TUTORIAL ON DEPENDENT THEORIES

ALEX USVYATSOV

1. STRICT ORDER PROPERTY

PART I - Independence property and strict order property

We say that a formula ¢(Z,y) has the strict order property if there exists an
indiscernible sequence (b; : i < w) such that

[3z-0(Z,b;) A p(Z,b))] <= i< j

A theory T has the strict order property if some formula (maybe with parameters)
does.

Exercise: show that T has the strict order property if and only if there exists
a formula 6(z,y) which defines on the monster model of 7" a partial order with
infinite chains.

Theorem(Shelah) T is unstable if and only if it has the independence property
or the strict order property.
Exercise Show that if 7" has the independence property or the strict order prop-
erty, then T is unstable. Moreover, if a formula ¢(Z,y) has the strict order
property or the independence property, then it is unstable (that is, it has the
order property).
More precisely, we will prove: Let ¢(Z,y) be an unstable dependent formula,
the instability witnessed by indiscernible sequences I = (a; : i € Q), J = (b; : i €
Q). Then there exists a formula 1 (Z, g, ¢) such that

— (2, ¥,¢) implies p(Z,7)

— 1) has the strict order property exemplified by a finite subsequence of J

—cCuUJ

By dependence there exists k such that
{(pi(mOd D(z,b;): i €Ny <k}

1s 1nconsistent.
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(**) On the other hand, by instability, for every ¢ < k we have
{_‘Sp(i)751) i < ﬁ} U {@(fagl) P2 E}
is consistent witnessed by @, 1.

v Clearly we can get from (*) to (**) by replacing ¢(7,b;)&—¢(Z,bip1) with
—(Z, b;)&p(T, b1 1) one at a time.

e This means that there exists : £k — 2 and ¢ < k such that

{Son(l)('fa Bz) i 7é é,é + 1} U {¢(j76f)7 _'Sp(i’a Bﬁ+1)}

is inconsistent, but

{()077(1)(5:’ 62) { 7é évg + 1} U {ﬂSO(ff»Bz)a Sp(ja B€+1>}
1S consistent.
e Let us define

=l
T
~

b@= N\ oG

i£0,04+1
e By indiscernibility we have the following for any i < j € QN (¢,¢ + 1):

(0 (i) /\{Sp(i'a 61)7 ﬁ@(i’, BJ>}

is inconsistent, but

Y1(2) /\{_‘ﬁp(ﬂ_@ bi), o(,b;)}

18 consistent

e Let us define
U(@,9) = i@ \ ¢(z.9)
e and denote J' = (b; :i € QN (£, ¢+ 1))
e So on J' we have:
FZ-(Z,b;) AY(T, b)) =i < j
e This completes the proof.

Recall: a (partial) type p is called stable if every extension of it is definable.
The following are equivalent for a dependent theory 7T

e p is stable.
e For every B D A, p has at most |B[¥ extensions in S(B).
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e There is no formula ¢(z,y) (with parameters from €) exemplifying the order
property with respect to indiscernible sequences I = (@; : i < w) and J = (b; :
i < w) with UJ C p® We call this “p does not admit the order property”.

e On the set of realizations of p there is no definable (maybe with external param-
eters) partial order with infinite chains.

2. MORLEY SEQUENCES IN DEPENDENT THEORIES

e Part II - Morley sequences in dependent theories.

e From now on we assume that the theory T s dependent and T = T*1.

e The source of the current presentation: “On generically stable types in dependent
theories”, “A mote on Morley sequences in dependent theories”, can be found on
my web-page.

e We write a =4 b for tp(a/A) = tp(b/A).

e We say that @ and b are of Lascar distance 1 over a set A if there exists an A-
indiscernible sequence containing both. This is not an equivalence relation, but
its transitive closure E%(Z, %) is. We say that @ and b have the same Lascar strong
type if they are E4-equivalent (this is equivalent to Anand’s definition).

e We write Lstp(a/A) = Lstp(b/A) or @ =pp.a b

e Exercise: Let I be an indiscernible sequence over a set A. Then a = Av(I, AUI)
if and only if I™{a} is indiscernible over A.

e Recall: we call an A-indiscernible type sequence I special if for every two re-
alizations I; and I of tp(I/A), there exists ¢ such that I;°¢ and IS¢ are A-
indiscernible.

e We call an A-indiscernible sequence weakly special if two realizations I; and I of
Lstp(I/A), there exists ¢ such that I;"¢ and I; ¢ are A-indiscernible.

e Let o(z,b) be a formula. We say that an indiscernible sequence J eventually
determines (z,b) if lim (7, ) is constant for all .J’ continuing J.

