ABSTRACT OF THE TALK "DEFORMATION OF G-STRUCTURES"

M. MALAKHALTSEV

REFERENCES

Kodaira K., Complex manifolds and deformation of complex structures, 1981.
Pommaret, J.F. Systems of partial differential equations and Lie pseudogroups, Math. and Appl., 14 (1978).

1. G-STRUCTURES

Let G be a subgroup in $G L(n)$. A G-structure on a manifold M is a principal G-subbundle $L_{G}(M) \rightarrow M$ of the linear frame bundle $L(M)$. Each G-structure is defined by a section $s: M \rightarrow$ $P_{G}=L(M) / G$.

A G-structure on a manifold M is mathcalled integrable if, for each point $p \in M$, there exists a chart on $U \ni p$ whose natural frame is a section of $L_{G}(M)$.

Example 1. Let

$$
G=\left(\begin{array}{cc}
A & B \tag{1}\\
0 & C
\end{array}\right)
$$

where A is $k \times k$-matrix, B is $k \times(n-k)$-matrix, and C is $(n-k) \times(n-k)$-matrix.
Then a G-structure $L_{G}(M) \rightarrow M$ is a k-dimensional distribution Δ on M. The corresponding section $s: M \rightarrow P_{G}=L(M) / G$ is a section of the Grassmann bundle $G_{k}(M)$ of k-dimensional subspaces in $T M$.

If this G-structure is integrable, then the distribution Δ is also integrable, hence determines a foliation.

2. Deformations of integrable G-Structures

2.1. Deformation of G-structures. A deformation of $a G$-structure s is a one-parametric family of sections $s_{t}: M \rightarrow L(M) / G$ such that $s_{0}=s$. A deformation is mathcalled inessential if $s_{t}=f_{t}^{*}(s)$ for a one-parametric family f_{t} of diffeomorphisms of M.

An infinitesimal deformation of a section $s: M \rightarrow P_{G}$ is a vertimathcal vector field $V=\left.\frac{d}{d t}\right|_{t=0} s_{t}$ along $s(M)$, or a section of the bundle $s^{*} V\left(P_{G}\right)$. That is

$$
\begin{equation*}
\mathcal{D}(s)=\Gamma\left(M ; s^{*} V\left(P_{G}\right)\right) \tag{2}
\end{equation*}
$$

An inessential infinitesimal deformation of a section $s: M \rightarrow P_{G}$ is a vertimathcal vector field $V=\left.\frac{d}{d t}\right|_{t=0} f_{t}^{*}\left(s_{0}\right)$ along $s(M)$. One can prove that the space of inessential infinitesimal deformations is

$$
\begin{equation*}
\mathcal{D}_{0}=\left\{L_{X} s \mid X \in \mathfrak{X}(M)\right\} \tag{3}
\end{equation*}
$$

Hence the space of essential deformations of s is

$$
\begin{equation*}
\mathcal{D}_{e s s}=\frac{\mathcal{D}(s)}{\mathcal{D}_{0}(s)}=\frac{\Gamma\left(M ; s^{*} V\left(P_{G}\right)\right)}{\left\{L_{X} s \mid X \in \mathfrak{X}(M)\right\}} \tag{4}
\end{equation*}
$$

Remark 1. This can be done for sections of natural bundle.
2.2. Deformations of integrable structures. A deformation of an integrable G-structure s is a one-parametric family of sections $s_{t}: M \rightarrow L(M) / G$ such that each s_{t} is integrable and $s_{0}=s$.

An infinitesimal deformation of a section $s: M \rightarrow P_{G}$ is a vertimathcal vector field $V=\left.\frac{d}{d t}\right|_{t=0} s_{t}$ along $s(M)$, or a section of the bundle $s^{*} V\left(P_{G}\right)$ but now the sections s_{t} are integrable G-structures.

First approach. Any integrable G-structure s on M determines a pseudogroup structure on M.
Γ is a pseudogroup of transformations of $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that $D f$ lies in G. Then existence of G-structure is equivalent to existence of a Γ-atlas (an atlas on M with transition functions in Γ).

