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Introduction

Twentieth century physics leave us two great theories: General Relativity
and Quantum Mechanics, both of them with a big amount of mathematical
sophistication; Differential Geometry is the natural language for the former,
Topology and Complex Analysis are the basis for the second one. Basically
all of today’s physics, except for general relativity, is formulated in quantum
terms. The strong, weak and electromagnetic interactions are described by
means of Quantum Field Theories whose tendency is the unification of the
different descriptions in a sole ”theory of everything” that takes into account
all interactions as consequences of one universal principle. As a matter of
fact, a successful unification theory for weak and electromagnetic interac-
tions, Electroweak Theory, was formulated about thirty years ago. The main
obstacle in searching for a general ”supertheory” is the impossibility of con-
structing a physically admissible quantum theory of gravity. (Since 1916
its classical formulation has remained practically unchanged and all the re-
search in this direction has been unsuccessful.) Nevertheless, an intense
investigation in this area of theoretical physics has been made and it has
left many important results that, by the way, have encouraged some areas of
mathematics more than physics itself, so much that in the last two decades
quantum field theories have become a research subject with increasing in-
terest for mathematicians, and Field medalists are found among theoretical
physicists.

Summarizing, the situation at the present time exhibits two different
types of settings: a geometric theory (for general relativity) and several
(topological) quantum theories (for strong, weak and electromagnetic inter-
actions). In the past few years, the diverse attempts towards unification
have undertaken the quantization of gravity rather than the geometrization
of quantum theories. There are some elaborated theories in this last direc-
tion with little profit for physics but with a great mathematical interest (for
example superstring theories), and the question about the formal meaning
of building a quantum description of a physical system, in a geometrical
setting, has become to be important looking for the solution of that kind of
problems.

This thesis considers a geometric setting for quantization, the so-called
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Geometric Quantization. Specifically, we apply the standard techniques of
Geometric Quantization in order to treat two (physically and mathemati-
cally) interesting cases: the magnetic monopole and its relation with charge
quantization and the 2-dimensional n electron system. Both of these cases
are now recognized as samples of physically sensible topological effects. Geo-
metric Quantization was born in the late 60’s and 70’s, its origin comes from
the Representation Theory and Symplectic Geometry. This scheme does not
introduce any new physical idea, but tries to give a formal foundation to
the quantum formulation of the description of a physical system from its
classical formulation in terms of Hamiltonian (symplectic) dynamics. The
more remarkable element of this description is that it shows how quantum
phenomena are determined by topological conditions (through ”topological
numbers ”) that characterize the elements in terms of which the quantum
description can be carried on, in each particular case.

The first of the cases considered in this work (magnetic monopoles) is
historically recognized as the first of the non-trivial topological systems in
physics, once again its characteristics are exposed and analyzed, now from
the geometric quantization point of view, and the relation with other de-
scription is established. The n-electron system in two dimensions, studied
in the last chapter, is known between the condensed matter theoreticians
as source of a lot of interesting effects (Integer and Fractional Quantum
Hall Effect, Anyons, Superconductivity and others) and its study through
geometric quantization convince us of the power of the method.

The text is organized as follows. In the first chapter a formal review of
the theory is accomplished, almost nothing in this chapter is original except
the presentation and some examples and observations, the basic prerequi-
sites for the lecture of this chapter (symplectic geometry, Hamiltonian me-
chanics, moment mappings, symplectic reduction, etc.) are included in the
appendixes at the end of the document, trying to do the text self-contained.
Chapters two and three contain the body of the work, the study of the mag-
netic monopole case and the n electron system, respectively. It is shown
how in both of these cases the ”quantum numbers” are topological num-
bers that characterize the corresponding physical description, in the case of
magnetic monopoles these numbers correspond with the monopole magnetic
charge and in the n electron system case the so-called filling factors for the
Quantum Hall Effect.
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Conventions and Notation

Through this work we assume that all the objects (manifolds, functions, etc.)
are infinitely differentiable, even if it is not explicitly mentioned. We use
some physical constants that are standard in mathematical physics works,
in particular h̄ = h

2π , where h is the Plank Constant, is extensively used.
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Chapter 1

Geometric Quantization

A fundamental problem in Theoretical Physics is the complete understand-
ing of the quantization process of a physical system, it is the process that,
from a classical description of the dynamics of such a system, brings us the
corresponding quantum description of its dynamics. Mathematically this
process represents the path from a geometric differential description (on a
symplectic manifold) to a topological point of view (quantum conditions)
and a different scenario: a Hilbert Space.

There exist some standard and “fundamental” schemes for quantization,
canonical and functional quantization for example, but none of them gives
in a precise and exact way the construction of the Hilbert space necessary
for quantization or the representation of the algebra of classical physical ob-
servables in the algebra of self adjoint operators on the Hilbert space from
the classical description1. The Geometric Quantization scheme tries to give
necessary and sufficient conditions for the existence of a quantum description
of the dynamics of a system classically described using a symplectic mani-
fold, and describes in a precise way the construction of the Hilbert space,
operator representation and Lie algebras associated with this description,
all this through the methods of the differential geometry and topology. The
main scenarios here are the Complex Line Bundles over manifolds and the
topological invariants that give its classification.

This chapter develops the three basic steps in the geometric quantization
of a classical system: prequantization, introduction of polarizations and
half-forms correction, and all the necessary material to carry on the study
of the particular cases in the next two chapters. It is assumed a minimum

1See L. Ryder ,”Quantum Field Theory”, Cambridge University Press (1992).
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background in geometrical description of classical mechanical systems at the
level of [A1], however a survey of definitions, classical results and the most
important examples used through all the work can be found in appendix 1
and 2.

