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1. G-STRUCTURES

Let G be a subgroup in GL(n). A G-structure on a manifold M is a principal G-subbundle
Lo(M) — M of the linear frame bundle L(M). Each G-structure is defined by a section s : M —
Pg=L(M)/G.

A G-structure on a manifold M is mathcalled integrable if, for each point p € M, there exists a
chart on U > p whose natural frame is a section of Lg(M).

Ezxample 1. Let
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where A is k X k-matrix, B is k X (n — k)-matrix, and C'is (n — k) X (n — k)-matrix.

Then a G-structure Lg(M) — M is a k-dimensional distribution A on M. The corresponding
section s : M — Pg = L(M)/G is a section of the Grassmann bundle Gy (M) of k-dimensional
subspaces in T'M.

If this G-structure is integrable, then the distribution A is also integrable, hence determines a
foliation.

2. DEFORMATIONS OF INTEGRABLE (G-STRUCTURES

2.1. Deformation of G-structures. A deformation of a G-structure s is a one-parametric family
of sections s; : M — L(M)/G such that s = s. A deformation is mathcalled inessential if s, = f;(s)
for a one-parametric family f; of diffeomorphisms of M.

An infinitesimal deformation of a section s : M — Pg is a vertimathcal vector field V = %\tzost
along s(M), or a section of the bundle s*V(Pg). That is

(2) D(s) =T'(M;s"V(Fg))

An inessential infinitesimal deformation of a section s : M — Pg is a vertimathcal vector field
V = 41, _of;(s0) along s(M). One can prove that the space of inessential infinitesimal deformations
is
(3) Do ={Lxs| X €X(M)}.

Hence the space of essential deformations of s is
D(s) I'(M;s*V(Pg))
Do(s) {Lxs|X € X(M)}

Remark 1. This can be done for sections of natural bundle.
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(4) Dess =
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2.2. Deformations of integrable structures. A deformation of an integrable G-structure s is a
one-parametric family of sections s, : M — L(M)/G such that each s; is integrable and sy = s.
An infinitesimal deformation of a section s : M — Pg is a vertimathcal vector field V = %|t:05t
along s(M), or a section of the bundle s*V (Pg) but now the sections s; are integrable G-structures.
First approach. Any integrable G-structure s on M determines a pseudogroup structure on M.
I' is a pseudogroup of transformations of f : R®™ — R such that Df lies in G. Then existence of
G-structure is equivalent to existence of a I'-atlas (an atlas on M with transition functions in I').
We can repeat the construction of deformations of complex structure.
We introduce the sheaf X, of infinitesimal automorphisms of s. Then the vector fields

d _
(5) Voo = %|t=090ﬁ1905a<t>90a7

give us a cocycle in C(M; %,.
If the @pa(t) correspond to an unessential deformation, then Vi, = W3 —W,, where W, € X,(U,),
so the cocycle is a coboundary. Thus

(6) Dess = H'(M; X,).

Ezxample 2. If s is foliation, then the transition functions have the form:

(7) 7' =y'(al), 3= ¢(a,2”)

and the sheaf of infinitesimal isometries of a foliation F consists of so-called basic vector fields of F:
(8) Vi) o; + V(27 2°)0,

Second approach A section s : M — Pg can be represented by a covering U, such that on each
U, there is given a local frame e, and e, = eggg,, where gz, € G. If s is an integrable G-structure,
then the frames e, are natural frames of charts on M.

The vector bundle s*(V Pg) is isomorphic to Fg = T!(M)/Eg, where Eg are linear operators
whose matrices with respect to e, lie in g.

It will be convenient to see it in the following way. Let 0; be the frame determining the section s,
and e;(t) = Al(t)9; be the frame which determines the deformation. Then Llicoe; = %h:oAg J;, so
we have linear operators V7 = %|t:gAf. However, ¢;(t) = g™ (t)AZ,(t)0; determine exactly the same
deformation, and if we take the derivative we get that V7 = V/ + W/, where W/ is in Eg.

Now, if we take deformation, consisting of integrable structures, then [e;(¢), e;(¢)] = 0, from where
we get that 8[1‘/}']“ = 0 (of course, this equality is not invariant). However, if we take into account that
we are working with classes and use the torsion free connection V such that Vs = 0, or equivalently,
the connection form takes values in g, then we arrive at the result that the deformation space is

OMeTM — QPMoTM
D = ker(D :
(9) (D e Be  AQM @ Eg)

Example 3. For a foliation F we get that D = {V!: TF — TM/T.7-"|8[@VO?] =0}.

Now if s; = f/(s), where f; is a flow of a vector field X, is unessential deformation, then the
vertical vector field £|,—o can be written in terms of T} /Eg as [9;X7], so

QM TM M TM QM oTM
10 Doy = ker(D im(D: TM — 22
(10) D N e By AN @ Ec) )im{ T OOM ® Ee

)

Ezample 4. For a foliation F we get that Dess = {V,) : TF — TM/TF|0sV} = 0}/{0.X"}.

Relation between these approaches.
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3. P-COMPLEX FOR THE LIE DERIVATIVE

For an involutive differential operator Spencer constructed a differential complex (Spencer, Pom-
maret).

Theorem 1. The P-complex of the Lie derivative is isomorphic to the complex (C(P),d), where
QUUM)®TM

T AQ (M) ® Ey)’

and the differential d: CY(P) — C*Y(P) is induced by the differential operator D = Alto V, where

Alt is the alternation and V is the covariant derivative of a torsion-free connection adapted to @

(i.e. (Dw)’ = Vw) with respect to local coordinates adapted to Q).

i1.eig1 ig.eige1]
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Because, the kernel of the Lie derivative is exactly the sheaf X, of infinitesimal automorphisms of
the G-structure s, we get a resolution for the X,.

If this resolution is fine (the Poincaré Lemma holds true), then H'(M;X,) = H'(C*,d).

I do not know the general proof of the fact that this resolution is fine for arbitrary integrable
G-structure, and possibly this is not true. However, for all the ”classical” structures this resolution
gives the corresponding ”classical cohomology theory”, and is fine.

Example 5. Let F be a foliation structure on a smooth manifold M, and let A be the corresponding
integrable distribution. Then E, = {A € T}(M) | A(A) C A}. Therefore C? = QF(A) @ (TM/A).
If (z', %) are adapted local coordinates, Le., if A is given by the equations dx' = 0, then d can be

written locally as (dw) ‘ = 8[a1wa2mi . Thus we arrive at Vaisman’s foliated cohomology.
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