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In this paper we review the ζ-function regularization approach to noncommutative
index theory. In particular, we show how, through the use of a suitable generaliza-

tion of ζ-function regularized quantities (as the weighted traces used in4,5,19) it is

possible to build the basic blocks used to compute the local index formula due to
Connes and Moscovici8 (and revisited by Higson12) in noncommutative geometry.

Introduction

The index map associated to a spectral triple (A,H, D) in Noncommutative
Geometry6,8,12 is the additive map ind D : K∗(A) → ZZ defined as follows.
Let us assume that the spectral triple is even, which means that there
exists a chirality operator γ ∈ L(H) inducing a ZZ2-grading on H and
anticommuting with D, i.e. γ2 = 1, γ = γ∗, γD = −Dγ and γa = aγ, for
all a ∈ A. With respect to the decomposition H = H+ ⊕H−, D takes the
antidiagonal form

D =
(

0 D−

D+ 0

)
,

with D± : H∓ → H±. For any selfadjoint idempotent e ∈ Mq(A) (the
algebra of q × q matrices with entries in A), the operator

e(D+ ⊗ 1)e : e(H+ ⊗ ICq) → e(H− ⊗ ICq)
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is Fredholm, and its index depends only on the homotopy class of e. The
index is defined by

ind D[e] = ind e(D+ ⊗ 1)e. (1)

It is well known that, e.g. in the case of a compact Riemannian spin man-
ifold (M, g) of even dimension, with DM the Dirac operator acting on its
spin bundle S = S+ ⊕ S−, the index corresponding to the even spectral
triple (C∞(M), L2(M,S), DM ) coincides with the classical index. In this
case, as shown in the sixties by Atiyah and Singer (see the volumes1), the
index can be computed through a local formula.

This locality property of the index generalizes to the noncommutative case,
and the corresponding local index formula was shown in 8 by Connes and
Moscovici. Indeed, (under some –spectral– conditions on the spectral triple)
the index map (1) can be computed through the pairing of the K-theory
K (A) of the algebra with a cyclic cohomology class defined by Connes.6

The local index theorem states that there exists a cyclic cohomology class
[ϕCM ] such that

ind D(E) = 〈[ϕCM ]|E〉, (2)

for any E ∈ K0(A), and the components of such an even cocycle ϕCM =
(ϕ2p) —in the (b, B)-complex of A— are given by local formulas, i.e. by
(noncommutative) integrals which generalize the ones found in classical
(e.g. Atiyah-Singer) index theorems.

Another feature of classical indices is that it is possible to compute them
using ζ-function regularized quantities2, a method extensively used to de-
fine other important invariants of differential manifolds. On the other hand,
it is possible to study both algebraic and geometric anomalies appearing
in infinite-dimensional geometry through the use of, e.g. trace extensions
defined using this kind of regularized quantities (see 17,4). This approach
brings a direct proof of the relation between such anomalies and index-like
quantities, as well as a bridge to understand how these quantities appear in
the study of related phenomena such as Quantum Field Theory anomalies5.
In noncommutative geometry 6,10 ζ-type functions are also used to state
what would correspond to some classical definitions in the noncommutative
case, e.g. what would be the dimension of a spectral triple.

Our goal in the following pages is to show how, through the use of a suitable
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generalization of ζ-function regularized quantities (as the used in4,5,17,19)
it is possible to build the basic blocks used to compute the local index
formula in noncommutative geometry. We follow similar lines to those
of Higson12 and Paycha18, reviewing some of the results stated in these
works. Our approach contains also some common ideas with other works
employing regularization by heat-kernel methods, as the work of Ponge20

on local index formulas. Finally, throughout this paper we consider only
even spectral triples, although everything applies to the odd case by the
usual modifications (see e.g. 6, 8).

