, ®) is a principal bundle, then G can be made to act on B
in a natural way that is called right translation. This differentiable and effec-
tive action of G on B is defined as follows. If bEB, g&EG, ¢ any strip map,
¢: OXF—B, b&¢p(OXF), then write b=¢(m, k) and define bg=¢(m, hg).
This definition of bg is independent of the choice of the strip map ¢ because,
for any other strip map ¥, ¢,,' 0 ¥ is a left translation on G and left trans-
lations commute with right translations on G. The right translation action
of G on B is the mapping of BXG—B: (b, g)—bg. The mapping of B—B
taking b—bg (for any fixed g&G) will be denoted by R, and right translation
by g on G will also be denoted by R,; left translation by g on G will be de-
noted by L,. If ¢ is any strip map of B, then clearly ¢ 0 Ry=R; 0 ¢

We denote the inner auto(®) of G, corresponding to g&G, by a(g), i.e.
a(g)h=ghg ! for hEG, and if A EL (L the Lie algebra of G) we write a(g)4
for the element of L defined by: (a(g)4)(e) =a(g)A(e). a(g)A is sometimes
denoted by adg A. For Q€Q we define a(g)QEQ by alg)Q=g(a(g)A), when
Q=gq(4). Then R,Q=a(g™")Q, for if ¢ is any strip map of B and ¢ (k) =b then
(a(g ) Q) (0) =d((alg™) A) () =¢(Lr o R, 0 L, 1A (e)) =¢(R, 0 Ly, A (e))
=¢(RoA(hg™")) = (¢ 0 Ry)A sy = (R, 0 p(A(hg™") =R,0(hg™).

Some principal bundles of special interest are the bundle of bases E(M)
over any manifold M and the bundle of frames F(M) over a Riemannian M.
We now define E(M). The points of E(M) are all the ordered (d-1)-tuples
(m, ey, - + -, ea) where mEM and (e, - - -, €4) is any base of M,,. The projec-
tion 7 of E(M) onto M is defined by w(m, e, - - -, es) =m. The group (and
fiber) G is the full linear group over the reals, i.e. the group of all nonsingular
linear transformations of RY onto itself. With each point b of E(M) we can
associate an iso I of M, onto R by writing b= (m, e, - - -, es) and defining
I, to be the linear transformation taking e;,—d; (for all 7); and conversely, so
the points of E(M) could have been defined as the pairs (m, I) where I is
such an iso. In this example it is convenient to define the action of G on the
bundle before defining the bundle structure. We do this by: if b
=(m, e, - -+, es), then bg=(m, I;'gles, - - -, I; 'gleq); this implies that
I, takes (I;' o go I)e;—f:, hence I, 0 I;' o go Iy=1I, from which it is
clear that I,=g=! o I, (a fact that will be useful later). For any coordinate
system %, - + -, xq of M with domain O we define ¢: O XG—E(M): (m, g)
—Ry,(m, X'(m), - - -, X%(m))(®) (now writing R,b for the bg just defined).
We introduce coordinates yi, - - -, ¥a, Y11, * * -, Yaa of E(M), with domain
71(0), by

(%) The notation f: X—Y: x—y means f is a function from X to Y taking ¥ into y.
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Yi = xjod)r € = Z y'ij(mr €1, ", ed)Xi(m)'
)

Such coordinate systems of E(M) obtained from different coordinate sys-
tems of M are easily seen to be differentiably related. Since their domains
cover E(M) they define a unique differentiable structure on E(M), and this
defines E(M) as a manifold. Now let xy, + - -, xgand %{, - - -, x{ be any two
coordinate systems of M with domains O and 0/, let ¢ and ¢’ be the mappings
they define as above, and we shall show (¢~!o d)’)] ((ON0O") XG) is in
oNo', G, G). It mcoN0', b=¢(m, e)=(m, X'(m), - - -, X¢(m)), b
=¢'(m, €)= (m, X'Y(m), - - -, X'4m)), then ¢,,'¢., takes g&G into the hEG
such that I;'glyX%(m)=I;'hI,, X'i(m), i.e. g goes into the % such that
I;'gd;=TI;"hd; (for all ©). Hence h=1I, o I;' o g, showing that ¢! o ¢/, is left
translation by k=1Iy o I;' on G. And from this expression for £ it is easily
seen that k is a differentiable function of m, thus (¢! o ¢’)| ((ONO) XG) is
in (ON0', G, G). We define ®, the family of strip maps of this bundle, to be
all ¢ obtained from coordinate systems of M as above plus all other map-
pings ¥ of any PXG—E(M) which satisfy conditions (1) and (2) in the
definition of a bundle and the condition that (! o ¢)| ((ONP) XG) is in
(ONP, G, G) for such ¢ as above. Clearly the R, defined by this bundle
structure agrees with the R, used above.

The bundle F(M) is defined similarly, the points in this case being of the
form (m, e;, - - -, e)) where mE M and the e; are any orthonormal base of
M.,.. F(M) is in a natural way a submanifold of E(M).

