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1 Forking

Introduction

• Until recently I believed that Shelah’s theory of forking and dividing was
only meaningful in simple theories.

• In fact in theories with NIP it turns out to be very meaningful (as Shelah
saw some time ago).

• In many examples of NIP theories where there is already a well-behaved
notion of independence and dimension (such as o-minimal theories) forking
can come from a lowering of “order of magnitude” within a given dimension
(and is related to finding the right notion of “infinitesimal”).

• Forking also gives rise to very nice analogues of stable group theory within
suitable NIP theories (although this won’t figure in my current talks).

• The level of this lecture and these notes will be notched up a bit compared
to the introductory lecture.

Forking in general

Definition 1.1. • (i) Let Σ(x) be a partial type (even over the big model),
closed under under finite conjunctions. Σ(x) is said to divide over A
if there is φ(x, b) ∈ Σ and an A-indiscernible sequence (bi : i < ω) of
realizations of tp(b/A) such that {φ(x, bi) : i < ω} is inconsistent.

• (ii) Σ(x) is said to fork over A if Σ implies some finite disjunction of
formulas (over M̄)) each of which divides over A.
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We begin with some trivialities (left to the reader) which also explain why
the notion of forking, rather than just dividing, is introduced.

Lemma 1.2. (i) Σ(x) does not fork over A iff for any B containing dom(Σ),
(in particular for B = M̄), Σ extends to a complete type p(x) over B which does
not divide over A.
(ii) If p(x) is a global complete type (or even a complete type over a sufficiently
saturated model), and A is small, then p does not divide over A iff p does not
fork over A.

• We first describe the situation when T is stable.

• Any partial type Σ(x) does not fork over its domain.

• Forking equals dividing in the sense that a partial type Σ(x) forks over A
iff it divides over A.

• Let p(x) ∈ S(M̄) be a global type, and A a (small) subset of M̄ .

• Then p does not fork over A iff p is definable over acleq(A) iff p is almost
finitely satisfiable in A (i.e. is finitely satisfiable in any model containing
A).

• Moreover p is the unique global type which extends p|(acleq(A)) and does
not fork over A.

• We also have the “algebraic” properties of (non)forking: symmetry, tran-
sitivity, existence of nonforking extensions,.., which are valid in any simple
theory.

Invariant types

Definition 1.3. Let p(x) ∈ S(M̄) (a global type) and A small.

• (i) We say that p does not split over A if p is Aut(M̄/A)-invariant, equiv-
alently whether or not φ(x, b) ∈ p depends on tp(b/A).

• (ii) We say that p does not Lascar-split over A if p is Autf(M̄/A)-invariant,
equivalently whether or not φ(x, b) ∈ p depends on Lstp(b/A).

• (iii) We say (with some abuse of language) that p is invariant if p is
Aut(M̄/B)-invariant for some small B.

• (So if p does not Lascar split over a small set then p is invariant (why?).)
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• If the global complete type p(x) is invariant then it has a kind of “infini-
tary” defining schema (over a small set A), namely for any φ(x, y) ∈ L,
there is a collection dpφ of complete y-types over A such that φ(x, b) ∈ p
iff tp(b/A) ∈ dpφ.

• So if B is any set containing A (and even containing M̄ in some saturated
elementary extension of M̄ , we can apply this schema to B to obtain p|B.

• Suppose p(x), q(y) are global invariant types. Then by pq ∈ Sxy(M̄) we
mean tp(a, b/M̄) where b realizes q and a realizes p|Mb. We can also form
qp ∈ Sxy(M̄) as tp(a, b/M̄) where a realizes p and b realizes q|Ma.

• We let pq = qp.

• Let p(x) be an invariant global complete type, and x1, x2, .... disjoint copies
of the variable x.

• Then p(n)(x1, ....xn) is defined inductively as p(n−1)(x1, .., xn−1)p(xn). And
p(ω)(xi)i is the union of the p(n)(x1, .., xn).

• So p(ω) is tp(a1, a2, a3.../M̄) where a1 realizes p, a2 realizes p|M̄a1 etc.

• Any realization (ai)i<ω of p(ω)(xi)i (with ai corresponding to xi, is easily
seen to be an indiscernible sequence over M̄ .