1. Spectral Triples and ζ-functions

1.1. The weighted algebra of spectral triples

Let (A,H, D) be a spectral triple, i.e. an involutive algebra A represented
in a Hilbert space H, together with a self-adjoint operator D with compact
resolvent in H such that [D, a] is bounded for any a ∈ A. Given a fixed
positive unbounded self-adjoint operator Q acting on H —which we refer
to as the weight— such that

H∞ =
∞⋂

k=1

Dom (Qk) ⊆ H,

and any a ∈ AmapsH∞ into itself, we want to associate toQ and (A,H, D)
an algebra of operators on H∞.

We say that DQ is a q-order weighted algebra of abstract differential op-
erators, and Q its associated weight of order q (see 12 and 18), if it is an
associative algebra of linear operators on H∞ which is

(1) Filtered, i.e.

DQ =
∞⋃

p=0

Dp
Q,

and we say ord(P ) ≤ p if P ∈ Dp
Q.

(2) Closed under commutation with the weight, i.e. for any P ∈ Dp
Q,

[P,Q] ∈ DQ,

and ord([P,Q]) ≤ p+ q − 1.
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(3) Regular,11 i.e. it satisfies the following ‘elliptic estimate’: For any
P ∈ Dp

Q there exists a positive constant ε such that

‖ Q
p
qX ‖ + ‖ X ‖≥ ε ‖ PX ‖, ∀X ∈ H∞.

Notice that, as follows from the definition, if P ∈ Dp
Q, for any s ≥ 0 then

P extends to a bounded operator from Hs+p to Hs.

As shown by Higson (Section 4 in 12, see also 13), for any regular spec-
tral triple (A,H, D) as above, taking as weight Q = ∆ = D2, it is possible
to associate a 2 ord(D)-weighted algebra D∆: the smallest algebra of oper-
ators on H∞ containing A, the commutator [A, D] which is closed under
commutation with the weight P 7→ [Q,P ]. The filtration is, in this case,
the one in which elements of A and [A, D] have order zero, and the order is
raised by (at most) one by commutation with the weight D2 —it is assumed
that the degree of D is 1. An immediate example is the one of the spectral
triple (C∞(M), L2(M,S), DM ) associated to a compact Riemannian man-
ifold (M, g), taking D∆ to be the algebra of differential operators acting on
spinors, weighted by the Laplacian ∆ = D2

M .

The role of the weight in the context of noncommutative spectral triples
will be, as we will see in the next section, the one of parameter for the
regularization of the quantities in terms of which the local formula for the
index can be written. Indeed, the preliminary definitions introduced in this
section are there to ensure that we can define the ζ-functions we will work
with in the following.

1.2. ζ-function regularization, traces and dimension

spectrum

In classical (commutative) geometry the ζ-function regularization method
gives rise to important invariants of differential manifolds. It is also used,
among other things, for the construction of a —unique in many cases—
trace on the algebra of pseudo-differential operators acting on sections of
vector fibrations. In this section we recall some of these classical results, as
well as the definition of the dimension spectrum of a spectral triple given
in 8 using these methods.
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1.2.1. ζ-function regularization and the noncommutative residue

Let E be a vector bundle over a smooth n-dimensional closed Riemannian
manifoldM , and let Cl(E) denote the algebra of classical pseudo-differential
operators acting on smooth sections of E. Let Q ∈ Ad(E) be an admissible
operator —in the sense of references 16 and 5, i.e. a pseudo-differential
operator for which arbitrary complex powers can be defined as it was by
Seeley21,

Q−z =
1

2πi

∫
Γ

λ−z(Q− λI)−1dλ, (3)

where Γ denotes the contour of integration, coming from infinity and sepa-
rating zero from the spectrum of Q. Since, for any A ∈ Cl(E), Q ∈ Ad(E),
the map z 7→ tr(AQ−z) extends meromorphically to a map with a simple
pole at zero,16

res(A) = q Resz=0

(
tr(AQ−z))

)
, (4)

where q = ord(Q), defines a quantity which is independent of the reference
operator Q. More importantly, this quantity indeed defines a trace (i.e.
res([A, B])=0 for any A,B ∈ Cl(E)), the so-called non-commutative or
Wodzicki residue22 (see also 15 for a review). It also has the remarkable
locality property

res(A) =
1

(2π)n

∫
M

∫
|ξ|=1

trx (σ−n(x, ξ)) dξdµM (x), (5)

where n is the dimension of M , µM the volume measure on M , trx the trace
on the fibre above x and σ−n the homogeneous component of order −n of
the symbol of A. Notice that the Wodzicki residue is not an extension of
the trace in finite dimensions, as follows from the fact that it vanishes on
any finite-rank operator.