1.1 Prequantization Line Bundle

1.1.1 The Dirac Problem

Given a physical system whose dynamics can be classically described on a
symplectic manifold (M,ω), where the set of classical observables C∞(M,R)
has structure of Lie algebra with the usual sum and scalar product, and
the Poisson bracket (denoted by {, }, see appendix 2), we should build up
the ground on which the correspondent quantum description takes place
(a Hilbert Space H) and the objects on such ground that determine this
description (wave functions, quantum observables, etc.). In a formal way,
following Dirac2, looking for a physically admissible quantum theory, to each
classical observable f corresponds a quantum Hermitian operator f̂ on the
Hilbert space, the set of these ”quantum observables” should have structure
of Lie algebra with the Lie bracket ([x̂, ŷ] = x̂ŷ − ŷx̂) and must be verified
that

• 1. The application f −→ f̂ is linear

• 2. If f is constant then f̂ must be the multiplication (by the constant
f ) operator

• 3. If {f, g} = h then [f̂ , ĝ] = −ih̄ĥ

These three conditions, that we will refer to as Dirac Conditions, say in
other words that we are looking for a representation of the classical algebra
of observables on M in the algebra of quantum observables on the Hilbert
space H. The characteristics of this representation (reducibility, etc.) are
determined for the physically admissible results of the quantum description
obtained from it.

The quantum description of a physical system is made in terms of wave
functions, these are complex functions on the phase space of the system
(ψ : T ∗Q → C) that have not direct physical meaning (do not represent a

2P.A.M. Dirac, Proc. Roy. Soc. London A, 109, 642 (1925).
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physical magnitude as energy or momentum) but in terms of which all the
probabilistic information given by the theory can be found. More precisely
these probabilities are given by products as ψ∗ψ, where * denotes complex
conjugation, and this shows how a ”phase” of the type eiθ in the wave
function does not alter the probabilities (and then the physical predictions
of the theory), because

(eiθψ)∗(eiθψ) = e−iθψ∗eiθψ = ψ∗ψ.

In this way it is clear that wave functions in a more general context can
be seen as sections of a complex Hermitian line bundle L π−→ M on phase
space, given that each fiber is isomorphic to the complex numbers, using the
Hermitian structure to define, as norms of complex numbers, the quantities
whose probabilistic meaning was mentioned.

Definition 1 (L. Van Hove, 1951):

A prequantization of the cotangent bundle (T ∗Rn, dpi∧dqi) is an application
that to each function f ∈ C∞(T ∗Rn,R) associates an Hermitian operator
f̂ on a Hilbert space H in such way that Dirac conditions are satisfied.

As a matter of fact Van Hove also show that given (H,O), where H =
L2(Rn,C) and O is the set of Hermitian operators on H, the application

∧ : C∞(T ∗Rn,R) −→ O
f 7→ f̂ = ih̄Xf − θ(Xf ) + f

where Xf is the Hamiltonian Vector Field defined by f and θ = pidqi is
the symplectic potential3, is a prequantization for (T ∗Rn, dpi ∧ dqi). The
problem of finding conditions for the existence of a representation of this
kind, and to describe precisely such ”quantization”, in the case of a arbitrary
symplectic manifold is one of the Geometric Quantization subjects, and
begins by choosing the Hilbert space to be used and the representation of
the observables.

1.1.2 Existence of the Prequantization Hilbert Space

Let (M,ω) be a symplectic manifold that represents the phase space of a
physical system, then M = T ∗Q for some manifold Q (the configuration
space) and ω = dθ = d(pidqi) = dpi∧dqi. Going to the quantum description

3See appendix 1
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corresponding to this system we need a complex line bundle (in terms of its
sections we define wave functions , i.e. the Hilbert space H of the theory)
and an application such that to each function f ∈ C∞(M,R) associate an
Hermitian operator f̂ on H in such way that the Dirac conditions can be sat-
isfied. The conditions for the existence of this bundle (called prequantization
bundle) are given by the following theorem [W1]:

Theorem 1: Let (M,ω) be a symplectic manifold, then there exists a
complex line bundle L π→M on this manifold and a connection ∇ on L with
curvature h̄−1ω if and only if the class of (2πh̄)−1ω in H2(M,R) is in the
image of H2(M,Z) under the inclusion in H2(M,R), i.e. if any integral of
ω on a oriented 2-surface in M is an integer multiple of 2πh̄.

Up to isomorphism, the possible choices of the prequantization bundle
are parameterized by the cohomology group H2(M,U(1)). In the case of
cotangent bundles this condition is automatically satisfied because of its
simple connectedness, then the interesting cases are symplectic manifolds
that are not, in general, cotangent bundles. Note that this condition of ex-
istence of the prequantization bundle (and then of the quantum description
itself) is topological in character, as all the conditions that appear in the
quantum theories of physics, so we can say that all the quantum theories
are in essence topological theories whose fundamentals are in the differential-
geometric description of the classical models.

1.1.3 Representation of the Algebra of Operators

If the integrality condition is verified on the symplectic manifold correspon-
dent to the classical description, and then exist a Hermitian line bundle
L

π→ M , we define the Hilbert Space of Prequantization H(M,L) as the
completion of the space formed by the square integrable sections4 s : M → L,
noted Γ(L), with the inner product

(
s, s′

)
=
∫

M

〈
s, s′

〉
ε

where ε is the element of volume of the manifold M (ε = 1
2πh̄dp1 ∧ . . . ∧

dpn ∧ dq1 ∧ . . . ∧ dqn), and to each observable f we associate an Hermitian
4This sections are our wave functions.
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operator according to the so-called Konstant-Souriau representation

∧ : C∞(M,R) −→ O

f 7−→
∧
f = f − ih̄∇Xf

where∇Xf
(s) denotes the action of the 1-form∇s on the Hamiltonian vector

field generated by f 5. Note that Ω∇ = h̄−1ω implicates that dθ̃ = h̄−1dθ,
where θ comes from the symplectic structure and θ̃ from the connection on
the line bundle, in terms of such this 1-form

∧
f = f − ih̄(d− iθ̃)(Xf )

= f − ih̄(d− ih̄−1θ)(Xf ).