Let I be a weakly special sequence over A, ¢(Z,b) a formula. The following is very
similar to Anand’s treatment of special sequences:

e There exists J =pqp.a [ which eventually determines ¢(z,b). Moreover, every
Jo =rsip.a I can be extended to J that eventually determines ¢(7,b).

e For every J, J' =44 I which eventually determine ¢(Z, b) we have lim; p(z,b) =
lim j» p(Z, b), that is, the “eventual value” of (Z, b) depends only on Lascar strong
type of J over A, and not on the choice of J.
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Let I be a weakly special sequence over A. We define (exactly like in Anand’s
lecture) the Eventual type of I over a set C', Ev(I,C): the truth value of a formula
©(Z,b) equals the “eventual value” of ¢(Z, b) as in the previous slide (depends only
on Lstp(I/A)). We denote Ev(I) = Ev(/, €).

Important (easy) Exercise(!): Prove that if I is a weakly special sequence
over A, then Ev([/) extends Av(I,AUI).

Important Exercise(!): Prove that if I is a weakly special sequence over A
which is also an indiscernible set over A, then Ev(I) = Av(I, ).
Exercise/Example: Show that an increasing sequence of elements in the struc-
ture (Q, <) is weakly special and Ev(I) # Av(/,€) .

A type p € S(B) does not split over a set A if whenever b, ¢ € B have the same
type over A, we have ¢(Z,b) € p <= ©(Z,¢) € p for every formula ¢(Z, 7).

A type p € S(B) does not split strongly over a set A if whenever b,¢ € B are of
Lascar distance 1 over A, we have ¢(Z,b) € p <= ¢(Z,¢) € p for every formula
e(z,7). _

A type p € S(B) does not Lascar-split over a set A if whenever b, ¢ € B have the
same Lascar strong type over A, we have ¢(Z,b) € p <= ¢(Z,¢) € p for every
formula ¢(z,y).

Note that a global type doesn’t split over a set A if it is invariant under the action
of the automorphism group of € over A.

Exercises (no use of dependence):

A type p over B does not split over A if and only if whenever b,é € B have the
same type over A and a = p, we have ab =, ac.

A type p over B does not Lascar-split over A if and only if whenever b, € B
have the same Lascar strong type over A and @ |= p, we have ab =4 ac.

Let M be a (|A] + Xg)"-saturated model containing A, p € S(M). Then p does
not Lascar-split over A if and only if p does not split strongly over A.

Let A be a set. Then there are at most 22" types over € which do not
split over A. Same is true for splitting replaced with Lascar splitting or strong
splitting.

e If I is a weakly special sequence over A, then Ev (/) does not Lascar-split over A.

Assume b =y, 4 U, and let p(z,§) be a formula such that ¢(7,b) € Ev(I). Let
J =Lsp.a I eventually determine o(Z,b). So we know that ¢(7,b) € Av(J, Ab).
Choose J’ such that Jb =p4p 4 J'V'. Then J' eventually determines o(z,b') and
clearly o(z,b') € Av(J, AV'), so (by uniqueness of the eventual value) (7, €
Ev(J') = Ev(I), as required.

Let I = (a; : i < A) be such that
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— tp(a;/Aa~;) does not Lascar-split over A
— Lstp(a;/Aa<;) = Lstp(a;/Aa<;) for every j > i.
Then [ is a indiscernible over A.
e We prove by induction on k that Lstp(a;, .. .a;, /A) = Lstp(ay, ... a;, /A) for every
1< ...<ip,J1 <...<Jp For k=1 thisis given.

For k > 1, assume wlog jj, > i. By the assumption Lstp(a;, /Ad;, ... a;,_,) =
Lstp(a;, /Aa,, ...a;,_,). By the induction hypothesis Lstp(a;, ...a;_,/A) =
Lstp(aj, ... a;,_,/A) and by the lack of Lascar splitting Lstp(a;, /Aa;, ... a;,_,) =
Lstp(a,, /Aaj, .. .aj,_,), which completes the proof.

e Let O a linear order, A a set. We call a sequence I = (a; : i € O) a Morley
sequence over A if it is an indiscernible sequence over A of realizations of p and
tp(a;/Aa;) does not fork over A for all i € O.

e If a sequence [ is indiscernible over B and Morley over A C B, we sometimes say
that [ is based on A.