DEFINITION. A connexion H on a principal bundle B= (B, M, G, =, ®)
is a mapping which assigns to each 5E B a linear subspace H, of B, such that

(1) Hp is a linear complement to V3; elements of Hj will be called kori-
zontal vectors.

(2) H is invariant under the action of G on B, i.e. Hy,=R,H,,

(3) Hy depends differentiably on b, i.e. if W is any differentiable vector
field on B, HW its horizontal part (i.e. HI¥ is the vector field which assigns
at each b&B the projection of W(b) into H;), HW is differentiable.

NotarioN. If W is any vector field on such a B with a connexion H we
shall always write HW and VW for the horizontal and vertical parts of W;
differentiability of W trivially implies that of VIV,

If H is a connexion on B then, for each & B, w]Hb is an iso of H; onto
M., where m=mb. This is immediate from: (1) = maps B, onto M,, (2)
7I'Vb=0, (3) dim Hy=dim M,,.

DEerINITION. If H is a connexion on B and bE B, the holonomy group of H
attached to b, denoted by G(b), is the set of all g&G such that bg can be joined
to b by a piecewise-differentiable(5) horizontal curve in B. The null holonomy

(®) By a piecewise differentiable curve we mean a curve which is differentiable and has a
nonzero tangent vector except at a finite number of points. By horizonal we mean that the
tangent vector is in Hj at all points b on the curve for which the tangent vector exists.
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group of H attached to b, denoted by Go(b), is the set of all g&G such that bg
can be joined to & by a piecewise differentiable horizontal curve in B whose
projection into M is null-homotopic.

It is trivial that G(d) and Go(b) are subgroups of G and that if c=bg
then G(c) =g~ 'G(b)g, Golc) =g 'Go(D)g.

If H is a connexion on E(M), then the holonomy group is related to the
notion of parallel translation along curves in M so we briefly indicate here
how parallel translation is derived from the above concept of a connexion.
Let H be a connexion on E(M). If p is any piece-wise differentiable curve in
M, from m to m', we shall define a linear transformation T of M,, onto M,
and this linear transformation is called parallel translation along p. To define
T let ¢ be any horizontal curve in E(M) lying over p (i.e. p=m 0 ¢). Then ¢
starts at some point (, e, - - -, ea) and ends at some point (', e}, - + -, ed ).
We define T to be the unique linear transformation taking e,—we; (for all 7).
The horizontal curve ¢ lying over p is not unique, but because of the in-
variance of H under the action of G on E(M) it is easily seen that T is inde-
pendent of the choice of o. The existence of a horizontal curve ¢ lying over
p can be shown as follows (note that this construction is valid for any con-
nexion, not necessarily on an E(M)). Consider any curve 7 lying over p in
B—and such curves trivially exist by virtue of the local cross section given by
strip maps. Consider the submanifold B’ of B consisting of all fibers which
contain a point of 7, with the natural differentiable structure in which it is
locally the product space of the fiber by the parameter along 7. We define a
vector field W on B’ by translating the tangent vector to 7 up and down
each fiber in B’ under the action of G on B. Then HW is a vector field on B’
any of whose integral curves will be such a ¢. In terms of parallel translation
we thus can consider the holonomy group of a connexion on E(M) to be a
group of linear transformations on the tangent space at a point of .

A connexion H on B gives rise to a 1-form w, the values of w lying in the
Lie algebra L of the group G of the bundle. w is defined by: if & Bs then
w(t) =the element of L generated by Vi, i.e. w(t) is the unique 4 EL with
(gA)s= Vt. Clearly w has the following properties.

(1) w is differentiable(®),

(2) if ¢ is vertical, then w(#) is the element of L generated by ¢,

(3) wo R,=(adgVw, i.e. if tE B, then w(R,t) = (adg™)(w(t)).

We have (3) because VR;t=R,Vt and R4 =(adg )4 for A& L. Con-
versely, any 1-form » on B with values in L and satisfying (1), (2), (3) gives
rise to a connexion H defined by: = [tEBb]w(t) =0]. We call w the 1-form
of the connexion.

In differentiating a real-valued differentiable differential p-form 6 we shall
frequently make use of the formula:

(%) For a form w whose values lie in a finite-dimensional linear space over R, differenti-
ability means that for every linear functional f from the vector space to R, f o w is differentiable.
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(W, -+, Wpia)
p+1 ] .
~ T 2 (=) WO, o, Wiy -, W)
. ) R R
+ e Z (—1)"+70([W“ Wj]y le ct Wiy Tty ij ct Wp+l)
P+ 1<
which can be used to define df. I.e. this formula holds for any p+1 differenti-
able vector fields Wy, - - -, Wy, and if this formula holds at a point for all
choices of Wy, « + -, Wpy from a family of vector fields which span the

tangent space at that point, then this determines df at the point. If 8 is a dif-
ferentiable differential form with values in a finite-dimensional vector space
over R, we define df in the usual way via linear functionals, i.e. df is the
unique form such that f o dd =d(f o 6) for all such linear functionals f.
DEriNITION. If H is a connexion or a principle bundle with bundle space
B we define the covariant derivative D8 of a differentiable p-form § on B (when

the values of 6 lie in any finite-dimensional vector space over R) to be the
(p+1)-form on B defined by

(D9)(f1, ] tp+l) = do(Htlr D) Htp+1)

where #;, - - -, t, are any elements of B;. I.e. D is the exterior derivative fol-
lowed by the dual of the projection H. Clearly Df is differentiable.

