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1 Preliminaries

Introduction
We work as before in a very saturated model M̄ of a complete first order

theory M . S denotes some sort (e.g. elements or n-tuples if T is 1-sorted) or
even an ambient ∅-definable set.

• By a Keisler measure on sort S over A, we mean a finitely additive prob-
ability measure µ on A-definable subsets of S (or on formulas over A in
sort S), namely

• For each A-definable subset X of S, µ(X) ∈ [0, 1], µ(S) = 1, µ(∅) = 0,
and if X, Y are disjoint then µ(X ∪ Y ) = µ(X) + µ(Y ).

• By a global Keisler measure on sort S we mean a Keisler measure on S
over M̄ .

• A special case of a Keisler measure over A is a complete type (in sort S)
over A.

• Any Keisler measure over A extends to a global Keisler measure. (Exer-
cise.)

• As an example, let M̄ be a big real closed field, containing therefore R as
an elementary substructure. Let I be the (nonstandard) interval [0, 1] in
M̄ .

• Lebesgue measure on the real unit interval induces a Keisler measure µ on
I over R. Moreover µ has a unique extension to a global Keisler measure
on I. (Exercise.)

We may suppress mention of the ambient sort S, but x will typically denote
a variable of that sort.

Lemma 1.1. A Keisler measure over A is the “same thing” as a regular Borel
probability measure on the compact space Sx(A) of complete types over A in
variable x.
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• Explanation.

• Regularity of a Borel probability measure β on a compact space C means
that for any Borel subset B of C and ε > 0 there are open U and closed
D such that D ⊆ B ⊆ U and β(U \D) < ε.

• Note that any Keisler measure µ over A determines a finitely additive
probability measure µ on the clopens of Sx(A), and Keisler shows how µ
extends to a Borel probability measure β on S(A) which he also shows to
be regular.

• On the other hand if β is a Borel probability meaure on S(A) then the
restriction of β to the clopens of S(A) gives a Keisler measure over A.

• If β is also regular then for any closed subset D of S(A), β(D) will be the
infimum of the β(D′) for D′ clopen containing D, hence β is determined
by µ.

Basic results
A basic result, left as an exercise, is:

Lemma 1.2. Suppose µ is a (global) Keisler measure, (bi : i < ω) is an indis-
cernible sequence, φ(x, y) ∈ L and for some ε > 0, µ(φ(x, bi) ≥ ε for all i. Then
{φ(x, bi) : i < ω} is consistent.

Corollary 1.3. Suppose T has NIP , µ is a global Keisler measure, and φ(x, y) ∈
L. Then there do not exist bi for i < ω such that the µ(φ(x, bi)∆φ(x, bj)) for
i 6= j are bounded away from 0.

Proof. Suppose there do exist such bi. We may assume (bi : i < ω) is indis-
cernible (why?) By Lemma 1.2, {φ(x, bi)∆φ(x, bi+1) : i = 0, 2, 4, ..} is consis-
tent, contradicting NIP .

Corollary 1.3 yields the following important result of Keisler (which we will
not be using in these notes).

Corollary 1.4. Let µ be a Keisler measure over A. Then there is some B ⊃ A
and an extension of µ over B, such that λ has a unique extension to a Keisler
measure over any C containing B.

2 Forking

Basic properties of forking

Definition 2.1. • Let µ be a global Keisler measure. We say that µ is
definable, Borel definable (over A) respectively, if for each φ(x, y) ∈ L and
closed C ⊂ [0, 1], {b : µ(φ(x, b)) ∈ C} is type-definable (over A), Borel
(over A), respectively.
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• The global Keisler measure is finitely satisfiable in A if whenever µ(X) > 0
then X ∩A 6= ∅.

• Suppose A ⊆ B and µ is a Keisler measure over B. If φ(x, b) (over b) does
not divide (fork) over A whenever µ(φ(x, b)) > 0 we say that µ does not
divide (fork) over A.

Lemma 2.2. (i) Let µ be a global Keisler measure, and A a small set. Then µ
divides over A iff µ forks over A.
(ii) If the global Keisler measure µ is Autf(M̄/A)-invariant then µ does not
fork over A.
(iii) If µ is either (Borel) definable over A, or finitely satisfiable in A, then µ
is Aut(M̄/A)-invariant.

Proof.

• (i) If µ forks over A there is φ(x) with µ(φ(x)) > 0 and |= φ(x) →
θ1(x) ∨ ... ∨ θn(x) such that each θi divides over A.

• But by finite additivity of µ, some θi has positive µ measure, so µ diivides
over A.