Remark 1.1. The meromorphic extension of the map z 7→ tr(AQ−z) has
simple poles located in the set16

{
a+m−k

q ; k ∈ ZZ+
}

, where a = ord(A),
q = ord(Q) and m = dimM . Notice then that, if a < −m there is no pole
at zero, so that res(A) = 0.

1.2.2. Weighted traces

The same ζ-function regularization employed to define the Wodzicki residue
has been used to define functionals which, although non-tracial, extend
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the usual trace in finite dimensionsa (see 4,5,17). Indeed, starting from
the same map z 7→ tr(AQ−z), for A classical pseudo-differential operator
and Q admissible, but considering its finite part instead of its residue at
the origin, gives rise to weighted trace functionals 4 which, although non-
tracial and dependent of the reference operator Q, are very useful tools to
understand the origin of index-like terms and their appearance in Quantum
Field Theory anomalies, which have well known locality features in relation
with classical (commutative) index theorems.5 For A ∈ Cl(E) and Q ∈
Ad(E), the Q-weighted trace of A is defined by the expression

trQ(A) = f.p.|z=0

(
tr(AQ−z)

)
. (6)

It follows from the definition that weighted traces extend usual finite-
dimensional traces, i.e. trQ(A) = tr(A) whenever A is a finite rank op-
erator. Formulae for anomalies associated with weighted trace functionals
can be found in references 4 and 5, where their relationship with index
theory and field theory anomalies are also discussed.

Remark 1.2. Another very important regularization method used in
infinite-dimensional geometry is the heat kernel method, in which the map
tr(e−tQ), for t real and positive, is used instead of the complex map tr(Q−z)
considered above, where Q denotes any admissible reference operator with
positive leading symbol. Both methods coincide modulo noncommutative
residues. Indeed, notice that, for A ∈ Cl(E) and an admissible operator Q
with positive leading symbol, we can recover the ζ-regularized trace (6) us-
ing a heat-kernel expansion, through a Mellin Transform. The zeta regular-
ized trace tr(AQ−z) is the Mellin transform M[f ](z) = 1

Γ(z)

∫∞
0
f(t)tz−1 dt

of the map f(t) = tr(Ae−tQ) ∈ C∞( IR+). Since f(t) has an asymp-
totic expansion for small t of the form f(t) ∼

∑
k≥−n fkt

k
q + c log t, where

q = ord(Q), properties of the Mellin transform 10 imply that

f.p.|t=0

(
tr(Ae−tQ)

)
= f.p.|z=0

(
tr(AQ−z)

)
+ γE · res(A) (7)

where γE is the Euler constant. Thus, if res(A) = 0, the two regularization
methods coincide, i.e. trQ(A) = f.p.|t=0

(
tr(Ae−tQ)

)
.

aTraces and trace extensions are not the only objects it is possible to build by this
method. There are also, among others, the ζ-determinants giving rise to analytic torsion
and the eta invariant of Atiyah, Patodi and Singer.
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In the more general context of noncommutative spectral triples there is a
trace (defined by Dixmier9 in the 60’s on certain ideals of linear opera-
tors acting on a Hilbert space) which has been extensively used by Alain
Connes as noncommutative integral. 6 Indeed, it coincides with the Wodz-
icki residue on the algebra of classical pseudodifferential operators acting
on smooth sections of a vector bundle over a Riemannian manifold, so
that in that case it is given by an integral. The index formulas arising
in Connes-Moscovici theorem are local in the sense that they can be writ-
ten using noncommutative integrals (Dixmier traces), we want to illustrate
in the following how they can also be build from ζ-function regularized
quantities.

