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1. Distributions on manifolds

Let M be an n-dimensional smooth manifold. We denote by X(U) the Lie algebra of

vector fields defined on an open U ⊂ M .

A k-dimensional distribution ∆ on M is a smooth field of k-dimensional subspaces

∆(p) ⊂ TpM , p ∈ M . The smoothness of this field means that, for any p ∈ M , there

exists a neighbourhood U(p) and vector fields E1, E2, . . . , Ek ∈ X(U(p)) such that, for

each q ∈ U(p), ∆(q) = span{E1(q), E2(q), . . . , Ek(q)}.

A distribution ∆ on a manifold M is called totally integrable if for each p ∈ M there

exists a submanifold Σ passing through p such that TqΣ = ∆(q), for any q ∈ Σ. This

submanifold is called an integral submanifold of ∆. A totally integrable distibution is

called a foliation, and the integral submanifolds are called the leaves.

Locally, a distribution ∆ can be given either by vector fields E1, . . . , Ek spanning the

subspaces ∆(p) ⊂ TpM , or by differential forms ω1, ω2, . . . , ωn−k such that, for any V ∈

TpM , V ∈ ∆(p) if and only if ωα(V ) = 0, α = 1, . . . , n − k.

The following theorem gives necessary and sufficient conditions for a distribution be

completely integrable.

Theorem 1 (Frobenius). Let ∆ be a distribution on a manifold M locally given by vector

fields Ea, a = 1, . . . , k, or by fields of 1-forms ωα, α = 1, . . . , n − k. The following

conditions are equivalent:

a) The distribution ∆ is completely integrable;

b) [Ea, Eb] = Qc
abEc, where Qc

ab are functions;

c) dωγ = Q
γ
β ∧ ωβ, where Q

γ
β are 1-forms.

Example 1.1. Consider a distribution ∆ on R
3 given by ω = dz−xdx−ydy. Then dω = 0,

and, by Theorem 1, ∆ is completely integrable. In fact, this distribution consists of planes

tangent to hyperbolic paraboloids z = 1
2
(x2 + y2) + c.

Example 1.2. Let a distribution ∆ on R
3 be given by ω = dy−zdx. Then the vector fields

E1 = ∂
∂x

+ z ∂
∂y

, E2 = ∂
∂z

span ∆. We have [E1, E2] = − ∂
∂y

, and this vector field does not
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lie in ∆ because ω( ∂
∂y

) = −1 6= 0. Hence this distribution is not completely integrable.

This means that one cannot find a surface tangent to ∆.

2. Non-holonomic surface in E3

Let E3 be the three-dimensional Euclidean space, we denote by (·, ·) the scalar product

in E3. Any distribution ∆ on E3 can be given by a unit vector field ~n normal to ∆. The

integrability condition for ∆ can be formulated in terms of ~n.

Theorem 2. ∆ is integrable if and only if (~n, rot~n) = 0.

2.1. Geometric sense of non-holonomity. The non-holonomity of a distribution in

E3 can be visualized in the following manner. Take a small disk L in the distribution

plane and draw the straight line l(A) through any point A of the disk boundary ∂L in the

direction of ~n(A). Thus we obtain a ruled surface. Now take a curve γ passing through

A0 which is orthogonal to the straight lines l(A) (see Fig. 1). This curve again meets
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Figure 1. Geometric sense of non-holonomity. I

l(A0) at a point A1, then |A0A1|
σ(L)

, where σ(L) is the area of L, converges to (~n, rot~n)A0
as L

contracts to A0. If ∆ is holonomic (totally integrable), then γ lies on the integral surface

passing through A0, hence A1 = A0, and |A0A1| = 0.

Another way to visualize the non-holonomity is to take two unit orthogonal vector fields

~a, ~b spanning ∆. Let γ(t) be an integral curve of the field ~b, and for each t we take the

integral curve δt(s) of the field ~a passing through γ(t). Thus we obtain a surface Σ (see

Fig. 2). Now at a point A(s) = δt(s)(s) we take the vector ~ν(A(s)) normal to TA(s)Σ and

the vector ~n(A(s)) normal to ∆(A(s)). Denote by ϕ(s) the angle between ~ν(A(s)) and

~n(A(s)). Then

(1)
dϕ

ds
= −(~n, rot~n).