• (ii) Let µ(φ(x, b)) = r > 0 and (b = b0, b1, ...) an infinite A-indiscernible
sequence.

• So µ(φ(x, bi)) = r for all i, so apply Lemma 1.2.

• (iii). This is clear if µ is (Borel) definable over A. Suppose µ is finitely
satisfiable in A. Suppose that tp(b1/A) = tp(b2/A), and φ(x, y) ∈ L.

• So φ(x, b1)∆φ(x, b2) is not satisfied in A, whereby µ(φ(x, b1)∆φ(x, b2)) =
0.

• Thus µ(φ(x, b1)) = µ(φ(x, b2)) and µ is Aut(M̄/A)-invariant.

NIP and forking
We first generalize Theorem 1.6 appropriately.

Theorem 2.3. (NIP ) Let µ be a global Keisler measure. Then the following
are equivalent:

• (i) µ does not fork over A.

• (ii) µ is Autf(M̄/A)-invariant.

• For any φ(x, y) ∈ L, whenever Lstp(b1/A) = Lstp(b2/A) then µ(φ(x, b1)∆φ(x, b2)) =
0.
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• We first prove (i) implies (iii).

• So suppose µ does not fork over A, and Lstp(b1/A) = Lstp(b2/A).

• We can assume that b1, b2 begin an A-indiscernible sequence (bi : i < ω).

• So (b1b2, b3b4, .....) is also A-indiscernible.

• If µ(φ(x, b1)∆φ(x, b2)) > 0 then (as µ does not divide over A), we have
that {φ(x, bi)∆φ(x, bi+1) : i = 1, 3, ...} is consistent, contradicting NIP .

• (iii) implies (i) is obvious, and (ii) implies (i) was in Lemma 2.2.

• This completes the proof of Theorem 2.3.

Theorem II.2.5 also generalizes.

Theorem 2.4. (NIP ) Suppose the global Keisler measure µ does not fork over
A. Then µ is Aut(M̄/bddheq(A))-invariant

Proof.

• We prove that if tp(b/bdd(A)) = tp(c/bdd(A)) then µ(φ(x, b)∆(φ(x, c)) =
0.

• Suppose not. Then φ(x, b)∆φ(x, c) extends to an ultrafilter in the Boolean
algebra of positive µ-measure definable sets. (Explain.)

• This ultrafilter will be precisely a global complete type p(x) which contains
φ(x, b)∆(φ(x, c)) and contains no µ-measure 0-formula.

• But then p does not fork over A.

• By Theorem II.2.5, p is Aut(M̄/bddheq(A))-invariant, whence φ(x, b) ∈ p
iff φ(x, c) ∈ p, a contradiction.

Averaging
Here some new phenomena enter the picture; averaging a collection of types

to obtain an invariant measure.

Theorem 2.5. (NIP ) Let p(x) ∈ S(A). Then the following are equivalent:
(i) p does not fork over A (i.e. p has an extension to a global type which does
not divide over A).
(ii) p extends to a global Keisler measure µ which is Aut(M̄/A)-invariant

• First some remarks.

• The key point is that we have Aut(M̄/A) rather than Aut(M̄/bddheq(A))
in (ii).

• Because any global nonforking extension of p is already Aut(M̄/bddheq(A))-
invariant.
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• Now for the proof of Theorem 2.5. (ii) implies (i) is immediate, for if µ is
as given by (ii) then by Lemma 2.2 µ will not fork over A, so any formula
in p will not fork over A.

• (i) implies (ii). We will construct µ and leave verification that it satisfies
the required conditions to the reader. Let φ(x, y) ∈ L, b ∈ M̄ and we want
to define µ(φ(x, b)).

• Let p′ be some global nonforking extension of p, which by Corollary II.2.6
is (strongly) Borel definable over bddheq(A).

• We now discuss a few compact spaces and groups.

• First we have the compact Lascar group or KP -group G = Aut(bddheq(A)/A),
a compact group with its unique (left and right) invariant Haar measure
h.

• Second let S = Sy(bddheq(A)) be the space of complete types in variable
y over bddheq(A).

• Let q(y) = tp(b/A) and let Q ⊂ S be the set of complete extensions of q
over bddheq(A), a closed subspace of S.

• Both S and Q are acted on continuously by G. However Q is also acted
on by transitively by G, i.e. is a homogeneous space for G, so has a unique
induced G-invariant Borel probability measure hQ.

• Definability of p′ over bddheq(A) says precisely that the subset X of S
consisting of tp(b′/bddheq(A)) such that φ(x, b′) ∈ p′ is a Borel subset of
S.