1.2.3. ζ-functions, analytic dimension and the dimension spectrum

Let (A,H, D) be a spectral triple such that H∞ =
⋂∞

k=1 Dom (∆k) ⊆ H,
and any a ∈ A maps H∞ into itself. Let D∆ be the order 2 weighted
algebra of abstract differential operators considered in Section 1.1, where
∆ = D2 denotes its associated weightb of order 2. An abstraction of the
usual properties of the algebra of classical pseudodifferential operators (e.g.
the relative to ζ-functions given in Remarks 1.1 and 1.2) suggests what
should be the idea of (algebraic and geometric) dimension of a given spectral
triple. Let us begin by recalling Higson’s definition of analytic dimension
for a weighted algebra of abstract differential operators.

Definition 1.1. Let DQ be a order q weighted algebra of abstract differ-
ential operators. The analytic dimension d of DQ is the smallest value
—provided it exists— d ≥ 0 for which PQ−z extends to a trace class oper-
ator on H, for P ∈ Dp

Q and z ∈ IC such that Re(z) > p+d
q . If DQ has finite

analytic dimension and, for any P ∈ DQ, the function tr(PQ−z) extends to
a meromorphic function on IC, the algebra DQ is said to have the analytic
continuation property.

Now, a spectral triple (A,H, D) such that any a ∈ A maps H∞ into itself
is said p-summable if 10 for some finite p ≥ 1

a · (1 +D2)−1/2 ∈ Lp(H) for any a ∈ Lp(H). (8)

Consequently, for any element P ∈ D∆ there exists some half-plane on
which the ζ-function z 7→ tr(P∆−z) is holomorphic. In 8 the following

bHere, and in what follows, we assume ∆ to be invertible, if it is not the case it should

be replaced by ∆′ = ∆ + Πker ∆.
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definition is given for the “dimension” of a spectral triple satisfying the
above conditions:

Definition 1.2. The dimension spectrum Sd∆ of a finite summable and
regular spectral triple (A,H, D), is the subset of IC such that, for any
P ∈ Dp

∆, the zeta function

ζP (z) = tr(P∆− z
2 )

extends holomorphically to IC \ Sd∆.

As follows from Remark 1.1, in the case of a compact Riemannian spin
manifold (M, g) of even dimension with its associated even spectral triple
(C∞(M), L2(M,S), DM ), the corresponding dimension spectrum is discrete
and, moreover, the poles of the corresponding ζ-functions are simple.

Whenever the functions ζP (z), for P ∈ Dp
∆, have a discrete set of poles

and such poles are at most simple poles, we call the dimension spectrum
discrete and simple, respectively. Examples of spectral triples with these
properties have been discussed in, e.g. Ref. 7.

Under the assumption of simplicity and discreteness for the dimension spec-
trum associated to a finite summable and regular spectral triple, it is pos-
sible to define a pseudodifferential calculus associated to the generalized
algebra D∆,12 and generalize on it the ζ-function machinery used in the
analysis of classical pseudodifferential operators. In Section 2.2 we study
such objects and we recall how to write local formulas, for the index as-
sociated to a noncommutative spectral triple, in terms of such ζ-function
quantities.

2. ζ-function regularization and the Connes-Moscovici
cocycle

2.1. The local index formula for even spectral triples

Recall that a cochain ψ in the spaces Ck(A) of (k + 1)-linear forms on A,
for k ∈ IN, is called cyclic if it satisfies

ψ(a1, · · · , ak, a0) = (−1)kψ(a0, a1, · · · , ak) aj ∈ A, (9)

a cyclic cocycle is a cyclic cochain ψ such that bψ = 0, and the cyclic coho-
mology groups HC∗(A) of the algebra A are obtained from by restricting



September 20, 2005 17:52 Proceedings Trim Size: 9in x 6in ACProc2004

9

the Hochschild coboundary,

bψ(a0, · · · , ak+1) =
k∑

j=0

(−1)jψ(a0, · · · , ajaj+1, · · · , ak+1)