DeEriNiTION. If H is a connexion whose 1-form is w, we define the curvature
form Q of the connexion by Q= Dw.

It is easily seen that Q o R,=(adg™1)Q, i.e. Q(R,4, R,t:) =adg=1Q(t, t,)
for any #1, 2&By. This follows from the corresponding fact for w and the facts
(which are verified by simple computations) that if a form § with values in
L satisfies this relation, then so do df and H*, where H* is the dual of H,
i.e. (H*B)(tl, oty tp)’:e(ch A Iftp)

We now explain, in the case of a bundle of bases E(M), the geometric
reason for calling this @ the curvature. We show that Q defines, at each m& M
and for each s, s'& M., a linear transformation T, where this transforma-
tion can be considered as the effect of translating vectors parallel to them-
selves around the “infinitesimal parallelogram” spanned by s and s’; so this
transformation, as a function of s and s’, is a measure of how M “curves” at
m—this “curving” depending on the connexion. We also point out in the case
of a Riemannian connexion how to get the Riemannian curvature, which is a
number depending on m, s, s, from T .

Let s, s"& M, consider any b in E(M) lying over m (i.e. 7b=m) and any
horizontal differentiable vector fields K and K’ defined on a neighborhood of
b such that 7K (b) =s, 7K'(b) =s’. We define for each small positive number 8
a “circuit” vs, which is a piecewise differentiable horizontal curve consisting
of four differentiable pieces, as follows. Take the integral curve p of K with
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p(0) =b, then an integral curve p’ of K’ with p’(0) =p(d), then an integral
curve o of K with ¢(0) =p’(8), then an integral curve ¢’ of K’ with ¢'(0)
=g¢(—28). The circuit v, will be the curve obtained by going along p from
p(0) to p(8), then along p’ from p(8) =p’(0) to p’(3), then along ¢ from o’ (8)
=0(0) to o(—29), then along ¢’ from ¢(—6) =0'(0) to ¢’(—40). Next we con-
sider the curve made up of the end points of these circuits, suitably para-
metrized, i.e. we define y(¢) = final point of yga. (This is our definition of v for
t>0; for £ <0 we can define it similarly or we can ignore all £ <0.) If we define
v(0)=b, then v is a differentiable curve whose tangent vector at b is
[K, K'](b) (this is just the geometrical significance of the bracket operation,
applied to our K and K'). Let 75 and n be the projection of v; and v into M.
Note that 7; is a closed curve if and only if the final point of v; lies on the
same fiber as b and in this case b=(m, e, - - -, €s), the final point of v; is
(m, f1, * + -, fa), and parallel translation around 7; is the linear transforma-
tion taking e;—f:; this parallel translation gives rise to an element g&G
(G the linear group), namely the g such that R,(m, e, -, ea)
=, f1, - - -, fa). In general 7; is not closed and the final point of v; does not
lie on the same fiber as b, however the vertical component of the tangent
vector to y at b is an infinitesimal analogue of the transformation mentioned
above carrying e;—fi. The element A of L (L the Lie algebra of G) gen-
erated by the vertical component of the tangent vector to vy at b is an in-
finitesimal analogue of the above g and we point out in the next paragraph
how, through 4, the vertical component of this tangent gives rise to a trans-
formation T, on M,. This Ty, as a function of s, s', m (s and s’ in Ma),
determines the curvature form Q and conversely.

By definition of the 1-form w of the connexion we have 4 = w( [K, K'](0))
and a simple calculation (which is given in the proof of Theorem 2 below)
shows w([K, K’](b)) = —Q(K (), K'(b)). Thus we have shown that if £ and ¢/
are the unique horizontal elements of B, which project to s and s’ (we can
discard the vector fields K and K’ at this point), then the element 4 of L
generated by the vertical component of the tangent vector to v at b is given
by A =—Q(, ). Because G is the linear group, each A €L gives rise to a
linear transformation T4 on R? defined by: f(Tax) =A(e)fs, where f is any
linear function on R? and f, is the function defined on G by f.(g) =f(gx), for
xER. (In terms of the usual coordinates x;; on G this just defines T’y as the
linear transformation whose matrix with respect to the base &, - - -, da is
(A(e)xi;).) We define Ty, =I;" 0 T4 0 Iy, where I is the mapping defined
above of M,, onto R¢, associated with b. It remains only to show this defini-
tion is independent of the point b over m—a consequence of the behavior
of Q under R,. To prove this let bg be another point over 7, t; and ¢/ the hori-
zontal vectors at bg that project to s and ', so Ryt=h, Ret'=t{, and let
A= —Q(, #). Because Qt, #)=QR;t, Ryt')=adg*Q(t, ) we ‘have
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Ta=g'Tsg. Then using that Iyy=g'ol, we have I;;' o Tyo Iy,=1I;"
ogogloTsogoglo=I;'0oTas0 I