1.1.4 Some Examples

Canonical Operators:

Lets calculate as first example the operators corresponding to position qi and
momentum pi in phase space, modelled as a cotangent bundle with canonical
symplectic form. In this case the correspondent line bundle associated is
P ×C and the representation corresponding to the observables is

∧
f = f − ih̄Xf − (pidqi)(Xf )

then by definition

∧
pi = pi − ih̄Xpi − (pidqi)(Xpi)

so given that Xpi = ∂
∂qi

then

∧
pi = pi − ih̄

(
∂

∂qi

)
− pi = −ih̄ ∂

∂qi
.

In the same way for ”position”

∧
qi = qi − ih̄Xqi − (pidqi)(Xqi)

and so Xqi = − ∂
∂pi

gives as the result

∧
qi = qi − ih̄

(
− ∂

∂pi

)
= qi + ih̄ ∂

∂pi
.

5A proof of the hermiticity of this operator can be found in books as [P2] in
bibliography.
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This result is not in accordance with quantum mechanics (Scrhödinger’s
version)

∧
pi= −ih̄ ∂

∂qi
and

∧
qi = qi

and in fact this is against the uncertainty principle, which illustrates the
necessity of a correction that will be carried on by the introduction of a
”polarization” on the prequantization bundle, in the next section.

In the same way that a change in the coordinates {q1, ..., qn, p1, ..., pn} →
{z1, ..., zn, z1, ..., zn}, where zi = pi+iqi and zi = pi−iqi, on phase space give
us new expressions for ω, the Hamiltonian vector fields, etc. (ω = dzi∧dzi

2i ,
Xf = 2

i

[
∂f
∂zi

∂
∂zi

− ∂f
∂zi

∂
∂zi

]
, etc.; see appendix 2), there is a correspondent

change in the representation of the operators, this is
∧
f= −ih̄Xf − θ(Xf ) + f = −ih̄Xf − 2

i zidzi(Xf ) + f.

An example that exposes the utility of this change in the coordinates is the
following.

n-Dimensional Harmonic Oscillator:

Lets consider an n-dimensional harmonic oscillator as was classically de-
scribed in appendix 2. An easy calculation, identical to the last one, show
us that for the new variables zi and zi the associated operators are (using
Xzi = −2

i
∂

∂zi
and Xzi = 2

i
∂

∂zi
, through the definitions)

ẑi = −2h̄
∂

∂zi
and ẑi = zi + 2h̄

∂

∂zi

and for the energy operator, the associated Hamiltonian H = 1
2zizi (by

using XH = 1
i

[
zi

∂
∂zi

− zi
∂

∂zi

]
), we have then

Ĥ =
1
i

(
zi
∂

∂zi
− zi

∂

∂zi

)
.

Nevertheless, this former calculation has been done from an observable that
contains products of observables (as a matter of fact this Hamiltonian is a
quadratic function of coordinates and momenta H = 1

2zizi = 1
2(p2

i +q2i ), and
it is clear that Ĥ 6= 1

2 ẑiẑi), so if we want a unique and appropriated repre-
sentation of this kind of functions we must introduce an adequate extension,
this extension will be studied ahead in this chapter.
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An Important Example: Minimal Coupling and Geometric Quan-
tization

In appendix 2 has been described as an example the so-called ”minimal cou-
pling” in the case of the classical dynamics of a charged particle under the
influence of an electromagnetic field F = dA, in this section we prove the
corresponding result for the quantum description. Lets begin by observing
that the phase spaces (TQ∗, ωe,F ) and (TQ∗, ω), where configuration space
is the Minkowskian space-time Q and then the phase space is TQ∗ ' R8,
equivalently describe this problem by the use of the Hamiltonians H and
ϕ∗e,F (H) = He,A, where He,A denotes the minimal coupling Hamiltonian,
which means that exists a simplectomorphism between the symplectic man-
ifolds, as is shown in appendix 2.

Given the form of the Hamiltonian vector fields defined by the modified
symplectic 2-form ωe,F

Xe,F
f =

∂f

∂pi

∂

∂qi
−
(
∂f

∂qi
+ eFij

∂f

∂pj

)
∂

∂pi

where Fij denotes the components of the 2-form F 6, and the correspondent
symplectic potential

θe,F = pidqi + eAidqi

it’s clear that the connection form in the prequantization line bundle must
be modified respect to the standard as

∇e,F = d− iθe,F

and then in the Hilbert Space of Prequantization He,F (TQ∗, L), the Her-
mitian operator associated to a observable f will be given by the represen-
tation of Konstant-Souriau for the new quantization,

f 7−→
∧
f = f − ih̄∇e,F

Xf

so we must also expect changes in the correspondent representation for pi

and qi. Only it remains to observe that
∧
pi= pi − ih̄∇e,F

Xpi
, where Xe,F

pi
=

∂
∂qi

− eFii
∂

∂pi
, then

∇e,F
Xpi

= (d− ih̄−1θe,F )
(
∂

∂qi
− eFii

∂

∂pi

)
6See footnote in appendix 2.
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and given the antisymmetry of F ( Fii = 0) we have that

∧
pi = pi − ih̄

(
∂

∂qi
− ih̄−1pi − ih̄−1eAi

)
= −ih̄ ∂

∂qi
− eAi.

