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1 Forking

Introduction

Until recently I believed that Shelah’s theory of forking and dividing was
only meaningful in simple theories.

In fact in theories with NIP it turns out to be very meaningful (as Shelah
saw some time ago).

In many examples of NIP theories where there is already a well-behaved
notion of independence and dimension (such as o-minimal theories) forking
can come from a lowering of “order of magnitude” within a given dimension
(and is related to finding the right notion of “infinitesimal”).

Forking also gives rise to very nice analogues of stable group theory within
suitable NTP theories (although this won’t figure in my current talks).

The level of this lecture and these notes will be notched up a bit compared
to the introductory lecture.

Forking in general

Definition 1.1. e (i) Let X(z) be a partial type (even over the big model),

closed under under finite conjunctions. 3(x) is said to divide over A
if there is ¢(x,b) € ¥ and an A-indiscernible sequence (b; : i < w) of
realizations of tp(b/A) such that {¢(z,b;) : i < w} is inconsistent.

(ii) ¥(z) is said to fork over A if ¥ implies some finite disjunction of
formulas (over M)) each of which divides over A.



We begin with some trivialities (left to the reader) which also explain why
the notion of forking, rather than just dividing, is introduced.

Lemma 1.2. (i) X(x) does not fork over A iff for any B containing dom(X),
(in particular for B = M ), ¥ extends to a complete type p(x) over B which does
not divide over A.

(ii) If p(x) is a global complete type (or even a complete type over a sufficiently
saturated model), and A is small, then p does not divide over A iff p does not
fork over A.

e We first describe the situation when 7' is stable.
e Any partial type X(z) does not fork over its domain.

e Forking equals dividing in the sense that a partial type X(x) forks over A
iff it divides over A.

e Let p(z) € S(M) be a global type, and A a (small) subset of M.

e Then p does not fork over A iff p is definable over acl®?(A) iff p is almost
finitely satisfiable in A (i.e. is finitely satisfiable in any model containing

A).

e Moreover p is the unique global type which extends p|(acl®?(A)) and does
not fork over A.

e We also have the “algebraic” properties of (non)forking: symmetry, tran-
sitivity, existence of nonforking extensions,.., which are valid in any simple
theory.

Invariant types

Definition 1.3. Let p(z) € S(M) (a global type) and A small.

e (i) We say that p does not split over A if p is Aut(M /A)-invariant, equiv-
alently whether or not ¢(z,b) € p depends on tp(b/A).

e (ii) We say that p does not Lascar-split over A if p is Aut f(M /A)-invariant,
equivalently whether or not ¢(z,b) € p depends on Lstp(b/A).

e (ili) We say (with some abuse of language) that p is invariant if p is
Aut(M /B)-invariant for some small B.

e (So if p does not Lascar split over a small set then p is invariant (why?).)



e If the global complete type p(x) is invariant then it has a kind of “infini-
tary” defining schema (over a small set A), namely for any ¢(x,y) € L,
there is a collection d,¢ of complete y-types over A such that ¢(z,b) € p
iff tp(b/A) € dy¢.

e So if B is any set containing A (and even containing M in some saturated
elementary extension of M, we can apply this schema to B to obtain p|B.

e Suppose p(z),q(y) are global invariant types. Then by pq € Sy (M) we
mean tp(a,b/M) where b realizes ¢ and a realizes p|[Mb. We can also form
qp € Szy(M) as tp(a,b/M) where a realizes p and b realizes g|Ma.

o We let pg = ¢p.
e Let p(z) be an invariant global complete type, and 21, x2, .... disjoint copies
of the variable x.

e Then p(™ (zy, ....x,,) is defined inductively as p™ =1 (1, .., 2,_1)p(2,). And
p“)(2;); is the union of the p™ (z1, .., z,).

e So p™) is tp(ay1, az,as.../ M) where a; realizes p, ay realizes p|Ma; etc.

e Any realization (a;);<., of p)(z;); (with a; corresponding to x;, is easily
seen to be an indiscernible sequence over M.

e Assuming p to be Aut(M /A)-invariant (or even Aut f(M /A)-invariant we
may call any realization of p(«) |A in M a Morley sequence in p over A.
Lemma 1.4. e i) Suppose that p(x) € S(M) is Aut(M A)-invariant. Then
50 is P ().
e (ii) If p(x) € S(M) is Autf(M/A)-invariant, then so is p'*).
e The proof is left as an exercise.
e Part (i) is easy.
e However part (ii) is a bit more tricky and uses Lemma 1.6 of Lecture I.
Back to NIP
The following is always true (not requiring NIP).