Consider now a Riemannian connexion on E(M) (the Riemannian con-
nexion is usually considered on the bundle of frames F(M) but may equally
well be considered on E(M)—or any principal bundle containing F(M) as a
sub-bundle). I.e. we have a scalar product {, ) on each M, which is a dif-
ferentiable function of m and H is the unique connexion on E(M) with torsion
zero (torsion is discussed at the end of this section) and such that parallel
translation preserves the scalar product. Then the function considered above
which assigns to each s and s’ in M, the linear transformation T, can be
characterized by the simpler function K which assigns to each such s and s’
the number K = (T ¢s, s")/a(s, s')2 where a(s, s’) is the “area” of the parallelo-
gram spanned by s and s’, i.e. a(s, s’)=([|s|[2|[s'||2——<s, s Tt is easily
seen that K(s, s’) does not depend on s and s’ but only on the plane section
(i.e. linear subspace of M,,) spanned by s and s’. This K is the Riemannian
curvature.

For the proof of the structural equation of a connexion we need the fol-
lowing lemma, which might be called the vector field formulation of the
structural equation.

LEMMA. Let H be any connexion on a principal bundle with bundle space B,
and  as above. If K is any horizontal vector field on B and QEQ then [K, Q]
is horizontal.

Proof. We need first the fact: if 4 and B are vector fields on a Lie group
G with A left invariant and B right invariant, then [4, B]=0. This can be
proved as follows. Define vector fields A’ and B’ on GXG by: 4'(g, k)
=J,A(h), B'(g, k) =I,B(g) where

I:G—G XG:g— (g h); Ji:G—=G XG; h— (g, h).

Then [4’, B'] =0 for if we consider any (g, ) €G XG and choose coordinates
X1, * + -, %, on a neighborhood of g, coordinates i, - - -, ¥, on a neighbor-
hood of &, then A’= Y a;¥i, B'= Y b X where the a; depend only on the
y;-coordinates and the b; depend only on the x;-coordinates. Computation
shows P4’ = A4 and ®B’ = B where ® denotes group multiplication in G. Hence
4, B]=0.

It follows that for any vertical vector field W on 7—~!(0) (0 any open sub-
set of M) which is invariant under the action of G on B we have [W, Q] =0
for all Q€9.

Now consider any strip map ¢: 0 X G—B where there exists a coordinate
system %, + + -, x¢g of M with domain O and let x;=x;0 w. We call a co-
ordinate system of B special if it consists of the functions y;, - - -, ¥a plus
some functions z, « - -, 2 which are carried over by ¢ from a coordinate
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system vy, - -+, v, of G (i.e. 2;=v; 0 p 0 ¢~ where p: 0OXG—G: (m, g)—g));
if the domain of vy, - - -, v, is P, then the domain of this special system is
@#(0XP). If we have two special coordinate systems (special, that is, for the
same ¢ and xy, - - -, x4) then at any point & common to their domains the
partial derivative with respect to y; at b defined through the two coordinate
systems is easily seen to be the same tangent vector and we denote the
vector field thus defined throughout #—1(0) by Y7, i.e. Yi(d) is the partial
derivative with respect to y;, where y1, -+ +, ¥a, 21, * * +, 2 is any special
coordinate system whose domain includes . Then 7Y =X7 and R, Yi=Yi.
Write Yi=K/4 W7 with K¢ horizontal and W7 vertical. We next show
[Ki, Q] =0 for all Q€ Q, by showing separately that [V* Q]=0 and [W7, Q]
=0.

To prove [¥i, Q]=0 consider any b&71(0) and a special coordinate
system y1, * + *, ¥4, 21, * * *, 2x at b. The expression for Q in these coordinates
involves only the 2; and with coefficients that depend only on the z;. Hence
[¥7, 0] =0. To prove [Ki, Q] =0 it is sufficient, by a remark made above, to
show R,Ki=K/. Because R,K7 is horizontal, R,WW/ is vertical, and the hori-
zontal vectors at any point are a linear complement to the vertical vectors,
this follows from

Ki4 Wi=Yi=R,Yi=R,Ki+ R,Wi.

Now consider any horizontal vector field K defined on a neighborhood of
any b&¢(0XG). Using the above notation, the K7 form a base for the hori-
zontal vectors throughout ¢(0XG) (because of the iso of H, with M, and
the fact that the X are a base for M,,) so K= ) a;Ki. Then

(K, 0] = [2 a;K7, Q] = - a;[K#, Q] — 20 (Qa)Ki = — 3° (Qap)Ki.

TureoreMm 1. (The structural equation of a connexion). If H is any con-
nexion on a principal bundle with bundle space B, w is the 1-form of the con-
nextion, and Q s the curvature form of the connexion, then

do = — [0, 0]/2 + Q,
i.e. for any bEB and s, tE B, we have
do(s, 1) = — [w(s), w(®)]/2 + 2s, 1).