If ∆ is holonomic (totally integrable), then Σ is an integral manifold of ∆, and TpΣ = ∆(p).

Hence ~ν(p) = ~n(p), and ϕ = 0.
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Figure 2. Geometric sense of non-holonomity. II

2.2. Curvatures of non-holonomic surface.
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Figure 3. Moving frame

2.2.1. Curvatures of holonomic surface. Let a surface Σ in E3 be given by the parametric

equation ~r = ~r(u1, u2). Let us set ~ri = ∂~ri = ∂
∂ui~r. The vectors ~r1, ~r2 give a frame of the

tangent plane TΣ, and the coordinates of the metric tensor (the first fundamental form)

with respect to this frame are gij = (~ri, ~rj). We denote by gij the tensor inverse to gij,

this means that gisgjs = δi
j. Now let ~n be the unit normal to TΣ. Then we obtain a

moving frame {~r1, ~r2, ~n} (see Fig. 3) and the derivation equations:

∂i~rj = Γk
ij~rk + hij~n(2)

∂i~n = −h
j
i~rj(3)

Here

(4) Γk
ij =

1

2
gks(∂igjs + ∂jgis − ∂sgij)
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are the connection coefficients (we will discuss them later), which depend only on the

metric tensor, hij is the second fundamental form, and hi
j = gishjs is the shape operator.

The shape operator is a symmetric linear operator on TΣ, therefore it has real eigen-

values k1, k2 which are called principal curvatures of Σ. H = 1
2
(k1 +k2) is called the mean

curvature of Σ and K = k1k2 the total (Gaussian) curvature of Σ.

Geometrically, the principal curvatures can be described as follows. Take a point p ∈ Σ.

��

������

Σ

τ

n
normal plane

R

K  = n
1
R

normal section γ(τ)

Figure 4. Normal curvature

For any direction tangent to Σ given by a unit vector ~τ at p, we can take the plane

passing through ~n and ~τ (a normal plane), and this plane meets the surface Σ along a

normal section γ(~τ). Let ~ρ(s) be the parametric equation of γ(~τ) referred to the natural

parameter s. Then, kn(~τ) = ( d2

ds2 ~ρ(s), ~n) is called the normal curvature of Σ with respect

to the direction ~τ . As kn is a continuous function on the circle, it attains its extremal

values. One can easily prove that the principal curvatures k1 and k2 are just the extremal

values of the normal curvature kn(~τ). In addition, the normal curvature can be written

in terms of the second fundamental form: kn(~τ) = h(~τ , ~τ). Also, using (3), we get

(5) kn(~τ) = −(τ i∂i~n, ~τ) = −(∇~τ~n, ~τ ).

where ∇ stands for the directional derivative.

The total curvature can be defined in another way. The unit normal ~n determines the

Gaussian map G : Σ → S
2, p ∈ Σ 7→ ~n(p). Let U be a neighborhood of p ∈ Σ, and

V = G(U) be its image on S
2. We denote by σ(U) the area of U on Σ, and by S(V ) the

area of V on S
2. Then the total curvature K at p equals lim S(V )

σ(U)
as U contracts to p.

From this property one can obtain another formula for the total curvature:

(6) K =
(∂1~n, ∂2~n, ~n)
√

g11g22 − g2
12

If we have a foliation in E3 whose leaves are given by an implicit equation Φ(x1, x2, x3) =

const, then the vector field ~n is defined in the entire E3. In this case, from (6) it follows
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that

(7) K = (~P , ~n),

where ~P is the curvature vector defined as follows:

(8) ~P =
(

(
∂

∂x2
~n,

∂

∂x3
~n, ~n), (

∂

∂x3
~n,

∂

∂x1
~n, ~n), (

∂

∂x1
~n,

∂

∂x2
~n, ~n)

)

,

where (·, ·, ·) denotes the mixed product of three vectors. In particular, (7) implies the

von Neumann formula:

K =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂11Φ ∂12Φ ∂13Φ ∂1Φ

∂21Φ ∂22Φ ∂23Φ ∂2Φ

∂31Φ ∂32Φ ∂33Φ ∂3Φ

∂1Φ ∂2Φ ∂3Φ 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

(∂1Φ)2 + (∂2Φ)2 + (∂3Φ)2)2
,

where the partial derivatives are taken with respect to x1, x2, x3.

