ABSTRACT OF THE TALK "DEFORMATION OF G-STRUCTURES"

M. MALAKHALTSEV

References

Kodaira K., Complex manifolds and deformation of complex structures, 1981.
Pommaret, J.F. Systems of partial differential equations and Lie pseudogroups, Math. and Appl., 14 (1978).

1. G-STRUCTURES

Let G be a subgroup in GL(n). A G-structure on a manifold M is a principal G-subbundle $L_G(M) \to M$ of the linear frame bundle L(M). Each G-structure is defined by a section $s: M \to P_G = L(M)/G$.

A G-structure on a manifold M is mathcalled *integrable* if, for each point $p \in M$, there exists a chart on $U \ni p$ whose natural frame is a section of $L_G(M)$.

Example 1. Let

(1)
$$G = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix},$$

where A is $k \times k$ -matrix, B is $k \times (n-k)$ -matrix, and C is $(n-k) \times (n-k)$ -matrix.

Then a G-structure $L_G(M) \to M$ is a k-dimensional distribution Δ on M. The corresponding section $s: M \to P_G = L(M)/G$ is a section of the Grassmann bundle $G_k(M)$ of k-dimensional subspaces in TM.

If this G-structure is integrable, then the distribution Δ is also integrable, hence determines a foliation.

2. Deformations of integrable G-structures

2.1. Deformation of G-structures. A deformation of a G-structure s is a one-parametric family of sections $s_t : M \to L(M)/G$ such that $s_0 = s$. A deformation is mathcalled *inessential* if $s_t = f_t^*(s)$ for a one-parametric family f_t of diffeomorphisms of M.

An infinitesimal deformation of a section $s: M \to P_G$ is a vertimatical vector field $V = \frac{d}{dt}|_{t=0}s_t$ along s(M), or a section of the bundle $s^*V(P_G)$. That is

(2)
$$\mathcal{D}(s) = \Gamma(M; s^* V(P_G))$$

An inessential infinitesimal deformation of a section $s: M \to P_G$ is a vertimathcal vector field $V = \frac{d}{dt}|_{t=0} f_t^*(s_0)$ along s(M). One can prove that the space of inessential infinitesimal deformations is

(3)
$$\mathcal{D}_0 = \{ L_X s \mid X \in \mathfrak{X}(M) \}$$

Hence the space of essential deformations of s is

(4)
$$\mathcal{D}_{ess} = \frac{\mathcal{D}(s)}{\mathcal{D}_0(s)} = \frac{\Gamma(M; s^*V(P_G))}{\{L_X s \mid X \in \mathfrak{X}(M)\}}.$$

Remark 1. This can be done for sections of natural bundle.

2.2. Deformations of integrable structures. A deformation of an integrable G-structure s is a one-parametric family of sections $s_t : M \to L(M)/G$ such that each s_t is integrable and $s_0 = s$.

An infinitesimal deformation of a section $s: M \to P_G$ is a vertimatical vector field $V = \frac{d}{dt}|_{t=0}s_t$ along s(M), or a section of the bundle $s^*V(P_G)$ but now the sections s_t are integrable G-structures.

First approach. Any integrable G-structure s on M determines a pseudogroup structure on M.

 Γ is a pseudogroup of transformations of $f : \mathbb{R}^n \to \mathbb{R}$ such that Df lies in G. Then existence of G-structure is equivalent to existence of a Γ -atlas (an atlas on M with transition functions in Γ).

We can repeat the construction of deformations of complex structure.

We introduce the sheaf \mathfrak{X}_a of infinitesimal automorphisms of s. Then the vector fields

(5)
$$V_{\beta\alpha} = \frac{d}{dt}|_{t=0}\varphi_{\beta}^{-1}\varphi_{\beta\alpha}(t)\varphi_{\alpha},$$

give us a cocycle in $\check{C}^1(M; \mathfrak{X}_a)$.

If the $\varphi_{\beta\alpha}(t)$ correspond to an unessential deformation, then $V_{\beta\alpha} = W_{\beta} - W_{\alpha}$, where $W_{\alpha} \in \mathfrak{X}_a(U_{\alpha})$, so the cocycle is a coboundary. Thus

(6)
$$\mathcal{D}_{ess} = \dot{H}^1(M; \mathfrak{X}_a)$$

Example 2. If s is foliation, then the transition functions have the form:

(7)
$$\bar{x}^i = \varphi^i(x^j), \quad \bar{x}^\alpha = \varphi^\alpha(x^j, x^\beta)$$

and the sheaf of infinitesimal isometries of a foliation \mathcal{F} consists of so-called basic vector fields of \mathcal{F} :

(8)
$$V^{i}(x^{j})\partial_{i} + V^{\alpha}(x^{j}, x^{\beta})\partial_{\alpha}$$

Second approach A section $s: M \to P_G$ can be represented by a covering U_{α} such that on each U_{α} there is given a local frame e_{α} and $e_{\alpha} = e_{\beta}g_{\beta\alpha}$, where $g_{\beta\alpha} \in G$. If s is an integrable G-structure, then the frames e_{α} are natural frames of charts on M.