e Let p € S(B) be a type. We call a sequence I a Morley sequence in p if it is a
Morley sequence over B of realizations of p.

o (Euxistence of Morley sequences). Let a, A C B be such that tp(a/B) does not
fork over A. Then there exists a Morley sequence in tp(a/B) based on A.

e Strong splitting implies dividing, hence forking (Anand proved something very
similar for a global type).

e Assume p € S(B) splits strongly over A, that is, there exists a sequence I =
(bi + i < w) indiscernible over A with (Z,by), ~(Z,b1) € p; then ¥(z,boby) =
©(Z,by) N —p(Z,b1) € p divides over A, since the set

{p(Z, b2s), ~p(T, bit1): i < w}
is inconsistent by the dependence of T

e Exercise: Deduce that Lascar-splitting implies forking (Hint: recall that for
global types strong splitting coincides with Lascar-splitting).

e There are boundedly many global types which do not fork over a given set A.
o Let [ = (a; : i < A) be such that
— tp(a;/Aa~;) does not fork over A
— Lstp(a;/Aa<;) = Lstp(a;/Aa;) for every j > i.
Then [ is a Morley sequence over A (that is, it is indiscernible over A).
e A Morley sequence over A is weakly special over A.

e Exercise: Let I = (b; : i < w) be an indiscernible sequence in p € S(A). Prove
that the following are equivalent:
& I is a Morley sequence in p.
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¢ Av(I,1U A) is a nonforking extension of p.
¢ There exists a global extension of Av(I,IU A) which does not fork over A.
e A natural question is: what can be said about global extensions of Av(/, AU I)
as above? How many such extensions are there? Can we describe them?
e The answer has been in fact given by Anand already: there is only one (!), and
we understand what it looks like pretty well.

e Let I be a weakly special sequence over A. Recall that Ev(/) is a global type
which does not Lascar-split over A. Hence it does not fork over A.

e Recall that Ev(]) extends Av(I,I U A). It follows (why?) that I is a Morley
sequence over A.

e On the other hand, if I is a Morley sequence, then it is weakly special.

e We have established: [ is a Morley sequence over A if and only if it is weakly
special over Al Moreover, if I is a Morley sequence, then Ev(I) is the unique
global type extending Av(I, AU I) which does not fork over A.

(will be omitted in the lecture)

o Let I = (a; : i € O) be an indiscernible sequence over a set A and let p be a
global type which extends Av(/, AU I) and does not fork over A. Suppose that
I'=(a; : i € O') satisfies a; = p[Ala’_;. Then J =171 is indiscernible over A.

o Let I = (a; : i € O) be an indiscernible sequence over a set A and let p be a
global type which extends Av(I, AU I) and does not fork over A. Suppose that
I'" =1sp.a I. Then p[AI' = Av(I',AUT).

(will be omitted in the lecture)

e Let I be an indiscernible sequence over a set A, p a global type extending
Av(I, AUT) which does not fork over A. Then for every A-indiscernible sequence
I’ continuing I, we have p[AII' = Av(I', AIT").

e Let I be an indiscernible sequence over a set A and let p,q be global types
extending Av(/, AU I), both do not fork over A. Then p = q.

e Let I be a Morley (nonforking) sequence over a set A. Then there exists a unique
global types extending Av(/, AU I) which does not fork over A. In other words,
Av(I,AUI) is stationary over A.

(will be omitted in the lecture)

e Assume towards contradiction that g # p, so there is ¢(z, b) such that ¢(z,b) € p
but —¢(7,b) € q.
e Construct by induction on o < w sequence J, = (a : i < w) such that
— a2 |= plAbI J o0
— a;*" = qlAbI I ,a !



TUTORIAL ON DEPENDENT THEORIES 7

e We claim that J = J;J; --- is an indiscernible sequence. Once we have shown
this, it yields an immediate contradiction to dependence.

(will be omitted in the lecture)

e So we show by induction on « that J* = I"J; -- -~ J, is indiscernible (even over
A). For a = 0 this is true.

e Let us take care of @ = 1 (the continuation is the same). Recall that ¢ extends
Av(J°, AU J°). Now continue as in the case o = 0.