2.2.2. Curvatures of non-holonomic surface. First type. Let a two-dimensional distribu-

tion (a non-holonomic surface) ∆ be given in E3, and ~n be the unit normal vector field

of ∆. The formula (5) gives us the normal curvature of a surface in terms of the normal

vector ~n and a tangent vector ~τ , so it can be generalized to the non-holonomic case. We

say that the normal curvature of non-holonomic surface ∆ in the direction of a unit vector

τ ∈ ∆ is

(9) kn(τ) = −(∇~τ~n, ~τ).

Let A ∈ E3, and ~e1, ~e2 be an orthonormal frame of ∆(A). Then ~τ (ϕ) = cos ϕ~e1 + sin ϕ~e2,

and one can easily see that kn(~τ) defined by (9) has the form

(10) kn(~τ (ϕ)) = k1 cos ϕ + k2 sin ϕ,

and it is clear that k1 and k2 are extremal values of kn(~τ (ϕ)). k1 and k2 are called the

principal curvatures of ∆ of first type. Then we can define the mean curvature of first

type HI = 1
2
(k1 + k2) and the total curvature of first type KI = k1k2.

2.2.3. Curvatures of non-holonomic surface. Second type. For a non-holonomic distribu-

tion ∆ we can define the total curvature of second type using (7), where ~P is given by (8).

We will denote it by KII .

At the same time, this curvature can be obtained in the following way. Let us consider

eigenvalues of the Jacobi matrix J(~n) = || ∂ni

∂xj ||, where ni are the Cartesian coordinates of

the vector-function ~n. Since ~n maps the three-dimensional space into the two-dimensional

sphere, the determinant of J(~n) is zero, hence one of the eigenvalues of J(~n) is zero. We

will call the other two eigenvalues λ1, λ2 the principal curvatures of second type (they
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can be complex conjugate) and one can prove that KII = λ1λ2. Also, we can define the

mean curvature of second type to be HII = 1
2
(λ1 + λ2).

Theorem 3. For a non-holonomic surface ∆ we have

(11) HI = HII KI − KII =
(~n, rot~n)2

4
.

Example 2.1. An example of distribution which has KII = 0, HII = 0, and is non-

holonomic can be constructed as follows. We take the family of concentric spheres in E3

with center at the origin, and each sphere S
2(r) of the family is uniquely determined by

its radius r > 0. For each r > 0, we take a straight line l(r) lying in the plane XOY such

that the angle between l(r) and OX is α(r), where α(r) is a function (see Fig. 5). Now,

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

X Y

Z

l(r)

α(r)

Figure 5. non-holonomic distribution with zero curvatures

for each S
2(r), we take the unit vector field ~n tangent to this sphere which is generated

by rotations about the axis l(r) (certainly this field is not defined in the points where

l(r) meets S
2(r)). Thus we obtain a unit vector field ~n which is defined everywhere in

E3 except for points where l(r) meets S
2(r). If dα

dr
6= 0, at points with z 6= 0 we have

(~n, rot~n) 6= 0, so the distribution ∆ orthogonal to ~n is non-holonomic. At the same time,

the second type mean and total curvature of ∆ vanish.

Example 2.2. Another way to obtain a distribution ∆ with zero total curvature of second

type is to consider a surface Σ with a vector field ~a along it (we assume that ~a is not

tangent to Σ). Then, for each point p ∈ Σ we take a plane curve which is tangent to ~a(p)

at p. Thus, a neighborhood of Σ is foliated by these curves, and for the vector field ~n we

take the unit vector field tangent to these curves. The distribution ∆ orthogonal to ~n has

KII = 0.
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2.2.4. Gauss-Bonnet formula. For a closed surface Σ in E3, we have the Gauss-Bonnet

formula

(12)

∫

Σ

KdS = 2πχ(Σ),

where K is the total curvature of Σ, and χ(Σ) is the Euler characteristic of Σ.