+ (−1)k+1ψ(ak+1a0, · · · , ak), aj ∈ A, (10)

to those cochains. It can equivalently be described as the second filtration
of the (b, B)-bicomplex of (not necessarily cyclic) cochains, where b is the
same as before and B = AB0 : Ck(A) → Ck−1(A), with

(Aψ)(a0, · · · , ak−1) =
k∑

j=0

(−1)(k−1)jψ(aj , · · · , aj−1),

and B0ψ(a0, · · · , ak−1) = ψ(1, a0, · · · , ak−1), for aj ∈ A. The periodic
cyclic cohomology is the cohomology of the short complex

Ceven(A)
b+B
� Codd(A), Ceven/odd(A) =

⊕
k even/odd

Ck(A),

whose cohomology groups are denoted HC+(A) and HC−(A), respectively.

The pairing between HC+(A) and K0(A) used to compute the local for-
mula for the index (1) is given by 6, 10

〈[ϕ]|[e]〉 =
∑
k≥0

(−1)k (2k)!
k!

(ϕ2k#tr)(e, · · · , e), (11)

for any cocycle ϕ = (ϕ2k) in Ceven(A) and any self-adjoint idempotent
e in Mq(A). Here ϕ2k#tr denotes the (2k + 1)-linear map on Mq(A) =
Mq( IC)⊗A given by

(ϕ2k#tr)(µ0 ⊗ a0, · · · , µ2k ⊗ a2k) = tr(µ0 . . . µ2k)ϕ2k(a0, · · · , a2k),

for µj ∈Mq( IC) and aj ∈ A.

The following theorem provides a local formula to compute the index in
even noncommutative spectral triples:

Theorem 2.1. 8 Suppose that (A,H, D) is even, finitely summable and
has a discrete and simple dimension spectrum. Then, for any E ∈ K0(A),

ind D(E) = 〈[ϕ+
CM ]|E〉, (12)
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where the even cocycle ϕ+
CM = (ϕ2k) in the (b, B)-complex of A is given,

for k = 0, by

ϕ0(a0) = f.p.|t=0str(a0e
−t∆), (13)

and for k > 0 by

ϕ2k(a0, . . . , a2k) =
∑
α≥0

ck,αResz=0Tr
(
γa0[D, a1][α1] . . . [D, a2k][α2k]∆−|α|−k−z

)
,

(14)
where the sum is over the multi-index α = (α1, . . . , αk), with αj ≥ 0, and

ck,α =
(−1)|α|Γ(|α|+ k)

α!(α1 + 1) · · · (α1 + · · ·+ α2k + 2k)
, (15)

and the symbol X [j] denotes the j-th iterated commutator of X with ∆ =
D2.

2.2. Weighted cochains and ζ-function cyclic cocicles

2.2.1. JLO Functionals

Let (A,H, D) be an even spectral triple, with chirality operator γ (with
respect to the decomposition H = H+ ⊕H−) and Q a weight in the sense
of definition given above. Let us assume that the spectral triple is Q-
summable, i.e. that for any t > 0 the operator e−tQ is trace class c. A
natural extension of the functional (6) to the context of noncommutative
spectral triples can be done by considering the Mellin transform of the
following JLO-type multifunctional 14

φQ
p (t)(A0, . . . , Ap) =

∫
∆p

tr(γA0e
−u0tQA1e

−u1tQ · · ·Ape
−uptQ)du, (16)

where t ∈ IR+, p ∈ ZZ+, A0, . . . , Ap ∈ A and the integration is over the
k-simplex ∆p = {(u0, . . . , up) : u0 + · · ·+ up = 1, ui ≥ 0}. This functional,
defined using heat kernel regularization methods, was originally used in 14

in order to obtain an infinite-dimensional Chern character for (θ-summable)
Fredholm modules. It is also at the origin of the local formula for the index
given by Connes and Moscovici.8

cFor Q = D2 the spectral triple is called θ-summable.
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Looking at (16) as a function in C∞( IR+) associated to any set of p el-
ements of A, it is natural to consider its Mellin transform