3. GENERIC STABILITY

e Part III - Generic stability.

e Exercise: Let ¢(7,y) be a formula, k = k, (as defined by Anand). Show that if
I = (b; : i € O) is an infinite indiscernible set, then for every ¢ € €, either

i€ O: p(b, )} <k
or
i€ O: —p(b;,e)} <k
e Exercise: Show that if ¢(Z, ) is an unstable formula witnessed by indiscernible
sequences I and J, then neither I nor J is an indiscernible set. In other words, if
I is an indiscernible set, then every formula is stable with respect to I.

e Recall: if I is a weakly special indiscernible set over A, then Ev(I) = Av(I, ).
Hence Av(I, ) does not fork over A.

e We call a type p € S(A) generically stable if there exists a Morley sequence
(bi 1 i < w) in p (over A) which is an indiscernible set.

e Recall: atype p € S,,,(B) is said to be definable over A if for every formula ¢(Z, i)
with len(z) = m,len(y) = k there exists a formula d,z¢(Z,y) with free variables
g such that for every b € B*

o(z,b) € p == dpy7p(Z,D)
o A definition schema d, is said to be good is for every set C' the set
{¢(z,¢): p(z,y) is a formula, len(z) = m, ¢ € C, = d,2¢(Z,¢)}
is a complete type over C' (denotes by p|C).
(0) Let I = (b; : i < w) be an indiscernible set over a set A, C O A. Then p =

Av(I,C) is definable over UI.
(00) Let p € S(A) be generically stable. Then p is (well-) definable almost over A.
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o Let ¢(z,y) be a formula and let k = k,. Now clearly for every ¢ € C
o(z,¢) € Av(1,C)

if and only if
i< 2k b= 90O} > b

\/ /\ 90((_71'7 E)

uC2k,|u|=k i€u

if and only if

So p is definable over I by the schema

brory) =\ Neb,y)

UC 2k, Ju|=k, i€u

e Let I = (b; : i < w) be a nonforking indiscernible (over A) set in p.
Let ¢(Z,y) be a formula, then p is definable over I as before by

19(@7 B<2/€) = dpi’gp(i‘, g) - \/ /\ QO(BM g)

uC2ky,|u|=ky, 1€U

o Claim: V(%,b.o) as above is almost over A.
e Note that once we have proven the Claim we are done: p is definable almost over
A by a definition which is clearly good (it defines Av(I, €)).

e For the proof of the Claim note that otherwise we would have unboundedly many
pairwise nonequivalent automorphic copies of 1 over A. In other words, we would
have an unbounded sequence of automorphisms (o,) over A such that {J, =
0.(10)} are pairwise nonequivalent. Let I, = 0,(1), pa = Av(ls, AU L,).

e Recall that ¢, = Av(l,, ) all do not fork over A (because they equal Ev(/,),
since 1, are indiscernible sets!).

e Note that ¢, is definable by ¥, and therefore are all distinct. So (g,) is an
unbounded sequence of global types all of which do not fork (why?) over A, a
contradiction.

e Let p € S(A) be a generically stable type witnessed by a nonforking indiscernible
set I such that the definition schema d, as before is over A (e.g. A = acl(A)).
Then p is stationary.

e We aim to show that p has a unique nonforking extension to any superset of A. By
existence of nonforking extensions and stationarity over A of the average type, it
is enough to show that the only nonforking extension of p to AUTI is Av(I, AUT).
In fact, it is enough to show that Av(/, AU I) is the only extension of p to AU [
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which does not split strongly over A. Denote B = AUI, B, = AU (b; : i < k) for
k<w.

o Let V/ = p, tp(b'/B) does not split strongly over A. We show by induction on &
that tp(b'/By) = Av(I, By).

e There is nothing to show for £ = 0.
Assume the claim for %k, and suppose (¥, bg,...,b;,a) holds. Let
¢(ja 6<k7 B/a d) = (;0(6,7 BOa s >Bk—l> z, &)7 S0
w(Bk, B<k, B,, a) holds.
e Note that since tp(b'/B) doesn’t split strongly over A, the set (b;: i > k) is
indiscernible over Bib' (why?).
e We see that 1(by, boy, b', @) holds for all ¢ big enough, and therefore

(T, by, V@) € Av(I, BY)

e Therefore (denoting ¢ = Av(I,€)), d, 71 (7, by, V', a) holds, where the definition
is over A. So we get 0(y) = d,2¢(z,boy,y,a) is in tp(b'/By) and therefore (by
the induction hypothesis) is in Av(I, By), which we think now as of a type in .

e This means that d,z1(z, by, by, a) holds for almost all ¢, and therefore (since d,
defines Av(I,€)) we have ¥(Z, by, by, a) € Av(I, B) for almost all /.

e Let ¢ be such, so by the definition of average type, there exists an m such that
Y(b, bk, by, @), that is, o(by, beg, by, @) holds.

e Since I is an indiscernible set, we get (b, bk, by, @) for all m big enough, and
therefore

©(Z,b<p,a) € Av(I, B)
e This finishes the proof.

e A type p is generically stable if and only if it is extensible (does not fork over its
domain) and every Morley sequence in it is an indiscernible set.

e Let p € S(A) be generically stable, ¢ € S(B) extending p. Then ¢ does not fork
over A if and only if it is definable almost over A.