The vector bundle $s^*(VP_G)$ is isomorphic to $F_G = T_1^1(M)/E_G$, where E_G are linear operators whose matrices with respect to e_{α} lie in \mathfrak{g} .

It will be convenient to see it in the following way. Let ∂_i be the frame determining the section s, and $e_i(t) = A_i^j(t)\partial_j$ be the frame which determines the deformation. Then $\frac{d}{dt}|_{t=0}e_i = \frac{d}{dt}|_{t=0}A_i^j\partial_j$, so we have linear operators $V_i^j = \frac{d}{dt}|_{t=0}A_i^j$. However, $\bar{e}_i(t) = g_i^m(t)A_m^j(t)\partial_j$ determine exactly the same deformation, and if we take the derivative we get that $\bar{V}_i^j = V_i^j + W_i^j$, where W_i^j is in E_G .

Now, if we take deformation, consisting of integrable structures, then $[e_i(t), e_j(t)] = 0$, from where we get that $\partial_{[i}V_{j]}^k = 0$ (of course, this equality is not invariant). However, if we take into account that we are working with classes and use the torsion free connection ∇ such that $\nabla s = 0$, or equivalently, the connection form takes values in \mathfrak{g} , then we arrive at the result that the deformation space is

(9)
$$\mathcal{D} = \ker(D: \frac{\Omega^1 M \otimes TM}{\Omega^0 M \otimes E_G} \to \frac{\Omega^2 M \otimes TM}{Alt(\Omega^1 M \otimes E_G)}$$

Example 3. For a foliation \mathcal{F} we get that $\mathcal{D} = \{V_{\alpha}^{i} : T\mathcal{F} \to TM/T\mathcal{F} | \partial_{[\beta}V_{\alpha]}^{k} = 0\}.$

Now if $s_t = f_t^*(s)$, where f_t is a flow of a vector field X, is unessential deformation, then the vertical vector field $\frac{d}{dt}|_{t=0}$ can be written in terms of T_1^1/E_G as $[\partial_i X^j]$, so

(10)
$$\mathcal{D}_{ess} = \ker(D: \frac{\Omega^1 M \otimes TM}{\Omega^0 M \otimes E_G} \to \frac{\Omega^2 M \otimes TM}{Alt(\Omega^1 M \otimes E_G)})/im(D: TM \to \frac{\Omega^1 M \otimes TM}{\Omega^0 M \otimes E_G})$$

Example 4. For a foliation \mathcal{F} we get that $\mathcal{D}_{ess} = \{V^i_{\alpha} : T\mathcal{F} \to TM/T\mathcal{F} | \partial_{[\beta} V^k_{\alpha]} = 0\}/\{\partial_{\alpha} X^i\}.$

Relation between these approaches.

3. *P*-complex for the Lie derivative

For an involutive differential operator Spencer constructed a differential complex (Spencer, Pommaret).

Theorem 1. The P-complex of the Lie derivative is isomorphic to the complex $(C^q(P), d)$, where

$$C^{q}(P) = \frac{\Omega^{q}(M) \otimes TM}{Alt(\Omega^{q-1}(M) \otimes E_{\mathfrak{a}})},$$

and the differential d: $C^q(P) \to C^{q+1}(P)$ is induced by the differential operator $D = Alt \circ \nabla$, where Alt is the alternation and ∇ is the covariant derivative of a torsion-free connection adapted to Q (i. e. $(D\omega)_{i_1...i_{q+1}}^j = \nabla_{[i_1}\omega_{i_2...i_{q+1}}^j]$ with respect to local coordinates adapted to Q).

Because, the kernel of the Lie derivative is exactly the sheaf \mathfrak{X}_a of infinitesimal automorphisms of the *G*-structure *s*, we get a resolution for the \mathfrak{X}_a .

If this resolution is fine (the Poincaré Lemma holds true), then $\check{H}^1(M; \mathfrak{X}_a) \cong H^1(C^*, d)$.

I do not know the general proof of the fact that this resolution is fine for arbitrary integrable G-structure, and possibly this is not true. However, for all the "classical" structures this resolution gives the corresponding "classical cohomology theory", and is fine.

Example 5. Let \mathcal{F} be a foliation structure on a smooth manifold M, and let Δ be the corresponding integrable distribution. Then $E_{\mathfrak{g}} = \{A \in T_1^1(M) \mid A(\Delta) \subset \Delta\}$. Therefore $C^p = \Omega^p(\Delta) \otimes (TM/\Delta)$. If (x^i, x^{α}) are adapted local coordinates, i.e., if Δ is given by the equations $dx^i = 0$, then d can be written locally as $(d\omega)_{\alpha_1 \dots \alpha_{q+1}}^i = \partial_{[\alpha_1} \omega_{\alpha_2 \dots \alpha_{q+1}]}^j$. Thus we arrive at Vaisman's foliated cohomology.