Proof. The formula mentioned above for the differential of a real-valued
differentiable differential p-form 6 becomes, in case p=1,

oW, W'y = (We(w') — w'e(w) — o([w, W']))/2,

where W and W’ are any differentiable vector fields. Further, if 5 is a 2-form
and we wish to show df =1, it is sufficient to find for each b&EB a family of
vector fields W', - - -, Wr for which the Wi() span B, and such that
do(Wi(b), Wi(b)) =qn(Wi(b), Wi(b)) for all 4, j.
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The differential forms of our theorem have values in a Lie algebra so we
must prove, for any linear functional f on that Lie algebra, that

J@doW, W) = — f(lo(W), «(W)])/2 + fQW, W).
Letting 8 =f o w this becomes
oW, W = — f(le(W), o(W")]/2 + do(HW, HW')
and using the above formula for df this becomes
wo(w’)y — w'o(w) — o([w, W']) = — f([«(W), «(W")) + (HW)O(HW'))
— (HW"(OHW)) — o([HW, HW']).

It is sufficient to prove this at each b& B, for all choices of W and W’ from
any family W’, - - -, W= which are defined on a neighborhood of 4 and such
that Wi(b) span B;. We choose such a family consisting of any Q’, - - -, Q*
which span  plus any horizontal K’, - - -, K¢ for which the K%b) span H,.

The desired formula holds whenever W is a K* and W’ a K7, for then
w(W) =0, w(W’) =0, hence f([w(W), w(W)])=0; and W=HW, W'=HW',
so the two sides are identical. If Wisa Q?and W’ is a K7, then w(WW’) =0 hence
F([(@W), o(W")]) =0, and HW=0 so the entire right side is zero. In this
case the left side is also zero, 8([W, W'’]) being zero because the previous
lemma shows in this case that [IW, W’] is horizontal, §(W’) being zero be-
cause W’ is horizontal, and W'0(WW) being zero because §(W’) is a constant
function. If Wis a Q? and W’ is a (7, then (because ¢ is a Lie algebra iso)
FUa(W), w(W)]) =f[W, W']) =6([W, W’]) and HW and HW’ are 0 so the
left side reduces to —8([WW, W’]). Because both 6(W) and §(W’) are constant
functions the right side also reduces to —8([W, W’]). Hence the formula is
proved.

In the special case of a connexion on a bundle of bases, and if the ele-
ments of the Lie algebra of the linear group are represented in the usual way
by matrices, then w(t) is represented by (w;;(£)), Q(s, £) is represented by
(i5(s, 8)), and the above formula becomes

dwij = — D, wia A\ waj + Qj.
In this case, however, one gets the further formula

dwi= —Zwai/\wa+9i

which we now explain. One defines 1-forms wy, * -+, wg on E(M) by: if
tEE(M)y and b= (m, e, - - -, eq), then w;(f) is the sth coefficient of 7¢ when
wt is expressed linearly in terms of the base e, - - -, ea of M. Then Q; is

defined to be the covariant derivative of w; and this formula is proved simi-
larly to the other; the Q; are called the torsion forms of the connexion. Let
E!, - - -, E? be the vector fields defined on E(M) by:if b=(m, e, - - -, ea),
then E#(d) is the unique element of H, that projects to e; under 7. One verifies
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easily that torsion zero (i.e. all Q;=0) is equivalent to the statement that
[E, E7] is vertical for all 4, j. In fact the role of the Q; is precisely to describe
the horizontal components of the [E*, Er], just as the role of the Q; is to
describe their vertical components; the significant facts about such a con-
nexion may be described either through the [Ef, E7] or through the Q;; and
Q. A more elegant way of interpreting the above formula for dw;, however,
is to pass from the bundle E(M) to a larger bundle whose group is the affine
group. The connexion H on E(M) gives rise naturally to a connexion K on
the larger bundle, and with the following properties. Let © be the curvature
form of K. Then ©® decomposes into ®'4 0" through the decomposition of
the Lie algebra of the affine group into the subalgebras corresponding to
the linear transformations and the translations. ®’ is essentially the curva-
ture form of H and ®" is essentially the torsion. The structural equation for
K can be similarly decomposed into two parts, the two parts being essentially
the equations for dw;; and for dw;.

2. Curvature as generator of the holonomy group. In this section we con-
sider a connexion H on a principal bundle (B, M, G, w, ®). We assume further
that M is connected and that its fundamental group has at most a countable
number of elements. We denote the 1-form of the connexion by w and the
curvature form by Q. The Lie algebra of G will be denoted by L. If & B, then
the holonomy group and null holonomy group associated with & will be de-
noted by G(b) and Go(d), while the arc-component of the identity of G(b)
will be denoted by G(b)°. B(b) will denote the subset of B consisting of all
points which can be joined to b by piece-wise differentiable horizontal
curves. This notation will be kept fixed throughout the section.