ΦQ
p (A0, . . . , Ap)(z) =

1
Γ(z)

∫ ∞

0

φQ
p (t)(A0, . . . , Ap)tz−1 dt, (17)

i.e. a complex function associated to any set of p elements of A, defined in
a region of the complex plane. As a matter of fact, in 12 it has been shown
that this object is well defined whenever A0, . . . , Ap ∈ DQ, the associated
weighted algebra, if it has finite analytic dimension and satisfies the ana-
lytic continuation property defined above (see Section 4 in 12 for a careful
exposition), properties which we assume in what follows. As prompted by
Remark 1.2 —which is only valid in the classical pseudodifferential algebra
setting, it is possible to write down a complex power expression for ΦQ

• (z).

Lemma 2.1. 12 Let (A,H, D) be a spectral triple with associated algebra
of generalized differential operators DQ, satisfying the analytic continuation
property. Then, for a0, . . . , ap ∈ A, ΦQ

p (a0, . . . , ap)(z) defines a meromor-
phic function on IC, and

ΦQ
p (a0, . . . , ap)(z) =

(−1)p

2πi

∫
λ−z+p tr(γa0(λ−Q)−1 · · · ap(λ−Q)−1)dλ,

(18)
where the integral is performed following a line in the complex plane which
separates the spectrum of Q from 0. Moreover, if p is bigger than the
analytic dimension of DQ, and Q = ∆ = D2, ΦQ

p (a0, . . . , ap)(z + p
2 ) is

holomorphic at zero.

This crucial result follows from some asymptotic expansion properties of
commutators between elements of DQ and resolvents of the weight (see
Lemma 4.20 in 12), and gives us some clues about the residue generaliz-
ing the noncommutative one in the context of classical pseudodifferential
algebras. First, notice that in the context of classical pseudodifferential
operator algebras, when p = 0, this map (17) is the one taking z ∈ IC to

ΦQ
0 (A)(z) = str(AQ−z), (19)

where str(A) = tr(γA) denotes the usual supertrace. Thus, it seems natural
to consider the different options we know to take traces or residues over
these functionals —the result is that doing it, on the more general context of
weighted algebras of abstract differential operators associated to a spectral
triple, it will be possible to recover the cyclic cohomology cocycles used to
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give a local formula for the index map (1). Before doing that, let us remark
that from (19) it follows that

Resz=0Φ
Q
0 (A)(z) =

1
q
res(γA),

for any classical pseudodifferential operator acting on sections of a ZZ2-
graded bundle, where res denotes the Wodzicki residue. In general, 18 for
A0, . . . , Ap ∈ Cl(E),

Resz=0ΦQ
p (A0, . . . , Ap)(z) =

1
q
res(γA0 · · ·Ap), (20)

so that regularized traces built from the multifunctionals ΦQ
• are in this

context, as expected, proportional to res. Moreover, it follows from Lemma
2.1 that, for p > d = analytic dimension of DQ, ΦQ

p (a0, . . . , ap)(z + p
2 ) is

holomorphic at zero, therefore

Resz=0ΦQ
p (a0, . . . , ap)(z +

p

2
) = 0.

Comparing this with Remark 1.1, i.e. Resz=0 tr(AQ−z) = 0 if a <

−m, where a = ord(A) and m = dimM , we see that the quantity
q ·Resz=0ΦQ

p (a0, . . . , ap)(z+ p
2 ) generalizes the Wodzicki residue in the more

general context of algebras of abstract differential operators associated to
spectral triples.

