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Abstract. Geometric quantization gives a representation of the algebra of classical observ-
ables of a dynamical system, described through a symplectic manifold, in the Lie algebra of
operators acting on a Hilbert space. We review and compare the geometrical and topological
key ingredients of two approaches to this type of quantization, the original Kostant-Souriau-
Kirillov prequantization procedure and the more recent metaplectic quantization introduced
by K. Habermann, which uses some properties of the symplectic Dirac operator. The com-
parison shows that, besides the difference between the two constructions, they fit into the
same framework and give rise to standard features of the quantization problem.

1. Introduction

Quantizing geometrically a classical physical system means to represent its classical Pois-
son algebra of observables in a Lie algebra of hermitian operators acting on a Hilbert space
built from the geometrical (and topological) features of the system. Throughout this paper
we will consider two approaches to this problem, the original prequantization program of
B. Kostant, J-M. Souriau, A. Kirillov and others, see e.g. [13][10][8][14]), and the more
recent metaplectic quantization introduced by K. Habermann in [7], where the construction
of symplectic Dirac operators is used to give an (infinite-rank) alternative to the above men-
tioned geometric quantization procedure of Konstant and Souriau. Indeed, in [7] an attempt
is done to replace the usual prequantization plus polarization plus half-density procedure
by one involving no longer a line bundle with connection, but the symplectic spinor bundle
defined in [9]. In this paper we recall these procedures and we compare their main features
showing that, even if different, the later contains capital features of the former, and that
together they give a complete geometric quantization program.

The paper is organized as follows. In the next section we give a definition of geometric quan-
tization, and we recall how the geometry and topology of a symplectic manifold describing
a classical physical system determine such geometric quantization. Section 3 is devoted to
review the geometrical constructions giving rise to the approaches by Kostant-Souriau and
Habermann, and a comparison of them. A natural question arises about the behavior of
this geometric quantization procedure with respect to geometrical and topological aspects
of the symplectic Dirac operators which inspired the construction of [7], this question will
be addressed in a forthcoming paper.
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2. Geometric Quantization

A classical dynamical system is described by a symplectic manifold (which we will as-
sume to be compact), and it is in the symplectic form where all the dynamical information
is contained (physical trajectories are the integral curves of vector fields along which the
symplectic form is constant). The geometric quantization program tries to build, from the
geometric objects defining the classical dynamics of the system, a representation of the clas-
sical Poisson algebra of observables into a quantum algebra of operators acting on a Hilbert
space of sections of a vector fibration over the symplectic manifold.

2.1. Symplectic Geometry and Classical Dynamics. Let (M,ω) be a compact sym-
plectic manifold, i.e. ω is a closed symplectic 2-form on M such that the application

iω : TmM → T ∗mM

X 7→ iω(X) = ω(X, ·)

is a linear isomorphism, for each m ∈ M , between the spaces of tangent and cotangent
vectors in m. By Darboux theorem, around any point of M there exists an open set with
local coordinates {q1, ..., qn, p1, ..., pn} such that on it

ω =
n∑
i=1

dpi ∧ dqi,

where dimM = 2n. Very often in mathematical physics dynamical systems are described in
configuration spaces modelled by manifolds Q and phase spaces modelled by their cotangent
bundles T ∗Q. Given a physical observable, i.e. a function f ∈ C∞(T ∗Q,R), we define the
Hamiltonian Vector Field associated to f , denoted Xf , by the equality

iω(Xf ) = −df,

where we use the isomorphism iω. In local Darboux coordinates

Xf =
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi
.

For any two functions f, g ∈ C∞(T ∗Q,R), the Poisson Bracket of f with g is defined by

{f, g} = Xf (g) = −Xg(f) = ω(Xf , Xg) (1)

which gives, in local coordinates,

{f, g} = Xf (g) =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi
.

It follows that this operation gives the structure of Lie algebra to C∞(M = T ∗Q,R) and,
moreover [1],

[Xf , Xg] = X{f,g}. (2)
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2.2. Quantization. Let (M,ω) be a symplectic manifold and consider the Lie Poisson al-
gebra of classical observables C∞(M,R). A quantization of this algebra means is a represen-
tation of it in the Lie algebra of quantum observables (operators) acting on a Hilbert space
H (with the Lie bracket), verifying the Dirac conditions:

1. The application f 7→ f̂ is linear

2. If f is constant then f̂ must be the multiplication (by the constant f) operator
3. If {f, g} = h then

[f̂ , ĝ] = −i~ĥ. (3)

We say that we quantize geometrically the classical system described by (M,ω) if we find a
map

C∞(M)× Γ(E) → Γ(E)

(f, ψ) 7→ f̂ψ

satisfying the last three conditions, where Γ(E) denotes the space of sections of a Hermitian
vector bundle E →M , modelling wave functions.