THEOREM 2. For any b&B let L(b) be the subalgebra of L generated by all
Q(s, t) where s and t run through all pairs of tangent vectors to B at all points of
B(b). Then the subgroup of G generated by L(b) is Go(b).

We prove this via a sequence of lemmas. The first two are needed to prove
B(b) a submanifold of B, which fact is important in the proof of this theorem.

LEMMA 1. Let ¢ be a sirip map of the bundle, p =0 XG—B, where O 1s an
open submanifold of M. Suppose that O is the domain of a coordinate system
X1, © + +, xq of M with center mo (i.e. all x;(mo) =0) and that O is an open ball
with respect to these coordinates. Let bo=¢(mq, €). We now define a mapping o
of O—G (o will depend on the coordinates x;) and the assertion of this lemma 1s
that o is differentiable on some neighborhood P of mo. To define o consider, for
each m&0, the ray pn (i.e. pm s a ray with respect to the coordinates x;) from
mo to m, parametrized so that pn(0) =mo, pm(l) =m. Lying above p, we have
curves om and T, in B defined as follows. o, 1s the unique horizontal curve in B
starting at by and lying over pm,. T is defined by: T,(u) =¢(on(n), €). Then o,(1)
=1m(1)g for a unique g EG and we define a(m) =g.
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Proof. Let v, - - -, v be any coordinate system on some neighborhood U
of e in G. To prove the lemma we shall show the functions v; o « are differ-
entiable on some neighborhood P of m,. The x; and v; give coordinates in the
usual way on ¢(O X G) which are carried by ¢ to coordinates on B; we denote
these coordinates, whose domain is (O X U), by y1, * * *, Ve+a.

We first prove the existence of ¢, as stated in the lemma. We define o,
to be the integral curve with ¢,,(0) =b, of the vector field H( Y 2_; x:(m) Vi)—
this vector field is defined on 7#—!(0) and is differentiable by condition (3) in
the definition of a connexion, hence ¢,, is a horizontal differentiable curve.
We have 7 0 0 =pn because TH( D¢, x:(m) V¥) = Y x:(m)X?, which implies
T 00, is an integral curve of D x;(m)Xi, as is also pn, hence 7 0 Gpm=pum.
Uniqueness of ¢, follows from the uniqueness of integral curves, for any
such o, is an integral curve of H( Y_¢_; x:(m) Y?).

If m&O0 we shall write um for p,(u). Since ¢(m, e)g=¢(m, g) we have
o(m, a(m)=¢(m, e)a(m)=0c,(1), and since o0,(#)=0un(l) we then have
d(um, a(um)) =o,(u). Because a,, is a differentiable curve in B we have, for
each m&O0, the existence of u,>0 such that o,(x)EU for u <u,, and we
take u, to be the largest possible such number. Then v;(a(um))
=yira(p(um, a(um))) =yra(om(u)) for u <stm.

Because ¢4, is an integral curve of H( >4, x:(m) Y we have

@(ssa0 @) = (a1 Z 57))) (ono)

where D denotes the usual differentiation operator on R. From the definition
of a connexion it follows that the function dy;a(H( 2> &, v:Y?) is a dif-
ferentiable function and hence can be expressed on a neighborhood of b, as a
differentiable function of the y,. This shows the functions y, o g, are solutions
of a system of ordinary differential equations with differentiable functions
on the “right side.” It follows that the functions f; defined by: fi(u, m)
=(y; 0 o) () for u <u, are defined and differentiable on some neighborhood
of (0, my).

Because 0,(%) =dun(1) it follows that ¢,(1) €U for m in some neighbor-
hood P of my and then, because (v; 0 a)(m) =v;(c.(1)) =f;(1, m), we have
that »; o « is differentiable on P.

LEMMA 2. Let mo& M, by be any point of B lying over mo, and %y, + + + , X4
any coordinate system of M whose domain includes mo and has center at mo.
Then there exists a strip map : P XG—B, where P is an open ball with respect
to the coordinates x;, such that Y (m, e) =b and for every ray p. from mq to m in
P (with respect to these coordinates) the curve Y(pm, €) in B s horigontal. We
call such a strip map canonical with respect to the coordinates x;.

Proof. Let ¢ be any strip map taking O XG—B, with ¢(m,, €) =bo, where O
is an open subset of the domain of the coordinates x;. We define ¢, depending
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on ¢ and the %;, as in the previous lemma. Let P be any neighborhood of 2,
on which « is differentiable and such that P is a ball with respect to the co-
ordinates x;. We define ¢ by:y(m, g) =¢(m, a(m)g). ¢ is differentiable because
a and ¢ are differentiable. ¢ is a strip map because, for any strip map ¥,
(X' 0 ¥m) (8) = (X" © ) ((m)g), 50 if X" O =L (") then X" 0 Yom=L1ct(m.
And Y(om, e€) is horizontal because Y(pn(u), e)=¢(on(), alom(n))
= Ra(pm(u))d(om(u), €).