Lemma 1.5. If p(z) € S(M) is Autf(M /A)-invariant then p does not divide
(fork) over A.

Proof. Tf (b; : i < w) is an A-indiscernible sequence then all the b; have the
same Lascar strong type over A, so if ¢(x,by) € p then each ¢(x,b;) € p hence
{é(z,b;) 1 i < w} is consistent. O

The main point is that assuming NIP the converse to Lemma 1.5 holds.



Theorem 1.6. Assume that T has NIP.

e (i) If p(x) € S(M) does not fork over (small) A, then p is Autf(M/A)-
invariant (so with earlier terminology, p is invariant).

e (ii) In particular if M is a model, and p does not divide (fork) over M
then p is Aut(M JA)-invariant.

Proof.

e Suppose p does not fork over A. By Lemma 1.6 of Lecture I it is enough
to show that if ¢(x,y) € L and (b; : i < w) is A-indiscernible, then
¢(IL‘, bO) €p iff (,25(1'7 bl) €p.

o If not then ¢(x,by)A¢(x,b1) € p(z).

e But as (bob1, babs, ....) is also indiscernible over A, our asumptions imply
that {o(x, b;)Ad(x,biy1) : 1 =0,2,....} is consistent, contradicting Corol-
lary 2.6 of Lecture I.

Lemma 1.7. (NIP) Suppose p(z) € S(M) is Aut(M /A)-invariant. Let I be
a Morley sequence in p over A (namely a realization of p“)|A. Then I is A-
special, and p = Ev(I/M). In particular p is determined by the type of a Morley
sequence in p over A.

Proof.

e If I, J are realizations of of p(“)|A then clearly if I’ is a realization of
p)|I.J then IT' and I.J are A-indiscernible.

e Moreover for any B O A and realization I of p*), if I’ realizes p“)|BI
then obviously Ev(I’/B) = p|B. This suffices.

Remark: We could refine the notion of an A-indiscernible sequence I being
A special, by requiring that whenever I’ and I have the same Lascar strong
type over A then there is J etc. With a suitable definition of Ev(I/M) one
could then write a version of Lemma 1.7 with “not forking over A” in place of
Aut(M /A)-invariant.

Corollary 1.8. (NIP) For any A and p(z) € S(A), p has at most 2(4I+«)
global nonforking extensions.

Proof. Exercise.

On the other hand one can prove that if T" has the independence property then
for any A > |T'| there is a model M of cardinality A\ and a type p(z) over M
with at least 22" global nonforking extensions (in fact coheirs). So together with
Corollary 1.8 this gives a nice characterization of theories with NIP.



We can formulate the notion of a subset of (a sort in) M being “Borel”.

A set is “closed” if it is the solution set of a partial type over a small set.

A set is Borel if it is in the o-algebra generated by the closed sets.

We could also call a set Borel over A, if it is in the o-algebra generated
by the solution sets of partial types over A.

We call a set strongly Borel (over A) if it is a finite Boolean combination
of closed (over A) sets.

Theorem 1.9. (NIP) Let p(z) € S(M) be Aut(M/A)-invariant. Then p is
strongly Borel definable over A in the sense that it has a strongly Borel over A
defining schema, namely for any formula ¢(x,y) there is a strongly Borel set Y
such that for any b, ¢(x,b) Ep iff be Y.