In the same way
∧
qi= qi − ih̄∇e,F

Xqi
, so with Xe,F

qi
= Xqi = − ∂

∂pi
we have that

∇e,F
Xqi

= − ∂

∂pi
−
(
ih̄−1pjdqj − ih̄−1eAjdqj

)(
− ∂

∂pi

)
= − ∂

∂pi

and then
∧
qi = qi − ih̄

(
− ∂

∂pi

)
= qi + ih̄

∂

∂pi

which evidences again the necessity of a polarization, but illustrates in p̂i

the minimal coupling: we have gone from −ih̄ ∂
∂qi

to −ih̄ ∂
∂qi

− eAi.

1.2 Polarizations and the Hilbert Space of Quan-
tization

In the last part of the previous section we note how the representation of the
canonical operators for coordinates and momenta on the Hilbert space do not
correspond with the classical result from quantum mechanics p̂i = −ih̄ ∂

∂qi

and q̂i = qi, besides in the position operator an additional term appears

that involves momentum coordinates (
∧
qi= qi + ih̄ ∂

∂pi
), undesired fact from

the physical point of view. As well as in the operators, we must elude that
wave functions (sections in the prequantization line bundle) corresponding
to each configuration (state) of the system involving simultaneously the co-
ordinates of one and other physical observables, this means to require that
they be “constants along the fibers” of the cotangent bundle (in the case in
which the phase space can be modelled as one of them), and then we have
to correct this defect in the prequantization process by introducing a new
structure called polarization in the corresponding phase space. In the case
of a phase space different from a cotangent bundle (an arbitrary symplectic
manifold), what does mean “fiber” and “constant along fibers”?, the idea
of polarization that we must introduce should be as general as the answer
to these questions requires. Physically a polarization corresponds to the
so-called “representations” of wave functions and observables (momentum,
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position, Fock, and others) in the quantum description. What is a polariza-
tion and how the quantization process takes place with them are the subject
of this section.

1.2.1 Distributions, Foliations and Polarizations

Definition 2:

Given an arbitrary manifold M we say that a smooth application D is a
Distribution if to each point m ∈ M it associates a linear subspace Dm of
TmM , in such way that:

i) k = DimDm is constant (independent of m)
ii)∀mo ∈ M ∃ Umo ⊂ M , open that contains mo, and vector fields

X1, X2, ..., Xk defined on this open and such that Dm = 〈X1, X2, ..., Xk〉 for
all m ∈ Umo

7.
The distribution is called Integrable or Foliation if for every point mo in

M there exists a submanifoldN ofM containing it and such thatDimN = k
and if m ∈ N ⇒ TmN = Dm. This definition is equivalent to say that if
X,Y ∈ V (M,D) = {Z ∈ V (M) : Z(m) ∈ Dm ∀m ∈ M} then [X,Y ] ∈
V (M,D).

Definition 3:

Let (M,ω) be a symplectic 2n-dimensional manifold, a Real Polarization on
M is a foliation D on M such that ω(m)(Dm, Dm) = 0 in all m ∈M and no
other subspace of TmM that contains Dm have this property. In this case
DimDm = n.

Example 1:

The simplest examples that we can find in this point are the so-called vertical
(Dv) and horizontal (Dh) polarizations of a cotangent bundle T ∗Q, defined
by the distributions that to each point {q1, q2, ..., qn, p1, p2, ..., pn} on this
manifold associates the vector spaces of the tangent bundle to T ∗Q〈

∂

∂p1
,
∂

∂p2
, ...,

∂

∂pn

〉
and 〈

∂

∂q1
,
∂

∂q2
, ...,

∂

∂qn

〉
7〈a, b, ..., z〉 denotes the subspace generated by a, b, ..., z, i.e. Span{a, b, ..., z}.
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respectively. That ω(Dv, Dv) = 0 and ω(Dh, Dh) = 0 follows from the
canonical structure of ω.

Unfortunately to work with real polarizations is not enough to solve
our problems (as a matter of fact, in many symplectic manifolds model-
ing admissible phase spaces is not possible to define real polarizations8),
so we go to define the corresponding structure on a largest manifold, the
Complexification of the tangent bundle to M .

Definition 4:

Let (M,ω) be a symplectic 2n-dimensional manifold, a Complex Polarization
P on M is a complex distribution such that:

(i) ∀m ∈ M, P⊥m = {X ∈ TmM
C : ω(X,Y ) = 0 ∀Y ∈ Pm} = Pm, where

TmM
C denotes the complexification of TmM .

(ii) Dm ≡ Pm ∩ Pm ∩ TmM have constant dimension k for all m in M .
(iii) P and P + P are integrable.
Here P denotes the complex conjugation of P . A polarization P is called

positive if −iω(X,X) ≥ 0 ∀X ∈ V (M,P ), and if P ∩ P = {0} P is the
Holomorphic or Kähler Polarization of M, in this case TmM

C = Pm ⊕ Pm

∀m ∈M .

Example 2:

In the simplest case (M,ω) = (T ∗R, dp∧ dq), then on T (T ∗R)C = T ({(q1 +
iq2)+ (p1 + ip2) : (q1, p1), (q2, p2) ∈ T ∗R}) we can define the complex polar-
ization given by

(p, q) 7→ P(p,q) =
〈
∂

∂p
+ i

∂

∂q

〉
,

then DimP = 1; and on the cotangent bundle T ∗R2, with symplectic form
ω = dpi ∧ dqi, the distribution that to each point {q1, q2, p1, p2} associate
the vector subspace 〈(

∂

∂p1
+ i

∂

∂q1

)
⊕ ∂

∂p2

〉
define a 2-dimensional polarization.