There are two families of vector bundles considered in the geometric quantization literature:
line bundles —i.e. rank one complex vector bundles (e.g. in the classical Kostant-Souriau
geometric prequantization [8] in which E is the complex line bundle L → M on the phase
space defined when the symplectic form is integral, also in the metaplectic quantization of
Robinson-Rawnsley [12] in which the complex line bundle is defined by a character of the
metaplectic representation, etc.), and infinite-rank Hilbert bundles —i.e. bundles having as
fibre an infinite-dimensional Hilbert space (e.g. in the metaplectic quantization setting of
Habermann [7], in which the bundle E is the infinite-rank bundle of symplectic spinors). In
both cases the representation is found through the geometry of such bundles induced by the
symplectic structure on the manifold, i.e. through connections defined by the symplectic
form ω.

Given a covariant derivative
∇E : Γ(E ⊗ TM) → Γ(E)

on E, there is a natural geometric association f 7→ f̂ , originally due to Souriau and Konstant,
giving rise to a good quantization; namely,

C∞(M) → O(Γ(E))

f 7→ f̂ = f − i~∇E
Xf

,

where Xf denotes the hamiltonian vector field associated to f . Notice that the covariant
derivative should be non-trivial (i.e. non-flat) since it must carry part of the information
about the symplectic form ω (i.e. about the classical dynamics of the system). Indeed, since
X{f,g} = [Xf , Xg], an easy calculation shows that

[f̂ , ĝ] = −2i~{f, g} − ~2[∇E
Xf
,∇E

Xg
]

= −i~{̂f, g}+ i~ (i~R(Xf , Xg)− {f, g}) . (4)
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Thus, in order the third condition above (equality (3)) to be verified, natural constraints
appear on the curvature R of ∇E. In the next section we will review how this constraints
appear –from the geometry of the symplectic manifold– in two particular settings, the so-
called Kostant-Souriau prequantization and Habermann’s metaplectic quantization.

3. Two Approaches to Geometric Quantization

Let (M,ω) be a symplectic manifold representing the phase space of a physical system
(e.g. M = T ∗Q for some manifold Q –the configuration space, see [3]). In this section
we review the geometrical constructions giving rise to Kostant-Souriau and Habermann’s
geometric quantization, emphasizing remarkable features of some ingredients of the later,
and comparing their scope.

3.1. Kostant-Souriau Prequantization. The Kostant-Souriau prequantization, which is
the first step in their geometric quantization program, is based on the following observation
due to A. Weil.

Theorem 3.1. Let (M,ω) be a symplectic manifold, then there exists a complex line bundle

L
π→ M on this manifold and a connection ∇ on L with curvature ~−1ω if and only if the

class of (2π~)−1ω in H2(M,R) is in the image of H2(M,Z) under the inclusion in H2(M,R),
i.e. if any integral of ω on a oriented 2-surface in M is an integer multiple of 2π~.

Up to isomorphism, the possible choices of the prequantization bundle are parameterized
by the cohomology group H2(M,U(1)), see e.g. [8][14].

If the integrality condition is verified on the symplectic manifold correspondent to the clas-
sical description, and then exist a Hermitian line bundle L

π→ M , the Hilbert Space of
prequantization H(M,L) is the completion of the space formed by the square integrable
sections s : M → L, noted Γ(L), with the inner product

(s, s′) =

∫
M

〈s, s′〉 ε

where ε = 1
2π~dp1 ∧ · · · ∧ dpn ∧ dq1 ∧ . . . ∧ dqn is the element of volume of the manifold M .

In this setting, to each observable f we associate an Hermitian operator according to the
Konstant-Souriau representation

f̂ = f − i~∇Xf
,

where Xf denotes the Hamiltonian vector field generated by f . From equality (4), the
equality (3) follows only if the following identity for the curvature tensor of ∇ is verified

R(Xf , Xg) = [∇Xf
,∇Xg ]−∇X{f,g} = − i

~
{f, g}.

Nevertheless, this holds since when the integrality condition is satisfied we can chose the
curvature of ∇ to be proportional to the symplectic form, Ω∇ = ~−1ω.
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Example 3.1. If a classical system is modelled as a cotangent bundle with canonical sym-
plectic form (so that the corresponding line bundle is M×C), for the operators corresponding
to position qi and momentum pi the representation is given by

∧
f = f − i~Xf − (pidqi)(Xf ).