We now define the differentiable structure in which B(b) is a submanifold
of B. First note that G()% being an arcwise connected subgroup of the Lie
group G, is a differentiable subgroup of G(8) [8]. Hence there exists a co-
ordinate system vy, - -+ +, vy of G whose domain includes e and which is
adapted to G(b)?, i.e. the slices [g|vi(g) =a, for all i=j+1, - - -, k] are con-
tained in left cosets of G(b)? and the slice S with all these ;=0 is contained
in G(b)°. Now consider any ¢ B(b) and we shall define some coordinate sys-
tems on B(b) at ¢c. Let &1, - - -, x4 be any coordinate system of M whose do-
main contains m’ =7¢ and ¢: P XG—B any canonical strip map with respect
to these taking (m’, ¢)—c. Then ¢(P X.So) CB(b). The coordinates xq, « + « , x4
on P and vy, - - -, v; (the v; and j as above) induce coordinates in the usual
way on P XS, which are carried over to coordinates on ¥(P X.Sy) by ¢. We
should not yet refer to these functions on ¢(P X.S,) as coordinates but it
can be shown in routine fashion that such systems of functions on B(b) (de-
pending on choices of %, -+ +, x4, v1, + - -, Uk, ¢, Y) satisfy the usual com-
patibility conditions and cover B(b) so they give rise to a unique differentiable
structure in which they are coordinate systems. Obviously B(d) is a sub-
manifold of B.

LeEMMA 3. If QEQ, c&B(b), d€B(b), Q(c) EB(b)c, then Qa=B(b)a.

Proof. We begin with two special cases. The first is where ¢ and d lie on
the same fiber, so d =cg and because ¢ and d are in B(b) we have gEG(b).
Consider any strip map ¢: OXG—B such that ¢(m, e) =c. It is trivial that
¢ o L, 0 ¢! maps B(b)N7r~1(0) diffeomorphically onto itself and takes c—d,
Q(c)—Q(d). Hence Q(d) €B(b)a in this case. The second special case is where
there exists a coordinate system x;, * - -, x4 of M with center at m ==c and a
canonical (with respect to these x;) strip map ¢: PXG—B, such that d
=y(m’, e) for some m'EP. Let vy, - - +, v; be coordinates of G on a neighbor-
hood of e, adapted to G(b)?, so we get coordinates y1, - - -, Va, Va1, * * * » Vasj
(these are the coordinates obtained from %y, - - -, xg and vy, - - -, 9 as in
the definition of the differentiable structure on B(d)) of B(b) whose domain
is a B(b)-neighborhood of ¢. Because Q&€ Q and Q(c) EB(b), we have Q(c)
= D 7.1 a:;Yi(c), hence Q(d)= Y )., a;Yi(d), showing Q(d) EB(b)a. The

(") L denotes left multiplication by % on G.
(8) That G(b)? is a Lie group was pointed out to us by Chevalley, who also found Yamabe's
theorem independently.
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lemma now follows in general for any ¢, dEB(b) by a sequence of steps in-
volving these special cases.

LEMMA 4. Go(b) =G(b)".

Proof.(?) Clearly Go(b) CG(b)° and since both are arcwise connected both
are differentiable subgroups of G; hence Go(b) is a differentiable subgroup of
G(b)°. Now we show the existence of a mapping of m1(M) onto the left cosets
of Go(b) in G(b)". Since m (M) contains only countably many elements this
will prove the left cosets of Go(d) in G(b)° are at most countable in number.
This will imply Go(d) is open in G(b)° and hence, by connectedness, that Go(b)
=G(b)°.

For each aEmi(M) let E(a)= [gEG(b)°| there exists a piecewise differ-
entiable horizontal curve from b to bg whose projection into M is in the
homotopy class a]. Each E(e) is contained in a left coset of Go(b), for if g
and g, are in E(a) let p; be a piecewise differentiable horizontal curve from
b to bg;; then (p~'o Rn—lgl) -p1 is a piecewise differentiable horizontal curve
from b to bg; gy and its projection into M is w(p3'-p1), showing g5 'g1EGo(b).
Since each g&€G()° is in some E(a) this furnishes the desired mapping of
w1(M) onto left cosets.

If H is a connected differentiable subgroup of a Lie group G with only
countably many left cosets, then H is open in G because otherwise H would
be of measure 0 (H is trivially a measurable subset of G with respect to the
Haar measure of G because, choosing coordinates adapted to H on a neighbor-
hood of e in G, we see some H-neighborhood of e is measurable, and then H
is a countable union of translates of this neighborhood) so G itself would have
measure 0.

Proof of Theorem 2. We first describe, for each ¢& B(b)., a subspace
A, of B,, then prove A, = B(b)., from which the theorem will follow. Note that,
trivially, H,CB(b), for c¢€B(b).

Consider any horizontal vector fields K and K’ defined on any open sub-
manifold O of B and for each d€0MNB(b) consider the vector field Q&
generated by V([K, K'](d))—so Q is defined on all of B and depends on K, K’
and d. We do this for all such K, K’, d, getting a subset R of &, and define
L(b) to be the Lie algebra of vector fields on B generated by R. Clearly
L(b)SQ, and we shall prove later that L(b) =¢(L(b)). We define A,, for
¢EB(b), to be the subspace of B, spanned by H, and all Q, for which Q&.((b).