8In S2 ⊂ R3 with canonical volume form cannot be real polarizations because there
is no nonsingular vector fields on S2, and S2 works as phase space for a lot of physical
systems.
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In order to solve the problem of defining ”fibers” in a symplectic manifold,
we can make the following definition:

Definition 5:

A level of a foliation D is a maximal connected integral submanifold of M ,
i.e. a submanifold N of M such that TmN = Dm ∀m ∈ M . The space
M/D is defined as the space of all the levels of D, and if there exists a
differentiable structure on M/D such that the canonical projection

π : M →M/D

is a smooth submersion, then the foliation D is called reducible.

Example 3:

The real polarizations in example 1 and the complex polarizations in exam-
ple 2 are reducible. In example 1 we have that M/D ' Q in both cases, and
in the cases of example 2 that P ∩ P = {0}, then M/P 'M .

1.2.2 Geometric Quantization

From the precedent definitions we are now in position to fix some of the
prequantization problems, having more realistic results from the physical
point of view. If we have a real or a complex reducible polarization P on a
symplectic manifold M , we can have a generalized idea of ”fibres” on M ,
the levels of such polarization, and with M/P a ”generalized configuration
space”. The question concerning with the criterion of sections ”constant
along the fibers” can be solved by defining our space as follows,

Definition 6:

If (M,ω) is a prequantizable symplectic manifold and L is its prequantum
line bundle, given a reducible complex polarization P on M , we say that a
section s ∈ Γ(L) is constant on the fibers of M , or quantizable, if and only if
∀X ∈ V (M,P ), ∇Xs = 0, and to the space defined by this sections we will
denote as ΓP (L).
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Theorem 2:

The smooth complex valued function9

〈s, t〉 : M −→ C
m 7→ 〈s(m), t(m)〉m

where s, t ∈ ΓP (L), for a given complex reducible polarization P , can be
seen as a function on M/P , i.e. 〈s, t〉 is constant on the levels of P .

Proof.Let’s see that if X ∈ V (M,P ) then X 〈s, t〉 = 0. Given that ∇
and 〈, 〉 are compatible we know that ∀ X ∈ V (M)

X 〈s, t〉 = 〈∇Xs, t〉+ 〈s,∇Xt〉

in particular if X ∈ V (M,P ), so if ∇Xs = 0 and ∇Xt = 0, the result
followsut

In the case of (M,ω) = (T ∗Q, dpi∧dqi) if we take the vertical distribution
Dv then we have that if s ∈ ΓDv(L) then

∇Xs = 0

∀ X ∈ V (M,Dv), but

∇Xs = (d− ih̄−1θ)(X)(s) =
(
∂s

∂pi
dpi +

∂s

∂qi
dqi

)
(X)− ih̄−1pidqi(X)(s)

and X ∈ V (M,Dv) implies that X = a1
∂

∂p1
+ ...+ an

∂
∂pn

, so

∇Xs =
(
∂s

∂pi
dpi +

∂s

∂qi
dqi

)
(ai

∂

∂pi
)− ih̄−1pidqi(ai

∂

∂pi
)(s) = 0

i.e.
∂s

∂pi
= 0

for every i, and that corresponds to our idea of ”s independent of the mo-
mentum pi”, saving in that way our wave functions from violating the uncer-
tainty principle. In fact, to quantize using one or other of the vertical and
horizontal polarizations is equivalent to work with the so-called ”momen-
tum representation” or ”coordinates representation” in the Hilbert space

9Do not confuse the inner product of the sections s and t, 〈s, t〉 , with the vector space
generated by the vector fields X1, ..., Xn, 〈X1, ..., Xn〉.
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from physics literature, respectively. Looking for the same characteristics in
the observables we must reduce the set of physically admissible observables
for the quantization, then now we are not going to associate an Hermitian
operator to each element of C∞(M,R), besides to each element of an ap-
propriate subalgebra of it.

Definition 7:

The space of quantizable functions on M , given a distribution D on M , is
the subspace of C∞(M,R) defined by

C∞(MD,R) = {f ∈ C∞(M,R) : [Xf , X] ∈ V (M,D) ∀X ∈ V (M,D)}.

This space, as we already say, is a subalgebra of C∞(M,R) under the Pois-
son bracket defined by ω. The idea now is to define a modified Hilbert
space in accordance with the distribution we are working, and an adequate
representation of the classical quantizable observables in an operator alge-
bra on Hilbert space. Now, given sections s, s′ ∈ ΓD(L), if the integral
(s, s′) =

∫
M/D

〈s, s′〉 εD is well defined then we can define the inner product

(
s, s′

)
=

∫
M/D

〈
s, s′

〉
εD

on the Hilbert Space of Representation HD defined as the completion of
{s ∈ ΓD(L) :

∫
M/D

〈s, s〉 εD < ∞}. Finally, we can give the following repre-

sentation to classical observables on the algebra of Hermitian operators in
this modified Hilbert space

∧ : C∞(MD,R) −→ ÕD

f 7−→
∧
fD: HD → HD = f − ih̄∇Xf

Theorem 3:

With this last definitions follows that: the application f −→ f̂ is lineal, if
f is constant then f̂ is the multiplication by f operator and if {f, g} = h
then [f̂ , ĝ] = −ih̄ĥ (f, g, h ∈ C∞(MD,R)). Moreover if the observable f is
such that its Hamiltonian vector field Xf is complete then the operator f̂D

is Hermitian..
Proof.See [P2].
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This is what we need to build up a quantum theory physically admissible,
but as we can see later it is not all the story..