• Assuming p to be Aut(M̄/A)-invariant (or even Autf(M̄/A)-invariant we
may call any realization of p(ω)|A in M̄ a Morley sequence in p over A.

Lemma 1.4. • i) Suppose that p(x) ∈ S(M̄) is Aut(M̄/A)-invariant. Then
so is p(ω)(xi)i.

• (ii) If p(x) ∈ S(M̄) is Autf(M̄/A)-invariant, then so is p(ω).

• The proof is left as an exercise.

• Part (i) is easy.

• However part (ii) is a bit more tricky and uses Lemma 1.6 of Lecture I.

Back to NIP
The following is always true (not requiring NIP ).

Lemma 1.5. If p(x) ∈ S(M̄) is Autf(M̄/A)-invariant then p does not divide
(fork) over A.

Proof. If (bi : i < ω) is an A-indiscernible sequence then all the bi have the
same Lascar strong type over A, so if φ(x, b0) ∈ p then each φ(x, bi) ∈ p hence
{φ(x, bi) : i < ω} is consistent.

The main point is that assuming NIP the converse to Lemma 1.5 holds.
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Theorem 1.6. Assume that T has NIP .

• (i) If p(x) ∈ S(M̄) does not fork over (small) A, then p is Autf(M̄/A)-
invariant (so with earlier terminology, p is invariant).

• (ii) In particular if M is a model, and p does not divide (fork) over M
then p is Aut(M̄/A)-invariant.

Proof.

• Suppose p does not fork over A. By Lemma 1.6 of Lecture I it is enough
to show that if φ(x, y) ∈ L and (bi : i < ω) is A-indiscernible, then
φ(x, b0) ∈ p iff φ(x, b1) ∈ p.

• If not then φ(x, b0)∆φ(x, b1) ∈ p(x).

• But as (b0b1, b2b3, ....) is also indiscernible over A, our asumptions imply
that {φ(x, bi)∆φ(x, bi+1) : i = 0, 2, ....} is consistent, contradicting Corol-
lary 2.6 of Lecture I.

Lemma 1.7. (NIP ) Suppose p(x) ∈ S(M̄) is Aut(M̄/A)-invariant. Let I be
a Morley sequence in p over A (namely a realization of p(ω)|A. Then I is A-
special, and p = Ev(I/M̄). In particular p is determined by the type of a Morley
sequence in p over A.

Proof.

• If I, J are realizations of of p(ω)|A then clearly if I ′ is a realization of
p(ω)|IJ then II ′ and IJ are A-indiscernible.

• Moreover for any B ⊇ A and realization I of p(ω), if I ′ realizes p(ω)|BI
then obviously Ev(I ′/B) = p|B. This suffices.

Remark: We could refine the notion of an A-indiscernible sequence I being
A special, by requiring that whenever I ′ and I have the same Lascar strong
type over A then there is J etc. With a suitable definition of Ev(I/M̄) one
could then write a version of Lemma 1.7 with “not forking over A” in place of
Aut(M̄/A)-invariant.

Corollary 1.8. (NIP ) For any A and p(x) ∈ S(A), p has at most 2(|A|+ω)

global nonforking extensions.

Proof. Exercise.

On the other hand one can prove that if T has the independence property then
for any λ ≥ |T | there is a model M of cardinality λ and a type p(x) over M

with at least 22λ

global nonforking extensions (in fact coheirs). So together with
Corollary 1.8 this gives a nice characterization of theories with NIP .
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• We can formulate the notion of a subset of (a sort in) M̄ being “Borel”.

• A set is “closed” if it is the solution set of a partial type over a small set.

• A set is Borel if it is in the σ-algebra generated by the closed sets.

• We could also call a set Borel over A, if it is in the σ-algebra generated
by the solution sets of partial types over A.

• We call a set strongly Borel (over A) if it is a finite Boolean combination
of closed (over A) sets.

Theorem 1.9. (NIP ) Let p(x) ∈ S(M̄) be Aut(M̄/A)-invariant. Then p is
strongly Borel definable over A in the sense that it has a strongly Borel over A
defining schema, namely for any formula φ(x, y) there is a strongly Borel set Y
such that for any b, φ(x, b) ∈ p iff b ∈ Y .

Proof. We use Lemma 2.5 of Lecture I.