2.2.2. Weighted cochains and holomorphic cocycles

The JLO functional φQ
• (t) defined in (16) gives rise to an improper cocycle

(with coefficients in C∞( IR+)) in (b, B)-cohomology,

(a0, . . . , ap) 7→ 〈a0, [D, a1], . . . , [D, ap]〉JLO
t , (21)

where

〈a0, [D, a1], . . . , [D, ap]〉JLO
t := t

p
2 φQ

p (t)(a0, [D, a1], . . . , [D, ap]),

called JLO cocycle.14 Improper means that it does not vanish in general
in any component (i.e. it has an infinite number of components). The
same holds true for the functional ΦQ

• (z) defined in (17), it gives rise to an
improper cocycle (with coefficients in the space of holomorphic functions
on a half-plane in IC) in (b, B)-cohomology,

(a0, . . . , ap) 7→ 〈a0, [D, a1], . . . , [D, ap]〉Hz− p
2
, (22)
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where

〈a0, [D, a1], . . . , [D, ap]〉Hz := Γ (z + p) ΦQ
p (a0, [D, a1], . . . , [D, ap])(z + p).

This improper cocycle was considered in detail by N. Higson in 12, we will
call it holomorphic cocycle.

The usual way to find proper cocycles from the improper ones is the compu-
tation of traces (residues) which cancel an infinite number of components of
these improper cocycles . Indeed, in the classical pseudodifferential setting,
when the order of a pseudodifferential operator A is less than −dimM ,
res(A) = 0. Since this feature appears also for the multifunctional ΦQ

p in
the context of weighted algebras of abstract differential operators associated
to noncommutative spectral triples, as follows from Lemma 2.1, a simple
degree counting argument shows that —provided that the poles are sim-
ple at zero, which is true in the cases we consider— for p big enough, the
residues of the components of the holomorphic functional (22) will vanish.
This is the way the cyclic cocycles associated to the local index formula can
be built in (see 12 and 6).

Following the lines of the construction of trace extensions for pseudodif-
ferential operator algebras in 4,17, it is natural to consider the cochains
obtained from the holomorphic mappings ΦQ

p (a0, a1, . . . , ap)(z) when, in-
stead of the residues at the origin, the finite part is taken. This was done
in 18 by S. Paycha, in the context of the algebra of classical pseudodiffer-
ential operators acting on sections of finite rank vector bundles, but can be
easily adapted to the case of the weighted algebra of generalized abstract
differential operators associated to a regular and finite-summable spectral
triple (A,H, D).

Definition 2.1. Let us define weighted cochains χQ
• as finite parts of the

meromorphic functions (with simple poles) ΦQ
• ,

χQ
p (a0, . . . , ap) = f.p.|z=0(ΦQ

p (a0, . . . , ap)(z)), (23)

where a0, . . . , ap ∈ A and Q denotes a reference weight operator.

These weighted cochains have been used to study several types of (algebraic
and geometric) anomalies in 18. The same asymptotic expansions used to
show Lemma 2.1 (see Lemma 4.20 and Lemma 4.30 in 12) can be used to
show the following
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Proposition 2.1. Let a0, . . . , ap ∈ A for a regular and finite-summable
spectral triple (A,H, D) with associated weighted algebra of generalized dif-
ferential operators DQ with the analytic continuation property. Then

χQ
p (a0, . . . , ap) − f.p.|z=0Φ

Q
0 (a0 · · · ap) = (24)∑

|k|≥1

c|k|Resz=0Tr
(
γa0a

[k1]
1 · · · a[kp]

p Q−|k|−z
)
,

where c|k| = (−1)|k|(|k|−1)!
(|k|+1)! for any multiindex k, |k| = k1 + · · · kp and

q = ord(Q).

Let us come back to the case of the classical pseudodifferential operator
algebra. Consider, for example, A ∈ Cl(E). Then —as follows from (19)—

χQ
0 (A) = f.p.|z=0

(
ΦQ

0 (A)(z)
)

= strQ(A). (25)

Thus, at the level p = 0, weighted cochains and weighted traces are the
same (thus, since the weighted traces are non tracial in general, this shows
that weighted cochains are not cocycles). However, at higher levels this
is no longer true, although the difference between χQ

p (A0, . . . , Ap) and the
Q-weighted (super)trace of the operator A0 · · ·Ap ∈ Cl(E) is given by a
finite linear combination of noncommutative residues (see 18, Propostion
2): If A0, . . . , Ap ∈ Cl(E), whenever Q has scalar leading symbol, then

χQ
p (A0, . . . , Ap) − strQ(A0 · · ·Ap) = (26)

1
q

∑
|k|≥1

(−1)|k|(|k| − 1)!
(|k|+ 1)!

res
(
γA0A

[k1]
1 · · ·A[kp]

p Q−|k|
)
.