Example 4:

Working in (M,ω) = (T ∗Rn, dpi ∧ dqi), then L = (M × C, π1,M) and
Γ(L) ' C∞(M,C). The connection form is

∇Xs = X(s)− ih̄−1(pidqi)(X)(s)

and the Hermitian structure is given by 〈(x, z1) , (x, z2)〉x = z1z2. Taken the
reducible distribution Dv =

〈
∂

∂p1
, ∂

∂p2
, ..., ∂

∂pn

〉
, we have that s ∈ ΓDv(L) ⇔

∂s
∂pi

= 0 (s does not depend of pi, i = 1, ..., n), so HDv ' L2(Rn,C).
Now, if we take a classical observable f ∈ C∞(MDv ,R), then by defini-
tion

[
Xf ,

∂
∂pi

]
∈ V (R2, Dv), but Xf = ∂f

∂pi

∂
∂qi

− ∂f
∂qi

∂
∂pi

, so ∂2f
∂p2

i
= 0 and

then

f = fo(q1, q2, ..., qn) + p1f1(q1, q2, ..., qn) + ...+ pnfn(q1, q2, ..., qn).

With this result it is easy to calculate the form of the associate Hermitian
operator, because if f ∈ C∞(MDv ,R) then

∧
fD s = fs− ih̄∇Xf

s

where s ∈ ΓDv(L), but then

∇Xf
s = (d− ih̄−1θ)(Xf )(s)

=
(

∂s
∂pi
dpi + ∂s

∂qi
dqi
)

( ∂f
∂pi

∂
∂qi

− ∂f
∂qi

∂
∂pi

)

−ih̄−1pidqi( ∂f
∂pi

∂
∂qi

− ∂f
∂qi

∂
∂pi

)(s)

=
{(

∂s
∂pi
dpi + ∂s

∂qi
dqi
)

( ∂f
∂pi

∂
∂qi

)− ih̄−1pidqi( ∂f
∂pi

∂
∂qi

)(s)
}

+
{(

∂s
∂pi
dpi + ∂s

∂qi
dqi
)

( ∂f
∂qi

∂
∂pi

)− ih̄−1pidqi( ∂f
∂qi

∂
∂pi

)(s)
}

the last term is the part of ∇Xf
s where the connection acts on the part of

Xf generated by ∂
∂p1

, ∂
∂p2

, ..., ∂
∂pn

, then this part is zero by definition of s, so

∇Xf
s =

(
∂s
∂pi
dpi + ∂s

∂qi
dqi
)

( ∂f
∂pi

∂
∂qi

)− ih̄−1pidqi( ∂f
∂pi

∂
∂qi

)(s)

= ∂f
∂pi

∂s
∂qi

− ih̄−1pi
∂f
∂pi

(s)
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and
∧
fD= f − ih̄

(
∂f
∂pi

∂
∂qi

− ih̄−1pi
∂f
∂pi

)
= f − ih̄ ∂f

∂pi

∂
∂qi

− pi
∂f
∂pi

in the particular cases of pi and qi we recover the usual quantization rules
of quantum mechanics:

p̂iD = −ih̄ ∂

∂qi
and q̂iD = qi.

From the classical commutation relations we deduce then that10

[p̂i, q̂j ] = −ih̄δj
i

[p̂i, p̂j ] = [q̂i, q̂j ] = 0.

Example 5: The One Dimensional Harmonic Oscillator

Let (M,ω) = (T ∗R, dp∧dq), H = 1
2(p2 + q2), then L = (M ×C, π1,M) and

Γ(L) ' C∞(M,C). The connection form is

∇Xs = X(s)− ih̄−1(pdq)(X)(s)

and the Hermitian structure is given by 〈(x, z1) , (x, z2)〉x = z1z2. Making
the change in the coordinates z = p + iq and z = p − iq, then ω = dz∧dz

2i ,
H = 1

2zz, and XH = i
[
z ∂

∂z − z ∂
∂z

]
. With the Holomorphic distribution on

C, Ph, given by Ph = Span
{

∂
∂z

}
, we have that ω(Ph, Ph) = 0, DimPh =

1, Ph ∩P h = {0} ⇒M/Ph = C. s ∈ ΓPh
(L) ⇔ ∇Xzs = 0 ∀Xz ∈ V (M,Ph),

this means that

Xz(s)− ih̄−1(
1
2i
zdz)(Xz)(s) =

∂s

∂z

(
1− h̄−1

2
zdz

)
= 0,

i.e. if ∂s
∂z = 0 (if s is Holomorphic), so HPh

' L2(R,C). Given f ∈
C∞(MPh

,R) then

Xf = 2i
(
∂f

∂z

∂

∂z
− ∂f

∂z

∂

∂z

)
10For simplicity in the notation we will omit the D subscript whenever we work with a

fixed polarization.
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so

∇Xf
s = (d− 1

2 h̄
−1zdz)(Xf )(s)

=
(

∂s
∂zdz + ∂s

∂zdz
) [

2i
(

∂f
∂z

∂
∂z −

∂f
∂z

∂
∂z

)]
− i h̄

−1

2 zdz
[
2i
(

∂f
∂z

∂
∂z −

∂f
∂z

∂
∂z

)]
(s)

= 2i ∂s
∂z

∂f
∂z + h̄−1z ∂f

∂z (s)

where we eliminate the terms annihilated because s ∈ ΓPh
(L) ( the part of

Xf generated by ∂
∂z ), we have that

∧
fPh

= f − ih̄∇Xf

= f + 2h̄∂f
∂z

∂
∂z − z ∂f

∂z

deducing from this that
ẑPh

= z

and
ẑPh

= 2h̄
∂

∂z
.