• Let φ(x, y) ∈ L, and N = nφ given by Lemma I.2.2(iii). Let Q(xi)i be
p(ω)|A and Qn(x1, ..xn) its restriction to x1, .., xn.

• Then φ(x, b) ∈ p iff for some m ≤ N there is (a1, .., am) realizing Qm

with maximal possible successive alternations of truth values of φ(x, b),
and moreover |= φ(am, b).

• I leave it as an exercise to express this as a strongly Borel over A condition.

2 Lascar strong types

Invariant types and KP -strong types
We begin with a result valid at the level of “invariant types”, which then

applies to the NIP context.

Lemma 2.1. Let p(x) ∈ S(M̄/A) be Autf(M̄/A)-invariant. Let c, d be realiza-
tions of p. Then Lstp(c/A) = Lstp(d/A) iff there is some infinite sequence ā
such that both (cā) and (dā) realize p(ω)|A.

Proof. By Lemma I.1.6, RHS implies LHS.
Now assume RHS. After possibly moving p by an A-automorphism, we may as-
sume that p(x) implies Lstp(c/A). Let (a0, a1, ...) realize p(ω). Then (a1, a2, ...)
also realizes p(ω). By Lemma 1.4(ii), p(ω) is Aut(M̄/A)-invariant. As Lstp(c/A) =
Lstp(a0/A) = Lstp(d/A) we conclude that tp(c, a1, a2, .../A) = tp(a0, a1, a2, .../A) =
tp(d, a1, a2, .../A), completing the proof.
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Corollary 2.2. Suppose p(x) ∈ S(M̄) is Autf(M̄/A)-invariant. Then for any
realization a of p|A, KPstp(a/A) equals Lstp(a/A)

Proof. Lemma 2.1 implies that on realizations of p|A, the relation Lstp(x1/A) =
Lstp(x2/A) is type-definable over A, which suffices.

Restatement for NIP theories.

Corollary 2.3. (NIP ) Suppose p(x) ∈ S(A) does not fork over A. Then on
realizations of p, KPstp over A equals Lstp over A.

Proof. Exercise using earlier results and propositional calculus.

Corollary 2.4. (NIP ) Suppose that T is 1-sorted, and that for every A, every
complete 1-type over A does not fork over A (equivalently has a global nondi-
viding extension). Then over any set A, KPstp = Lstp.

Proof. Use a result of Shelah: assuming NIP if tp(a/B) does not fork over A
and tp(b/Ba) does not fork over A, then tp(a, b/B) does not fork over A, to
conclude that any complete type over any A does not fork over A. Then use
the previous Corollary.

Forking and bdd(A)-invariance
In this final minisection we aim to prove the following strengthening of The-

orem 1.6.

Theorem 2.5. (NIP ) Let p(x) ∈ S(M̄) and A a small set. Then p does not
fork over A iff p is bddheq(A)-invariant (namely p is fixed by all automorphisms
which fix all KP -strong types over A).

Sketch of proof.

• This really falls out of of our previous results.

• (i) Note that (by Lemma 1.4 for example) p(ω) ∈ Sω(M̄) does not fork
over A.

• (ii) So by (i) and Corollary 2.3 if I realizes p(ω)|A then KPstp(I/A) implies
Lstp(I/A).

• Let Q(xi)i = p(ω)|bddheq(A) (a KP -strong type over A).

• (iii) So (ii) says that Q implies a Lascar strong type over A.
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• Claim (iv). Q is bddheq-special, more precisely tp(I/bddheq(A)) is bddheq(A)-
special for some (any) I realizing Q.

• Proof of Claim (iv). Let I1, I2 realize Q, and let J realize p(ω) (in a
saturated model containing M̄ .

• Then Lstp(I1/A) = Lstp(I2/A) = Lstp(J/A), hence as p(ω) is Autf(M̄/A)-
invariant, both I1J and I2J are A-indiscernible. End of proof of Claim
(iv).

• Deduce as in Lemma 1.7 that p = Ev(I/M̄) for any realization I of Q.

• Hence p is Aut(M̄/bddheq(A))-invariant as required.

Corollary 2.6. (NIP ) Suppose p(x) ∈ S(M̄) does not fork over A. Then p is
strongly Borel definable over bddheq(A).
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