Notice that, since the order of the operator within the res term in (26) de-
creases as |k| increases, the residues will cancel from the moment at which
the map z 7→ tr(γA0A

[k1]
1 · · ·A[kp]

p Q−|k|−z) has no pole at the origin, so that
in the sum there are only a finite number of terms. The same holds true,
by Lemma 2.1, for formula (24).

Since weighted cochains are not cocycles, it is clear that it is not possible
to build from them the cocycles necessary to write the local index theorem
terms. Indeed, formula (26) shows that in the context of pseudodifferential
operator algebras weighted cochains are no local in general, but that differ-
ences between them and appropriate weighted (super)traces can be local.
But actually we have no need of weighted cochains to write down a local
expression for the index (1), taking residues of the holomorphic cocycles
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will be enough to recover the Connes-Moscovici cocycle ϕ+
CM . After com-

putation of the corresponding residues, the asymptotic expansion giving
rise to the results stated in Lemma 2.1 imply the following

Lemma 2.2. [Higson12] Let (A,H, D) be a regular and finite-summeble
spectral triple, ∆ = D2 and a0, . . . , ap ∈ A, for p ≥ 0. Then,

Resz=0〈a0, [D, a1], . . . , [D, ap]〉Hz− p
2

= Resz=0

[
Γ(z +

p

2
)Φ∆

p (a0, [D, a1], . . . , [D, ap])(z +
p

2
)
]

(27)

=
∑
|k|≥0

cp,kResz=0Tr
(
γa0[D, a1](k1) · · · [D, ap](kp)∆−(z+ p

2 )−|k|
)
,

where |k| = k1+· · · kp, for the multiindex k = (k1, . . . , kp), and the constant
cp,k is given by the formula (15) above.

Once again we observe the (residues of the) multifunctional Φ∆
p (z +

p
2 )(a0, [D, a1], . . . , [D, ap]) appearing in this expression, for p > 0, which
–in some sense– generalizes the classical Wodzicki residue.d This a priori
locality is indeed confirmed as taking residues of Higson’s holomorphic co-
cycle (22) gives us back the local index formulas given by Connes-Moscovici
in Theorem 2.1.

Theorem 2.2. [Connes-Moscovici8, Higson12] Let (A,H, D) be a regular
and finite-summeble spectral triple, with ∆ = D2. If the ∆-weighted algebra
of generalized differential operators D∆ has finite analytic dimension and
the analytic continuation property then, for any idempotent e,

〈Resz=0ΨH |e〉 = ind D(e),

where Resz=0ΨH denotes the residue cocycle Resz=0ΨH
p (a0, a1, . . . , ap) =

Resz=0〈a0, [D, a1], . . . , [D, ap]〉Hz− p
2
.

Thus, the ζ-function regularized objects giving rise to local formulae in
the framework of classical pseudodifferential operator theory, such as the
formulae for indexes, anomalies, etc., can be defined in the more general
setting of noncommutative spectral triples, giving rise to results that could

dNotice that, for p = 0, since Resz=0

�
Γ(z)Φ∆

0 (a0)(z)
�

= f.p.|z=0Φ∆
0 (a0)(z), the com-

plex residue gives rise to a finete part which generalizes a weighted trace rather than a

Wodzicki residue (see equation (25)).
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be interpreted as examples of the corresponding locality phenomena for
noncommutative spaces. This locality has begun to be discussed on concrete
examples recently (see e.g. 7, also 3), but its possible application to physical
models —where the locality features could be fundamental— remains to be
done.
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