In physics literature this association of operators to z and z is known as
Bergman Representation.

Now,
[
i
(
z ∂

∂z − z ∂
∂z

)
, ∂

∂z

]
= i ∂

∂z ⇒ H ∈ C∞(MPh
,R),then we can cal-

culate the Hermitian operator corresponding to H. In this case

ĤPh
=

1
2
zz − ih̄

(
iz
∂

∂z
− ih̄−1

2
zz

)
= h̄z

∂

∂z

but in this case we are not in agreement with quantum mechanics, because
following this result the spectrum of Ĥ is {nh̄ : n ∈ N}, but the correct one
is {

(
n+ 1

2

)
h̄ : n ∈ N}. We need some other structure to correct this.

1.3 Half-forms Correction to Geometric Quantiza-
tion

The correction to geometric quantization that we will see in this section is
the so called Metaplectic or Half-Forms correction, this consists basically
of the extension of the structure group of the tangent bundle TM to a 2n
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dimensional symplectic manifold (M,ω), from the symplectic Sp(2n,R) to
the metaplectic group Mp(2n,R), which is the connected double covering
of Sp(2n,R) [P2]. The problems to be solved with this new structure are
basically three:

• Given two different polarizations P and R for (M,ω), how are related
HP and HR?

• Is well defined the space HP as Hilbert space?

• How to get the right spectrum (from a physical point of view) for some
operators, e.g. the Hamiltonian in the harmonic oscillator?

The main idea is to modify the quantum bundle L (and then its connec-
tion), and show that the inner product defined on sections of this bundle,
as in the previous part of this chapter, is well defined and so the associated
Hilbert space. The spectrum correction is consequence of this modification
in the connection. The way we will take is not the algebraic one, but the
construction of the bundle from the manifold and a complex polarization on
it, the ”metaplectic way” can be seen in texts as [W1].

1.3.1 Half-Forms

Let (M,ω) be a 2n dimensional symplectic manifold and P the Kähler pos-
itive polarization on M (then TmM

C ' Pm ⊕ Pm, ∀m ∈ M), lets consider
the spaces P ∗m and P

∗
m of the 1-forms dual to Pm and Pm. This spaces

are sections of the bundles P ∗ and P ∗, respectively, and lets introduce the
determinant bundles11 DetP ∗ = ΛnP ∗ and Det

P
∗ = ΛnP

∗.

Theorem 4:

There exist a line bundle PfP onM such that (PfP )2 = PfP⊗PfP ' DetP ∗

and a bundle Pf∗P such that (Pf∗P )2 ' Det
P
∗ if and only if the first Chern

class of M is even. The sections of the bundles PfP and Pf∗P are called
Half-forms on M .

Proof.See [W1].

The idea in the process of quantization is to work with the bundle L⊗PfP ,
PfP is called the P canonical bundle on M , and not with L as before,

11For a general discussion on Determinant Line Bundles see [P1] in the bibliography.
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extending the connection on L to a connection on L ⊗ PfP given us a
covariant derivative ∇∗ acting on sections s∗ of this last bundle. In fact,
taking the sections of DetP ∗ , n-forms α on M such that iXα = 0 ∀X ∈
V (M,P ), we define the covariant derivative for X ∈ V (M,P ) by ∇∗

Xα =
iXdα, note that in this case ∇∗

Xα and LXα coincide. In this corrected
quantization the Quantum Hilbert Space is the completion (respect to the

inner product
〈
s⊗ α

1
2 , t⊗ β

1
2

〉∗
=
(〈
α

1
2 ⊗ α

1
2 , β

1
2 ⊗ β

1
2

〉) 1
2 〈s, t〉, where s⊗

α
1
2 , t⊗ β

1
2 ∈ C∞(M,L⊗ PfP )) of{

s⊗ α
1
2 : ∇Xs = ∇∗

Xα
1
2 = 0, ∀X ∈ V (M,P )

}
so

∇X(s⊗ α
1
2 ) = ∇Xs⊗ α

1
2 + s⊗∇∗

Xα
1
2 = 0,

and the representation to a classical operator f ∈ C∞(MP ,R) is defined by

f 7→ (̂f) 1
2

=
(
−ih̄∇Xf

+ f
)
⊗ 1 + 1⊗

(
−ih̄LXf

)
so if s⊗ α

1
2 ∈ C∞(M,L⊗ PfP )

(̂f) 1
2
(s⊗ α

1
2 ) =

(
−ih̄∇Xf

s+ fs
)
⊗ α

1
2 + s⊗

(
−ih̄∇∗

Xf
α

1
2

)
.

Theorem 5:

With this last definitions follows that: the application f −→ (̂f) 1
2

is lineal, if

f is constant then (̂f) 1
2

is the ‘multiplication by f ’ operator, and if {f, g} = h

then [(̂f) 1
2
, (̂g) 1

2
] = −ih̄(̂h) 1

2
(f, g, h ∈ C∞(MD,R))12.

Proof.See [P2].