For a non-holonomic surface ∆, we have the following generalization of the Gauss-

Bonnet formula.

Theorem 4. Let Q be a closed oriented surface which lies in the domain of ∆. Then

(13)

∫

Q

(KII~n + 2HII
~k + ∇~k

~n, ~ν)dS = 4πθ,

where ~k is the curvature vector of integral curves of ~n, ~ν is the unit normal to the surface

Q, ∇~k
is the derivative in E3 with respect to ~k, and θ is the degree of the map ~n|Q : Q → S

2.

Let us recall that the degree of a map f : Q → P between oriented surfaces is an

integer which equals zero if f is homotopic to a constant map. Under assumptions of

Theorem 4, Q is a boundary of a region V ⊂ E3. If ∆ is defined everywhere in V , and V

is contractible, then ~n is homotopic to a constant vector field, hence θ = 0.

2.3. The shortest and the straightest curves on a non-holonomic surface. Let

us recall that a geodesic on a surface Σ in the three-dimensional Euclidean space can be

defined in two ways: a) a geodesic is a straightest curve; b) a geodesic is a locally shortest

curve. Consider these definitions in more details.

Let us consider a curve on a surface Σ given by a parametric equation ~r = ~ρ(s), where

s is the natural parameter. The length of projection of the curvature vector d2

ds2 ~ρ onto

the plane tangent to Σ is called the geodesic curvature. If the geodesic curvature is zero,

or equivalently the curvature vector is collinear to the normal vector of the surface, we

say that this curve is a straightest curve on Σ because it has no “acceleration” along the

surface.

At the same time, if a curve γ joining sufficiently close points p and q on the surface

Σ has the minimal length among all the curves joining these points, then γ is called the

shortest curve.

For a surface Σ ⊂ E3, the definition a) is equivalent to definition b). However, for a

non-holonomic surface ∆ the curves defined by a) and b) are different. We will call a

curve γ in E3 an admissible curve if its tangent vector d
dt

γ lies in ∆(γ(t)).

2.3.1. Straightest lines on non-holonomic surfaces. Let a non-holonomic surface ∆ be

given. An admissible curve γ is called a straightest curve if its curvature vector is collinear

to the normal vector ~n of ∆.
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Theorem 5. Let ~r = ~ρ(s) be parametric equation of an admissible curve γ. Then γ is a

straightest line if and only if ~ρ(s) satisfies the following second order differential equation:

(14)
d2~ρ

ds2
= −

(

d~ρ

ds
,∇ d~ρ

ds
~n

)

~n.

Thus, given a point p ∈ E3 and a vector V0 ∈ ∆(p) one can find a unique straightest

curve γ which passes through p and whose tangent vector at p is V0.

2.4. Shortest lines on non-holonomic surfaces. Let us consider two points p and q

in E3, and let Pa(p, q) be the set of all admissible curves joining p and q. We say that

a curve γ ∈ Pa(p, q) such that γ(a) = p, γ(b) = q, is a shortest admissible curve if the

length L(γ) =
∫ b

a
|dγ

dt
|dt is less than or equal to the length of any other curve in Pa(p, q).

Theorem 6. Let a curve γ ∈ Pa(p, q) be given by a parametric equation ~r = ~ρ(s),

s ∈ [a, b]. Then, if γ is a shortest curve, then ~ρ(s) satisfies the third order ordinary

differential equation

(15)
d2~ρ

ds2
+

d

ds

{

(d2~ρ

ds2 ,
d~ρ

ds
, ~n)

(~n, rot~n)

}

~n +
(d2~ρ

ds2 ,
d~ρ

ds
, ~n)

(~n, rot~n)
[rot~n,

d~ρ

ds
] = 0.