• Hence X ∩Q is a Borel, so measurable, subset of Q.

• Define µ(φ(x, b)) = hQ(X ∩Q).

Uniqueness

• A natural question around Theorem 2.5 is whether there is a unique
Aut(M̄/A)-invariant global Keisler measure extending p(x) ∈ S(A) (as-
suming p does not fork over A).

• If T is stable this will be the case, via the finite equivalence relation
theorem.

• Likewise if p (or a global nonforking extension of it) is generically stable
(as in Alex U.’s talks).

• But there do exist examples of uniqueness even without generic stability.

• I will formulate a “domination” condition equivalent to uniqueness, and
which can be seen as in a sense a measure-theoretic weakening of the
statement of the finite equivalence relation theorem
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• We assume T has NIP (maybe not necessary) and fix p(x) ∈ S(A) which
has a global nonforking extension.

• Let P be the set of global nonforking extensions of p. P is a closed subspace
of Sx(M̄), so is compact.

• We will identify the Aut(M̄/A)-invariant global Keisler measures extend-
ing p with the Aut(M̄/A)-invariant (regular) Borel probability measures
on the space P.

• Let C be the set of extensions of p(x) to complete types over bddheq(A).
C is also a compact space, as well a homogeneous space for the compact
Lascar group G = Aut(bddheq(A)/A), and let h be the unique G-invariant
measure on C.

• Let π : P → C be the canonical (continuous) surjection, taking p to
p|bddheq(A).

• For X a definable (in M̄) set of the appropriate sort, let [X] denote the
corresponding clopen subset of P.

Definition 2.6. We say that P is dominated by (C, h, π) if for each definable
set X, {c ∈ C : π−1(c) ∩ [X] 6= ∅ and π−1(c) \ [X] 6= ∅} has h-measure 0.

The following is left to the reader:

Lemma 2.7. Assume p(x) ∈ S(A) has a global nonforking extension. Then
there is a unique global Aut(M̄/A)-invariant Keisler measure extending p if and
only if P is dominated by (C, h, π).

Example. Consider the real field R together with a new sort X and a regular
action of say SO2(R) on X. Work in a saturated model M̄ of this situation.
There is a unique type p(x) over set extending “x ∈ X”. Moreover there is a
unique Aut(M̄)-invariant global Keisler measure extending p. This is more or
less the same example as in the introduction.

VC theorem and Borel definability
We assume that T has NIP . We say a few words (with even fewer proofs)

about the relation between the Vapnis-Chervonenkis theorem and the Borel
definability of Keisler measures. The main result is

Theorem 2.8. Suppose µ is a global Keisler measure which does not fork over
A. Then µ is Borel definable over bdd(A).

The main preliminary lemma, which is of interest in its own right, and is a
consequence of the VC theorem (probability version) is:

Lemma 2.9. Let M be any model (even the big model M̄ and let µ be a Keisler
measure over µ. Let φ(x, y) ∈ L, and ε > 0. Then there are p1, .., pn ∈ Sx(M),
such that for any c ∈ M , the difference between µ(φ(x, c)) and the proportion of
pi which contain φ(x, c) is < ε, and moreover for each i = 1, .., n if φ(x, c) ∈ pi

(¬φ(x, c) ∈ pi), then µ(φ(x, c)) > 0 (µ(¬φ(x, c)) > 0).

6



Proof of Theorem 2.8 from Lemma 2.9.

• Fix φ(x, y) and ε > 0. Let p1, .., pnε
be as given by Lemma 2.9.

• As µ does not fork over A, each pi|φ does not fork over A so extends to a
global complete type qi(x) which does not fork over A.

• By Theorem II.1.9, each qi is strongly Borel definable over A.

• Thus for each i = 1, .., nε there is a set Y ε
i , a finite Boolean combination

of type-definable over bdd(A) sets, such that for any c ∈ M̄ , φ(x, c) ∈ pi

iff c ∈ Yi.

• Hence by Lemma 2.8, if c, c′ lie in exactly the same Yi’s then µ(φ(x, c))
and µ(φ(x, c′)) differ by less than 2ε.

• Deducing Borel definability of µ over A from the previous item is left to
the reader.

• But for example given a real number r between 0 and 1, to Borel define
{c′ : µ(φ(x, c′)) = r}: we may assume that there is c such that µ(φ(x, c)) =
r.

• The condition on c′ is that c′ is in precisely those Y ε
i which c is in (as ε

ranges over {1/m : m = 1, 2, ...}).
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