Proof. We use Lemma 2.5 of Lecture 1.

o Let ¢(z,y) € L, and N = n, given by Lemma 1.2.2(iii). Let Q(x;); be
p“)|A and Q,,(z1,..z,) its restriction to zy, .., zp.

e Then ¢(x,b) € p iff for some m < N there is (ay,..,a,,) realizing Q,,
with maximal possible successive alternations of truth values of ¢(x,b),
and moreover = ¢(am,b).

e I leave it as an exercise to express this as a strongly Borel over A condition.

2 Lascar strong types

Invariant types and K P-strong types
We begin with a result valid at the level of “invariant types”, which then
applies to the NIP context.

Lemma 2.1. Let p(z) € S(M/A) be Autf(M /A)-invariant. Let c,d be realiza-
tions of p. Then Lstp(c/A) = Lstp(d/A) iff there is some infinite sequence a
such that both (ca) and (da) realize p()|A.

Proof. By Lemma 1.1.6, RHS implies LHS.

Now assume RHS. After possibly moving p by an A-automorphism, we may as-
sume that p(z) implies Lstp(c/A). Let (ag,ay, ...) realize p). Then (a1, as, ...)
also realizes p“). By Lemma 1.4(ii), p() is Aut(M /A)-invariant. As Lstp(c/A) =
Lstp(ag/A) = Lstp(d/A) we conclude that tp(c, ay, as, .../A) = tp(ag, a1, az, .../[A) =
tp(d, a1, az,.../A), completing the proof.



Corollary 2.2. Suppose p(z) € S(M) is Autf(M /A)-invariant. Then for any
realization a of p|A, K Pstp(a/A) equals Lstp(a/A)

Proof. Lemma 2.1 implies that on realizations of p| A, the relation Lstp(x1/A) =
Lstp(xzo/A) is type-definable over A, which suffices.

Restatement for NI P theories.

Corollary 2.3. (NIP) Suppose p(x) € S(A) does not fork over A. Then on
realizations of p, K Pstp over A equals Lstp over A.

Proof. Exercise using earlier results and propositional calculus.

Corollary 2.4. (NIP) Suppose that T is 1-sorted, and that for every A, every
complete 1-type over A does not fork over A (equivalently has a global nondi-
viding extension). Then over any set A, K Pstp = Lstp.

Proof. Use a result of Shelah: assuming NIP if tp(a/B) does not fork over A
and tp(b/Ba) does not fork over A, then tp(a,b/B) does not fork over A, to
conclude that any complete type over any A does not fork over A. Then use
the previous Corollary.

Forking and bdd(A)-invariance
In this final minisection we aim to prove the following strengthening of The-
orem 1.6.

Theorem 2.5. (NIP) Let p(z) € S(M) and A a small set. Then p does not
fork over A iff p is bdd"*( A)-invariant (namely p is fized by all automorphisms
which fix all K P-strong types over A).

Sketch of proof.
e This really falls out of of our previous results.

(i) Note that (by Lemma 1.4 for example) p) € S, (M) does not fork
over A.

(ii) So by (i) and Corollary 2.3 if I realizes p(“)|A then K Pstp(I/A) implies
Lstp(I/A).

Let Q(z;); = p)|bdd"9(A) (a K P-strong type over A).

(iii) So (ii) says that @ implies a Lascar strong type over A.



e Claim (iv). Q is bdd"*9-special, more precisely tp(I/bdd"9(A)) is bdd"*1(A)-
special for some (any) I realizing Q.

e Proof of Claim (iv). Let Iy, Iy realize (), and let J realize p“) (in a
saturated model containing M.

e Then Lstp(I;/A) = Lstp(Iy/A) = Lstp(J/A), hence as p') is Aut f(M /A)-
invariant, both I1J and IyJ are A-indiscernible. End of proof of Claim
(iv).

e Deduce as in Lemma 1.7 that p = Ev(I/M) for any realization I of Q.

e Hence p is Aut(M /bdd"*9(A))-invariant as required.

Corollary 2.6. (NIP) Suppose p(z) € S(M) does not fork over A. Then p is
strongly Borel definable over bdd"*4(A).