Therefore, given a point p ∈ E3M and a vector V0 ∈ ∆(p) one can find an infinite

number of shortest curves joining p and q which pass through p and whose tangent vector

at p is V0.

distribution
planes

direction
admissible

shortest curve

straightest curve

Figure 6. A unique straightest curve and a bundle of shortest curves

3. Properties of metric of sub-Riemannian manifold

3.1. Accessibility of points. Let M be an n-dimensional differential manifold, and ∆

be an m-dimensional distribution on M . We will call a curve γ in M admissible if its
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tangent vector lies in ∆. Let us denote by Pa(p, q) the set of all admissible curves joining

p and q (this set can be empty!). We say that a point q is accessible from a point p if

Pa(p, q) is not empty.

Theorem 7 (Sussman). The set of points accessible from a given point p is an immersed

submanifold in M .

3.2. Completely non-integrable distributions. First let us define a distribution with

singularities on an n-dimensional manifold M . A distribution with singularities ∆ on M

is a smooth field of subspaces ∆(p) ⊂ TpM , p ∈ M . The smoothness of this field means

that, for any p ∈ M , there exists a neighbourhood U(p) and vector fields E1, E2, . . . , Ek ∈

X(U(p)) such that, for each q ∈ U(p), ∆(q) = span{E1(q), E2(q), . . . , Ek(q)}. Note that

we do not assume that the vectors E1(q), E2(q), . . . , Ek(q) are linearly independent (this

makes difference from the definition of k-dimensional distribution, see Section 1). Cer-

tainly, each k-dimensional distribution is a distribution with singularities.

Now let ∆ be a distribution with singularities on M . Let X∆(U) be the set of vector

fields X on an open set U ⊂ M such that, for each q ∈ U , X(q) ∈ ∆(q). Now, for the

distribution ∆ we can construct another distribution ∆1 with singularities in the following

way. For any point p ∈ M , we set

(16) ∆1(p) = {X(p), [X, Y ](p) | X, Y ∈ X∆(Up), where Up is a neighborhood of p}

From this definition it follows that ∆(p) ⊂ ∆1(p), for any p ∈ M .

It is clear that, if ∆ is completely integrable if and only if ∆1 = ∆.

For a distribution ∆ we can sequentially construct the series ∆k of distributions with

singularities by setting ∆k+1 = (∆k)1. Since ∆k ⊂ ∆k+1, and ∆k = ∆k+1 if and only if

∆k is completely integrable, there exists N such that ∆N = ∆N+1 = ∆N+2 = . . ., and ∆N

is completely integrable. Thus, if the subspaces ∆N (p) do not coincide with TpM , then

we get a foliation (with singularities) on M . If, for each p ∈ M , we have ∆N (p) = TpM ,

then we say that the distribution ∆ is completely non-integrable.

If a distribution ∆ is completely non-integrable, then the following theorem implies

that any point of M is accessible from any other point of M .

Theorem 8 (Caratheodory, Rashevskii, Chow). Let a distribution ∆ on a connected

manifold M be completely non-integrable. Then, for any p, q in M , Pa(p, q) 6= ∅.

3.3. Sub-Riemannian metric of completely non-integrable distributions. A sub-

Riemannian manifold is a completely non-integrable distribution ∆ endowed by a metric

g. This means that, for any p in M , on ∆(p) we have the scalar product gp : ∆(p)×∆(p) →

R such that for any X, Y ∈ X∆(M) the function p 7→ gp(X(p), Y (p)) is smooth. In other

words, we can say that we have a metric on ∆ considered as a vector subbundle of the

vector bundle TM .
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If γ(s), s ∈ [a, b], is an admissible curve in M , then we can define the length of γ(s) as

follows:

(17) L(γ) =

∫ b

a

gγ(s)(
dγ

ds
,
dγ

ds
)ds

From theorem 8 it follows that we can define a distance d on M :

(18) d(p, q) = inf
γ∈Pa(p,q)

L(γ).

This distance has some nice properties like the distance defined by a Riemannian metric.

For example, we have the following theorem.

Theorem 9. The topology defined by the distance d coincides with the original topology

on M .

A curve γ(s), s ∈ [a, b], is called a minimizing geodesic if L(γ) = d(γ(a), γ(b)).

Theorem 10 (Hopf-Rinow theorem for sub-Riemannian manifolds). a) Sufficiently near

points can be joined by a minimizing geodesic;

b) If (M, d) is a complete metric space, then any two points can be joined by a mini-

mizing geodesic.
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