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1. G-structures

Let G be a subgroup in GL(n). A G-structure on a manifold M is a principal G-subbundle
LG(M) → M of the linear frame bundle L(M). Each G-structure is defined by a section s : M →
PG = L(M)/G.

A G-structure on a manifold M is mathcalled integrable if, for each point p ∈ M , there exists a
chart on U ∋ p whose natural frame is a section of LG(M).

Example 1. Let

(1) G =

(

A B
0 C

)

,

where A is k × k-matrix, B is k × (n − k)-matrix, and C is (n − k) × (n − k)-matrix.
Then a G-structure LG(M) → M is a k-dimensional distribution ∆ on M . The corresponding

section s : M → PG = L(M)/G is a section of the Grassmann bundle Gk(M) of k-dimensional
subspaces in TM .

If this G-structure is integrable, then the distribution ∆ is also integrable, hence determines a
foliation.

2. Deformations of integrable G-structures

2.1. Deformation of G-structures. A deformation of a G-structure s is a one-parametric family
of sections st : M → L(M)/G such that s0 = s. A deformation is mathcalled inessential if st = f ∗

t (s)
for a one-parametric family ft of diffeomorphisms of M .

An infinitesimal deformation of a section s : M → PG is a vertimathcal vector field V = d
dt
|t=0st

along s(M), or a section of the bundle s∗V (PG). That is

(2) D(s) = Γ(M ; s∗V (PG))

An inessential infinitesimal deformation of a section s : M → PG is a vertimathcal vector field
V = d

dt
|t=0f

∗

t (s0) along s(M). One can prove that the space of inessential infinitesimal deformations
is

(3) D0 = {LXs | X ∈ X(M)} .

Hence the space of essential deformations of s is

(4) Dess =
D(s)

D0(s)
=

Γ(M ; s∗V (PG))

{LXs | X ∈ X(M)}
.

Remark 1. This can be done for sections of natural bundle.
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2.2. Deformations of integrable structures. A deformation of an integrable G-structure s is a
one-parametric family of sections st : M → L(M)/G such that each st is integrable and s0 = s.

An infinitesimal deformation of a section s : M → PG is a vertimathcal vector field V = d
dt
|t=0st

along s(M), or a section of the bundle s∗V (PG) but now the sections st are integrable G-structures.
First approach. Any integrable G-structure s on M determines a pseudogroup structure on M .
Γ is a pseudogroup of transformations of f : R

n → R such that Df lies in G. Then existence of
G-structure is equivalent to existence of a Γ-atlas (an atlas on M with transition functions in Γ).

We can repeat the construction of deformations of complex structure.
We introduce the sheaf Xa of infinitesimal automorphisms of s. Then the vector fields

(5) Vβα =
d

dt
|t=0ϕ

−1
β ϕβα(t)ϕα,

give us a cocycle in Č1(M ; Xa.
If the ϕβα(t) correspond to an unessential deformation, then Vβα = Wβ −Wα, where Wα ∈ Xa(Uα),

so the cocycle is a coboundary. Thus

(6) Dess = Ȟ1(M ; Xa).

Example 2. If s is foliation, then the transition functions have the form:

(7) x̄i = ϕi(xj), x̄α = ϕα(xj, xβ)

and the sheaf of infinitesimal isometries of a foliation F consists of so-called basic vector fields of F :

(8) V i(xj)∂i + V α(xj, xβ)∂α

Second approach A section s : M → PG can be represented by a covering Uα such that on each
Uα there is given a local frame eα and eα = eβgβα, where gβα ∈ G. If s is an integrable G-structure,
then the frames eα are natural frames of charts on M .

The vector bundle s∗(V PG) is isomorphic to FG = T 1
1 (M)/EG, where EG are linear operators

whose matrices with respect to eα lie in g.
It will be convenient to see it in the following way. Let ∂i be the frame determining the section s,

and ei(t) = Aj
i (t)∂j be the frame which determines the deformation. Then d

dt
|t=0ei = d

dt
|t=0A

j
i∂j, so

we have linear operators V j
i = d

dt
|t=0A

j
i . However, ēi(t) = gm

i (t)Aj
m(t)∂j determine exactly the same

deformation, and if we take the derivative we get that V̄ j
i = V j

i + W j
i , where W j

i is in EG.
Now, if we take deformation, consisting of integrable structures, then [ei(t), ej(t)] = 0, from where

we get that ∂[iV
k
j] = 0 (of course, this equality is not invariant). However, if we take into account that

we are working with classes and use the torsion free connection ∇ such that ∇s = 0, or equivalently,
the connection form takes values in g, then we arrive at the result that the deformation space is

(9) D = ker(D :
Ω1M ⊗ TM

Ω0M ⊗ EG

→
Ω2M ⊗ TM

Alt(Ω1M ⊗ EG)

Example 3. For a foliation F we get that D = {V i
α : TF → TM/TF|∂[βV k

α] = 0}.

Now if st = f ∗

t (s), where ft is a flow of a vector field X, is unessential deformation, then the
vertical vector field d

dt
|t=0 can be written in terms of T 1

1 /EG as [∂iX
j], so

(10) Dess = ker(D :
Ω1M ⊗ TM

Ω0M ⊗ EG

→
Ω2M ⊗ TM

Alt(Ω1M ⊗ EG)
)/im(D : TM →

Ω1M ⊗ TM

Ω0M ⊗ EG

)

Example 4. For a foliation F we get that Dess = {V i
α : TF → TM/TF|∂[βV k

α] = 0}/{∂αX i}.

Relation between these approaches.
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3. P -complex for the Lie derivative

For an involutive differential operator Spencer constructed a differential complex (Spencer, Pom-
maret).

Theorem 1. The P -complex of the Lie derivative is isomorphic to the complex (Cq(P ), d), where

Cq(P ) =
Ωq(M) ⊗ TM

Alt(Ωq−1(M) ⊗ Eg)
,

and the differential d : Cq(P ) → Cq+1(P ) is induced by the differential operator D = Alt ◦ ∇, where
Alt is the alternation and ∇ is the covariant derivative of a torsion-free connection adapted to Q
(i. e. (Dω)j

i1...iq+1
= ∇[i1ω

j

i2...iq+1] with respect to local coordinates adapted to Q).

Because, the kernel of the Lie derivative is exactly the sheaf Xa of infinitesimal automorphisms of
the G-structure s, we get a resolution for the Xa.

If this resolution is fine (the Poincaré Lemma holds true), then Ȟ1(M ; Xa) ∼= H1(C∗, d).
I do not know the general proof of the fact that this resolution is fine for arbitrary integrable

G-structure, and possibly this is not true. However, for all the ”classical” structures this resolution
gives the corresponding ”classical cohomology theory”, and is fine.

Example 5. Let F be a foliation structure on a smooth manifold M , and let ∆ be the corresponding
integrable distribution. Then Eg = {A ∈ T 1

1(M) | A(∆) ⊂ ∆}. Therefore Cp = Ωp(∆) ⊗ (TM/∆).
If (xi, xα) are adapted local coordinates, i.e., if ∆ is given by the equations dxi = 0, then d can be
written locally as (dω)α1...

i
αq+1

= ∂[α1
ωα2...

j

αq+1]. Thus we arrive at Vaisman’s foliated cohomology.