Then, since Xpi
= ∂

∂qi
and Xqi = − ∂

∂pi
,

∧
pi = −i~ ∂

∂qi
and

∧
qi = qi + i~

∂

∂pi
,

which fails to be in accordance with quantum mechanics (Scrhödinger’s version):

∧
pi= −i~ ∂

∂qi
and

∧
qi = qi

and illustrates the necessity of a correction by means of a polarization, see e.g. [14].

3.2. Habermann’s Metaplectic Quantization. The Segal-Shale-Weil representation of
the metaplectic group —the two-fold covering of the symplectic group— gives rise to a infi-
nite rank vector bundle, this is the symplectic spinor construction due to Konstant [9]. In [7],
a geometric quantization is defined on symplectic spinors using, within the Kostant-Souriau
recipe, a perturbation of the spinor derivative induced by a symplectic connection on M ; the
perturbation is given by a symplectic Clifford multiplication used by the Habermann in his
definition of symplectic Dirac operators (see [5]).

The SSW representation and Symplectic Spinors. Let (V, ω) be a 2m-dimensional
symplectic vector space, and let h(V ) denote its associated Heisenberg Lie algebra. Then
h(V ) ∼= R2m × R, and there is a natural representation of the group1 Mpc(V ) in the Hilbert
space L2(Rm) given as follows. By the Stone-von Neumann theorem there is a unique (up
to equivalence) irreducible unitary representation

% : h(V ) → U(L2(Rm)),

where U(Rm) denotes the group of unitary operators acting on the Hilbert space H =
L2(Rm), satisfying

%(0, t) = eitIdL2(Rm).

Since the symplectic group acts on Heisenberg algebra by

Sp(V )× h(V ) → h(V )

(g, (v, t)) 7→ (gv, t),

it induces new irreducible unitary representations %g of h(V ), for all g ∈ Sp(V ), such that
%g(0, t) = eitIdL2(Rm). Then, there exists a unique (up to a phase) unitary bijective operator
Ug : L2(Rm) → L2(Rm) such that % = Ug ◦ % ◦U−1

g , and the map g 7→ Ug defines a projective

unitary representation of the symplectic group in L2(Rm), which lifts uniquely to a unitary
representation

ρ : Mpc(V ) → U(H),

1Following [7] we shall work with the metaplectic-c group rather than with Mp(V ) itself.
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this is the called Segal-Shale-Weil representation of Mpc(V ). This representation stabilizes
the Schwartz space of rapidly decreasing smooth functions on Rm, denoted S(Rm), which
is used to model the symplectic spinor space in [9]. However, since it is required in the
quantization process to end up with an algebra of operators acting on a Hilbert space, later
on we will use the Hilbert space H = L2(Rm) to model our symplectic spinor space.

Let us now consider a 2m-dimensional compact connected symplectic manifold (M,ω). There
is a canonical principal Sp(2m)-bundle over M , namely the bundle of symplectic frames over
it. A metaplectic structure on M is a principal Mp(2m)-bundle over M together with an an
equivariant morphism (with respect to the double covering map) from it into the symplectic
frame bundle. There is a topological obstruction to the existence of metaplectic structures
on a symplectic manifold (similar to those relative to the existence of spin structures on
Riemannian manifolds, see e.g. [11]), but there is no topological constraint to the existence
of Mpc-structures on M . However, working with the former involves to fix a connection form
on the associated line bundle to the Mpc-structures, see [12].
The bundle of symplectic spinors is the one associated to the Mpc(2m)-bundle P over M
through the SSW representation:

S = P ×ρ L
2(Rm).

Symplectic Clifford Multiplication and Symplectic Dirac Operators. The sym-
plectic spinor bundle is the analogue of the Riemannian spinor bundle in the construction
of the Dirac operator. In the symplectic case, given a symplectic vector space (V, ω), the
roll of the complex Clifford algebra is played by the Weil algebra WC(V ), which is infinite-
dimensional and is represented in a infinite-dimensional space. Consider the space L2(Rm)
of square integrable smooth functions on Rm, there is an irreducible representation of the
Heisenberg algebra h(V ) on L2(Rm) —which is not very different in spirit to the usual (Rie-
mannian) Clifford case— and gives rise to the so-called symplectic Clifford multiplication.
This representation

c : h(V ) → EndC(L2(Rm))

a 7→ c(a) : L2(Rm) → L2(Rm),

comes from the following map from V into EndC(L2(Rm)). Let {q1, . . . , qm, p1, . . . , pm} be
a symplectic basis of V , i.e. a basis such that ω(pi, qj) = δji and ω |V ±= 0, where