Now we prove A,CB(b), for all c¢€B(b). Clearly if K is any horizontal
vector field on an open subset of B, then K(c) €B(b).. Hence if K; and K,
are two such and K{, K¢ are their restrictions to B(b), then [K{, K{](c)
=Ky, Ks](c), so B(b), contains [K;, K:](c), and since it contains all hori-
zontal vectors at ¢, B(b), contains V([Ki, Kz](c)). This with Lemma 3 shows

(?) This lemma is an extension of one due to Borel and Lichnerowicz [1], and the proof is a
variation on theirs.
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B(b). contains also Q(c) for any QEQ and dEB(b) with V([Ki, K.](d))
=Q(d). Finally, if Qi, Q:E€Q and Qi(c), Q2(c) EB(b), then [0, Q2](c) EB(b).,
for if Qf, Q4 are their restrictions to B(b) then Lemma 3 shows Qf (d), Q4 (d)
E€B(b)q for all dEB(b), hence [Q1, Q:](c)=[Q!, Q¢ ](c) EB(b).. This proves
A, CB(b), for all c€B(b).

Thus A is a distribution on the manifold B(b). We prove now that A is
involutive and has a differentiable base in the neighborhood of any point of
B(b). Let Qy, - - -, Qrbeany base for L(b) and K3, - - -, Kgany differentiable
base for H in the neighborhood of any ¢EB(b). Let Q! and K! denote the
restrictions of Q; and K, to B(b). The Q! and K/ are clearly a differentiable
base for A throughout a neighborhood of ¢ and to show A involutive it is suf-
ficient, by Proposition 1, p. 88 of [6] to show the bracket of any pair of ele-
ments from such a base belongs to A. But [Q/, Q/] belongs to A because
L(b) is closed under brackets, [K{, K/ ] belongs to A from the definition of
A4, and [Q/, K/ ] belongs to A because Lemma 1 of §1 implies it is horizontal.

Now we show A, D B(bd,), hence A,=B(b),, for all cEB(b). Let p be a piece-
wise differentiable horizontal curve in B(b) from b to ¢. Because it is hori-
zontal, A is involutive, and Ay D H,, we can prove p lies in the integral mani-
fold D of A through &. This can be done by extending the tangent vectors to
p to a differentiable horizontal vector field K on a neighborhood of &; then K,
when restricted to D, must have an integral curve through & in B and by
uniqueness of integral curves in B(d) this must be p. This shows DD B(d),
hence A, DB(b)..

Now note, for any ¢c&B(bd), that if s and ¢ are in H, and K, K, are any
horizontal differentiable vector fields on a neighborhood of ¢ with K;(c) =s,
Ky(c)=t, then Q(s, )= —w([K;, K:](c)). This holds because the formula
for @=Dw as the “horizontal part” of the exterior derivative gives, for any
vector fields Wy, W, on B and linear functional f on L,

JDw(W1(c), Wi(c))) = (HW1(e))((f 0 w)(HW3)) — (HW1(c))((f 0 w)(HW1))
— (fow)([HW,, HW:](c)).

Because w is vertical, i.e. vanishes on all horizontal vectors, this reduces to
JFDo(Wi(c), Wa(e))) = — (fow)([HW1, HW:](c))
and hence
Do(Wi(c), Wi(e)) = — o([HW1, HW:](c)).

This trivially implies the above statement. Hence, for any fixed ¢ € B, the set
of all such Q(s, £) is the set of all w(V[Ki, K2](c)). Thus the set R of all Q(s, £)
where s and ¢ run through B(b), and ¢ runs over B(d) is the set of all
w(V[K,, K;](c)) where K; and K, run through all horizontal vector fields
defined on a B-neighborhood of ¢ and ¢ runs over B(b). The set of all these
V[K1, Kz](c) is the same as the set of all Q(c) where Q&R and ¢EB(b) and,
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since w(Q(c)) =w(Q(d)), Lemma 3 implies R is the set of all w(Q(d)) (b fixed).
Thus ¢(R) =R and hence g(L(b)) =.L(b). Our definition of the differentiable
structure on B(b) shows, for ¢ any strip map taking (m, e)—b (m =xb), that
¢ takes the set of all A(e), where 4 is in the Lie algebra of G(b)9, onto the
vertical part of B(d). Hence, by what was proved above, ¢, takes the set of
all such A4 (e) onto the vertical part of A, i.e. onto the set of all Q(b) where
Q&.L(b). Because g(L(b)) =.L(b) this shows that L(d) is the Lie algebra of
G(b)°. Theorem 2 now follows from Lemma 4.

COROLLARY. If L’ is the subalgebra of L generated by all Q(s, t) where s and
t run through all pairs of tangent vectors at all points of B, then the subgroup of
G generated by L' is the component of the identity of the normal subgroup of G
generated by all the G(b) for b&B.
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