From now on we write a | Al_) for “tp(a/Ab) does not fork over A”. Caution: unlike in
simple theories, this relation does not need to be symmetric (find an example!). Still:

Let p € S(A) be generically stable, ¢ € S(A) does not fork over A, @ = p, b = ¢. Then
L \LAE = Z_)\I/A(_l. Moreover, if A = acl(A) and a \LAB, then there exists a
unique nonforking extension of ¢ to S(Aa) which equals tp(b/Aa).

ob | a=al b
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e We prove the first item. Clearly, it is enough to prove the statement for A =
acl(A). Let ¢* be a global nonforking extension of q. We will show that ¢*[Aa =
tp(b/Aa), proving the moreover part as well.

e Suppose not. Then there is a formula ¢(7,%) such that ¢(a,b) (so d,z¢(Z,b)
holds), but —¢(a,y) € ¢*.

e Let @y = a, by = b. Construct sequences (a;), (b;) for i < w as follows:

a; = plAa; - j <iy(b;:j <i)
bi =g 1Ay j <i+1)(b: j <i)

Now note:

e j <i= ¢(a,b;): since | d,z¢(7,b), b =4 b; and @; is chosen generically over

e j >i= —p(a;b;): since ~p(a,y) € ¢*, ¢* does not fork hence does not Lascar
split over A, @ =p.q, 4 @; (in fact, they are of Lascar distance 1) and b; was chosen
to realize ¢* over Aa,.

e This is a contradiction to generic stability of p, that is, (a; : i < w) being an
indiscernible set.

e Exercise: Deduce the second item of the symmetry lemma.

Let p,q € S(A) be generically stable, a, b realize p, ¢ respectively, and let ¢, d be any
tuples (maybe infinite). Then:
Irreflezivity a |, a if and only if p is algebraic
Monotonicity If a |, bed, then a L. cb.
Symmetry a \|/A b if and only if b J/A a
Transitivity a |, ¢d if and only ifa |, danda | ¢
FEzistence Let B O A, then there exists a’ =4 a such that tp(a’/B) is generically
stable and @’ | , B.
Uniqueness If a J/A c,a J/A ¢ and @’ =,q(4) @, then @ =4z a
Local Character Ifa |, ¢, then for some subset Ag of A of cardinality |T'|, J/Ao c.

/

Let p € S(A). The Following Are Equivalent:

e p is stable.

e Every extension of p is stable.

e Every extension of p is generically stable.

e Every indiscernible sequence in p is an indiscernible set.
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e Let us consider the theory of Q with a predicate P, for every interval [n,n + 1)
(n € Z) and the natural order <,, on P,. It is easy to see that the “generic” type
“at infinity” (that is, the type of an element not in any of the P,’s) is stable,
hence generically stable.

e Let us consider the theory of a two-sorted structure (X,Y): on X there is an
equivalence relation E(xy,zy) with infinitely many infinite classes and each class
densely linearly ordered, while Y is just an infinite set such that there is a definable
function f from X onto Y with f(a;) = f(as) <= E(a1,as).

In other words, Y is the sort of imaginary elements corresponding to the classes
of F.

Let M a model and p the “generic” type in X over M, that is, a type of an
element in a new equivalence class. It is easy to see that p is generically stable,
but clearly not stable. In fact, in this example p is “stably dominated”.

Generically stable types which are not stable or stably dominated:
e Similar to Example I: (Q, Py, <o, +), p the “infinity” type. Then it is generically
stable, but there is a definable order on it, so it is unstable.
e Let RV be a two-sorted theory of a real closed (ordered) field R and an infinite
dimensional vector space V' over it. There is a definable partial order on V:

v < vy <= dr € R,r > 1k such that vy =7r-v;

Let M be a model and p € S(M) be the type of a generic vector. Then p is
generically stable and every Morley sequence is an indiscernible linearly indepen-
dent set.