We can repeat the construction of deformations of complex structure.
We introduce the sheaf \mathfrak{X}_{a} of infinitesimal automorphisms of s. Then the vector fields

$$
\begin{equation*}
V_{\beta \alpha}=\left.\frac{d}{d t}\right|_{t=0} \varphi_{\beta}^{-1} \varphi_{\beta \alpha}(t) \varphi_{\alpha} \tag{5}
\end{equation*}
$$

give us a cocycle in $\check{C}^{1}\left(M ; \mathfrak{X}_{a}\right.$.
If the $\varphi_{\beta \alpha}(t)$ correspond to an unessential deformation, then $V_{\beta \alpha}=W_{\beta}-W_{\alpha}$, where $W_{\alpha} \in \mathfrak{X}_{a}\left(U_{\alpha}\right)$, so the cocycle is a coboundary. Thus

$$
\begin{equation*}
\mathcal{D}_{\text {ess }}=\check{H}^{1}\left(M ; \mathfrak{X}_{a}\right) \tag{6}
\end{equation*}
$$

Example 2. If s is foliation, then the transition functions have the form:

$$
\begin{equation*}
\bar{x}^{i}=\varphi^{i}\left(x^{j}\right), \quad \bar{x}^{\alpha}=\varphi^{\alpha}\left(x^{j}, x^{\beta}\right) \tag{7}
\end{equation*}
$$

and the sheaf of infinitesimal isometries of a foliation \mathcal{F} consists of so-called basic vector fields of \mathcal{F} :

$$
\begin{equation*}
V^{i}\left(x^{j}\right) \partial_{i}+V^{\alpha}\left(x^{j}, x^{\beta}\right) \partial_{\alpha} \tag{8}
\end{equation*}
$$

Second approach A section $s: M \rightarrow P_{G}$ can be represented by a covering U_{α} such that on each U_{α} there is given a local frame e_{α} and $e_{\alpha}=e_{\beta} g_{\beta \alpha}$, where $g_{\beta \alpha} \in G$. If s is an integrable G-structure, then the frames e_{α} are natural frames of charts on M.

The vector bundle $s^{*}\left(V P_{G}\right)$ is isomorphic to $F_{G}=T_{1}^{1}(M) / E_{G}$, where E_{G} are linear operators whose matrices with respect to e_{α} lie in \mathfrak{g}.

It will be convenient to see it in the following way. Let ∂_{i} be the frame determining the section s, and $e_{i}(t)=A_{i}^{j}(t) \partial_{j}$ be the frame which determines the deformation. Then $\left.\frac{d}{d t}\right|_{t=0} e_{i}=\left.\frac{d}{d t}\right|_{t=0} A_{i}^{j} \partial_{j}$, so we have linear operators $V_{i}^{j}=\left.\frac{d}{d t}\right|_{t=0} A_{i}^{j}$. However, $\bar{e}_{i}(t)=g_{i}^{m}(t) A_{m}^{j}(t) \partial_{j}$ determine exactly the same deformation, and if we take the derivative we get that $\bar{V}_{i}^{j}=V_{i}^{j}+W_{i}^{j}$, where W_{i}^{j} is in E_{G}.

Now, if we take deformation, consisting of integrable structures, then $\left[e_{i}(t), e_{j}(t)\right]=0$, from where we get that $\partial_{[i} V_{j]}^{k}=0$ (of course, this equality is not invariant). However, if we take into account that we are working with classes and use the torsion free connection ∇ such that $\nabla s=0$, or equivalently, the connection form takes values in \mathfrak{g}, then we arrive at the result that the deformation space is

$$
\begin{equation*}
\mathcal{D}=\operatorname{ker}\left(D: \frac{\Omega^{1} M \otimes T M}{\Omega^{0} M \otimes E_{G}} \rightarrow \frac{\Omega^{2} M \otimes T M}{\operatorname{Alt}\left(\Omega^{1} M \otimes E_{G}\right)}\right. \tag{9}
\end{equation*}
$$