V = V + ⊕ V −

and V ± are the m-dimensional Lagrangian subspaces of V generated by {q1, . . . , qm} and
{p1, . . . , pm}, respectively. Putting, for ψ ∈ L2(Rm),

c(pi)ψ = ∂ψ
∂xi

c(qj)ψ = xjψ (multiplication operator by xj),

where {x1, . . . , xm} denote the coordinates in Rm, and extending c to all of h(V ) by c(xo)ψ =
iψ, where xo denotes the generator of the central part of h(V ), and c(vw) = c(v) ◦ c(w), it
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is easy to verify that c preserves the relations in WC(V ), i.e.

c(v) ◦ c(w)− c(w) ◦ c(v) = −iω(v, w), (5)

so it give us a linear map into EndC(L2(Rm)), which extends to a one-to-one algebra homo-
morphism

c : WC(V ) → EndC(L2(Rm)),

from which we obtain an irreducible representation of h(V ) on L2(Rm). By Mpc-equivariance,
this Clifford multiplication in the fibers defines a symplectic Clifford multiplication of sym-
plectic spinors by tangent vectors (see [6])

c : Γ(TM)⊗ Γ(S) → Γ(S)

(X,ϕ) 7→ c(X)ϕ.

Remark 3.1. Notice that symplectic Clifford multiplication is degenerate since, for ϕ ∈ S
and for any X ∈ Γ(TM)

c(X)ϕ = 0,

gives rise to a differential equation with possible non trivial solutions.

In the symplectic case there is no canonical choice for a covariant derivative (i.e. no
uniqueness property as for Levi-Civita type connections in Riemannian geometry) so, in
order to go on into the construction of symplectic Dirac operators, we begin by fixing a
symplectic connection, i.e. a covariant derivative ∇ : Γ(TM) → Γ(T ∗M ⊗ TM) such that

∇ω = 0 ⇔ X(ω(Y, Z)) = ω(∇XY, Z) + ω(Y,∇XZ), (6)

for any vector fields X,Y and Z. From ∇, we induce a covariant derivative on spinor fields
which we denote ∇S.

From a symplectic connection on M and the symplectic Clifford multiplication introduced
before we can define symplectic Dirac operators in the usual way, i.e. composing the c with
the induced covariant derivative on the spinor bundle. There are two possible ways of cou-
pling these two maps, depending on the isomorphism used to identify TM with T ∗M . Here
we use the identification given through the symplectic form (i.e. the map iω), the identifica-
tion using a Riemannian structure gives rise to symplectic Dirac operators studied in [4]. A
direct computation in local coordinates shows that, for any symplectic spinor ϕ,

Dϕ =
n∑
i=1

c(ei)∇S
fi
ϕ− c(fi)∇S

ei
ϕ, (7)

where {ei, fi} denotes a (local) symplectic basis on the tangent space of M induced by
Darboux coordinates.

Proposition 3.1. For any classical observable f ∈ C∞(M,R),

[D, f ] = c(Xf ), (8)

where Xf denotes the associated Hamiltonian vector field.



8 ALEXANDER CARDONA

Proof. Let f ∈ C∞(M,R) and ϕ ∈ Γ(S), then

D(fϕ) =
n∑
i=1

c(ei)(df(fi)ϕ+ f∇S
fi
ϕ)− c(fi)(df(ei)ϕ+ f∇S

ei
ϕ)

= c(Xf )ϕ+ f∇S
Xf
ϕ.

tu

Remark 3.2. This symplectic Dirac operator is not elliptic, as follows from the degeneracy
of the symplectic Clifford multiplication remarked above.

Metaplectic Quantization. Let us come back to the discussion of the possible quanti-
zation recipes on the symplectic spinor bundle S associated to a symplectic manifold (M,ω).
As before, the starting point must be the choice of a covariant derivative on S.

In the symplectic spinor bundle we can try the same Kostant-Sternberg trick for geometric
quantization, namely to each observable f we associate

C∞(M,R) → O(Γ(S))

f 7→ f̂ = f − i~∇S
Xf

,

whereXf denotes the Hamiltonian vector field generated by f and∇S denotes the symplectic
spinor derivative on Γ(S) mentioned above. However, (3) will not be satisfied, since we have
no mens to cancel the second term in equation (4).

Remark 3.3. Notice that in the metaplectic setting the symplectic Clifford multiplication can
be chosen to be proportional to the symplectic form (by choosing the constant to which the
generator of the central term in the Heisenberg algebra, xo, is sent by Clifford multiplication).
For example, from (5) we can have

c([Xf , Xg]) = − i

~
ω(Xf , Xg), (9)

and we can actually try

f 7→ f̂ = f − i~ [D, f ] , (10)

which gives {̂f, g} = 2{f, g}, and then the singular relation

[f̂ , ĝ] = −i~
2
{̂f, g}.