Example 3. For a foliation \mathcal{F} we get that $\mathcal{D}=\left\{V_{\alpha}^{i}: T \mathcal{F} \rightarrow T M / T \mathcal{F} \mid \partial_{[\beta} V_{\alpha]}^{k}=0\right\}$.
Now if $s_{t}=f_{t}^{*}(s)$, where f_{t} is a flow of a vector field X, is unessential deformation, then the vertical vector field $\left.\frac{d}{d t}\right|_{t=0}$ can be written in terms of T_{1}^{1} / E_{G} as $\left[\partial_{i} X^{j}\right]$, so

$$
\begin{equation*}
\mathcal{D}_{\text {ess }}=\operatorname{ker}\left(D: \frac{\Omega^{1} M \otimes T M}{\Omega^{0} M \otimes E_{G}} \rightarrow \frac{\Omega^{2} M \otimes T M}{\operatorname{Alt}\left(\Omega^{1} M \otimes E_{G}\right)}\right) / \operatorname{im}\left(D: T M \rightarrow \frac{\Omega^{1} M \otimes T M}{\Omega^{0} M \otimes E_{G}}\right) \tag{10}
\end{equation*}
$$

Example 4. For a foliation \mathcal{F} we get that $\mathcal{D}_{\text {ess }}=\left\{V_{\alpha}^{i}: T \mathcal{F} \rightarrow T M / T \mathcal{F} \mid \partial_{[\beta} V_{\alpha]}^{k}=0\right\} /\left\{\partial_{\alpha} X^{i}\right\}$.

Relation between these approaches.

3. P-complex for the Lie derivative

For an involutive differential operator Spencer constructed a differential complex (Spencer, Pommaret).

Theorem 1. The P-complex of the Lie derivative is isomorphic to the complex $\left(C^{q}(P), d\right)$, where

$$
C^{q}(P)=\frac{\Omega^{q}(M) \otimes T M}{\operatorname{Alt}\left(\Omega^{q-1}(M) \otimes E_{\mathfrak{g}}\right)}
$$

and the differential $d: C^{q}(P) \rightarrow C^{q+1}(P)$ is induced by the differential operator $D=$ Alt $\circ \nabla$, where Alt is the alternation and ∇ is the covariant derivative of a torsion-free connection adapted to Q (i. e. $(D \omega)_{i_{1} \ldots i_{q+1}}^{j}=\nabla_{\left[i_{1}\right.} \omega_{\left.i_{2} \ldots i_{q+1}\right]}^{j}$ with respect to local coordinates adapted to Q).

Because, the kernel of the Lie derivative is exactly the sheaf \mathfrak{X}_{a} of infinitesimal automorphisms of the G-structure s, we get a resolution for the \mathfrak{X}_{a}.

If this resolution is fine (the Poincaré Lemma holds true), then $\check{H}^{1}\left(M ; \mathfrak{X}_{a}\right) \cong H^{1}\left(C^{*}, d\right)$.
I do not know the general proof of the fact that this resolution is fine for arbitrary integrable G-structure, and possibly this is not true. However, for all the "classical" structures this resolution gives the corresponding "classical cohomology theory", and is fine.

Example 5. Let \mathcal{F} be a foliation structure on a smooth manifold M, and let Δ be the corresponding integrable distribution. Then $E_{\mathfrak{g}}=\left\{A \in T_{1}^{1}(M) \mid A(\Delta) \subset \Delta\right\}$. Therefore $C^{p}=\Omega^{p}(\Delta) \otimes(T M / \Delta)$. If $\left(x^{i}, x^{\alpha}\right)$ are adapted local coordinates, i.e., if Δ is given by the equations $d x^{i}=0$, then d can be written locally as $(d \omega)_{\alpha_{1} \ldots \alpha_{q+1}}^{i}=\partial_{\left[\alpha_{1}\right.} \omega_{\left.\alpha_{2} \ldots \alpha_{q+1}\right]}$. Thus we arrive at Vaisman's foliated cohomology.