However, it is clear that the map (10) does not define a good quantization.

Habermann’s metaplectic quantization introduces a perturbation on the spinor covariant
derivative of the form (10) in order to get a weak version of (3).

Definition 3.1. Let us define the Clifford covariant derivative on symplectic spinors by

∇H
Xϕ = ∇S

Xϕ+ c(X)ϕ, (11)

where X ∈ Γ(TM), ϕ ∈ Γ(S).
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Proposition 3.2. Let ∇S and ∇H denote the above defined covariant derivatives on the
bundle of symplectic spinors. Then, the corresponding curvatures R(X, Y ) and RH(X,Y )
are related by

RH(X, Y ) = R(X,Y ) + c(T (X, Y )) + c([X,Y ]),

where c(T (X,Y )) denotes the symplectic Clifford multiplication by the torsion T (X, Y ) =
∇S
XY −∇S

YX − [X, Y ] of ∇S.

Proof. It follows from the identity

[∇H
X ,∇H

Y ] = [∇S
X ,∇S

Y ] + (c(∇S
XY )− c(∇S

YX)) + c([X,Y ]).

tu

Notice that, given any classical observable f , it follows from (8) that the Clifford covari-
ant derivative of a symplectic spinor, evaluated in the direction of the Hamiltonian vector
field associated to f , is

∇H
Xf

= ∇S
Xf

+ [D, f ]. (12)

From (4)

[f̂ , ĝ] = −2i~{f, g} − ~2RH(Xf , Xg)− ~2∇H
[Xf ,Xg ],

so it follows from (9) that the Kostant-Souriau recipe f̂ = f − i~∇H
Xf

in this case gives the

relation [7]

[f̂ , ĝ] = −i~{̂f, g} − ~2 [R(Xf , Xg) + c(T (Xf , Xg))] , (13)

where R and T denote the curvature and torsion associated to ∇S, respectively. This is en
example of the weaker version of condition (3) used, for example, in deformation quantiza-
tion [2].

Remark 3.4. Notice that using the Clifford covariant derivative on symplectic spinors ∇H

instead of ∇S, in the construction of the symplectic Dirac operator (keeping the use of the
symplectic form in the identification between tangent and cotangent spaces), indices a new
symplectic Dirac operator DH such that,

DHϕ = (D +
dimM

2
)ϕ, (14)

as follows from (5) when applied to a symplectic basis.

3.3. Discussion and Final Comments. As mentioned earlier, the prequantization pre-
sented in Section 2 gives only the first part within the geometric quantization approach due
to Kirillov, Kostant, Souriau and others. Indeed, a polarization and a half-density correction
are in order to finish the task, the former reduces to a half the number of “degrees of free-
dom” of the wave functions (sections of the prequantization bundle) and the later gives the
required Hilbert space structure on the space of wave functions. This approach introduces
topological constraints to the existence of quantizations (related with the integrality condi-
tion on symplectic forms). On the other hand, the approach suggested by Habermann seems
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to apply to any symplectic manifold, having at once these two features: First, since the SSW
representation of the metaplectic group of a 2m-dimensional symplectic vector space is done
into (L2 of) a m-dimensional vector space, then there are only half of the dimensions from the
beginning. Second, the Hilbert space structure for symplectic spinors come automatically
from the construction. However, this approach seems to be geometrically ‘rigid’, i.e. several
objects must be fixed, a connection on the line bundle associated to the MpC-structure and
a symplectic connection (in order to define the symplectic Dirac operator).

There are other important differences between both constructions. For example, while
the usual set up by Souriau and Kostant gives rise to wave functions taking values in a
finite-rank vector bundle, in the second approach these wave functions take values in an
infinite-dimensional vector bundle. Nevertheless, let us remark that the symplectic bundle
construction of Kostant is used to obtain the half-density bundle in the usual construc-
tion: it comes as a subbundle of the symplectic spinor bundle (isomorphic to the subbundle
determined by the first eigenstates of the symplectic Dirac operator). Thus, even though
the geometric frame work of Haberman’s construction is not a novelty, the use of the sym-
plectic Dirac operator in the perturbation of the covariant derivative used in the quantum
representation of observables seems to be geometrically interesting by itself. Notice that,
for example, this perturbation in the connection gives rise to some kind of spectral shift in
the symplectic Dirac operator (equation (14)) very similar to the one obtained, e.g. in the
harmonic oscillator Hamiltonian, after the usual metaplectic correction (see [14]).

Finally, recall that the first approach gives an exact quantization condition (3), and the
second only a weak version of it, namely equation (13).
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