1.3.2 Extension of the Algebra of Operators

In appendix 2 we note that the set of classical observables C∞(M,R) on
a symplectic manifold (M,ω) has structure of Lie algebra under Poisson
bracket, defined as {f, g} = ω(Xf , Xg), where f, g ∈ C∞(M,R) and Xf , Xg

are the respective Hamiltonian vector fields generated by them. It is clear
that the center of this Lie algebra is the set

CC∞(M,R) = {f ∈ C∞(M,R) : df = 0}
12For simplicity in the notation we will omit the subscripts 1

2
, it can be verified that

our previous calculation for operators still works in the left side of the tensor product.
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i.e the constant functions (ifM is connected). But the structure of C∞(M,R)
is richer than the Lie algebra one, as a matter of fact the identity13

{f, g · h} = {f, g} · h+ {f, h} · g

shows that it also has a commutative, associative algebra under ordinary
pointwise multiplication compatible with the Lie algebra structure, and as
we see in the prequantization of the n-dimensional harmonic oscillator (end
of section 1.1.4), although the prequantization respects the Lie algebra struc-
ture of C∞(M,R) (i.e. [f̂ , ĝ] = −ih̄ ̂{f, g}) it does not keep the commutative
and associative one coming from usual multiplication. The question here is
how to extend the representation of the Lie algebra of classical observables
to a representation of that algebra that includes this algebraic structure,
but given that it is not possible to require that

f̂g = f̂ ĝ = ĝf̂ = ĝf

because if we take the canonical functions pi and qi on phase space, for
example, it is clear that [p̂i, q̂i] = −ih̄ ̂{pi, qi} = −ih̄ and we have that
p̂i = −ih̄ ∂

∂qi
and

∧
qi = qi, so

[p̂i, q̂i] = p̂iq̂i − q̂ip̂i = −ih̄ 6= 0.

Following to Axelrod et al.14, given that the right-hand of this equation is
constant and then belongs to CC∞(M,R), defining

p̂iqj =
1
2

(p̂iq̂j + q̂j p̂i)

we have that

Proposition:

[p̂iqj , p̂jqi] =
−ih̄
2

̂{piqj , pjqi}

and
13{f, g · h} = ∂f

∂pi

∂(gh)
∂qi

− ∂f
∂qi

∂(gh)
∂pi

= ∂f
∂pi

(
g ∂h

∂qi
+ h ∂g

∂qi

)
− ∂f

∂qi

(
g ∂h

∂pi
+ h ∂g

∂pi

)
= {f, g} ·

h+ {f, h} · g
14See Axelrod, S., Della Pietra, S., and Witten, E. ”Geometric Quantization of Chern-

Simons Gauge Theory”, J. Differential Geometry, 33 (1991), 787.
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[p̂i, p̂kql] = −ih̄
2

̂{pi, pkql}

Proof.Lets prove the first identity, observe that

p̂iqj = 1
2

(
−ih̄ ∂

∂qi
(qj) + qj(−ih̄ ∂

∂qi
)
)

= −ih̄
2

(
δij + qj

∂
∂qi

)
so

[p̂iqj , p̂jqi] =
(
−ih̄
2

(
δij + qj

∂
∂qi

)) (
−ih̄
2

(
δij + qi

∂
∂qj

))
−

(
−ih̄
2

(
δij + qi

∂
∂qj

)) (
−ih̄
2

(
δij + qj

∂
∂qi

))
=
(
−ih̄
2

)2 (
qj

∂
∂qj

− qi
∂

∂qi

)
but,

{piqj , pjqi} = ∂(piqj)
∂pk

∂(pjqi)
∂qk

− ∂(pjqi)
∂pk

∂(piqj)
∂qk

= qjpj − piqi

then

̂{piqj , pjqi} = q̂jpj − p̂iqi = −ih̄
2

(
δij + qj

∂
∂qj

)
+ ih̄

2

(
δij + qi

∂
∂qi

)
= −ih̄

2

(
qj

∂
∂qj

− qi
∂

∂qi

)
so the equality holds. The second identity can be proved exactly in the same
wayut

We have then that linear and quadratic functions on canonical coordi-
nates on M form, under Poisson bracket, a Lie algebra that is a central
extension of CC∞(M,R). For polynomials of a higher order this extension can
not be given, because the differences between terms in this case are not cen-
tral, however we do not need more than this for the geometric quantization
of the systems to be studied in this work.
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Example 6:

As an example lets see what this implies for the representation of the Hamil-
tonian function in the case of the n-dimensional harmonic oscillator. As in
previous analysis we will work with the complex coordinates zi = pi + iqi
and zi = pi − iqi on Cn, and then H = 1

2zizi, hence we can calculate the
operator

ĤPh
=

1
2
ẑizi =

1
4

(
ẑiẑi + ẑiẑi

)
from the last section (example 5) we know that

ẑiPh
= zi

and
ẑiPh

= 2h̄
∂

∂zi

thus
ĤPh

= 1
4

(
zi
(
2h̄ ∂

∂zi

)
+ 2h̄ ∂

∂zi
(zi)

)
= h̄

(
zi

∂
∂zi

+ 1
2

)
,

so its eigenvalues are
(
n+ 1

2

)
h̄, as we expect.

1.4 Geometric Quantization of Systems with Sym-
metry

Following the material described in appendix 3, about symmetry and sym-
plectic dynamics, lets summarize some results corresponding to the quanti-
zation of a symplectic manifold with a Lie group action on it.

Given a Hamiltonian action φ : G ×M → M on a symplectic manifold
(M,ω) with the associated moment map J : M → G, from the homomor-
phism

J : G → C∞(M,R)
ξ 7→ J (ξ)

we have a canonical representation of G on smooth sections of the prequan-
tum line bundle L π→M , in case of its existence. This action is

Ĵ (ξ) = J (ξ)− i∇XJ (ξ)

= J (ξ)− i∇ξM
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where we consider that the action of G on M extends to a global action of
G on L.

Consider ξ ∈ G a regular value for J , and the reduced phase space
J−1(ξ)/Gξ ≡Mξ with the canonical projection

πξ : J−1(ξ) −→ J−1(ξ)/Gξ

and inclusion
iξ : J−1(ξ) −→M,

Theorem:

There exists a unique line bundle LG
πG→ Mξ, with connection form ∇G =

h̄−1ωξ such that
π∗ξLG = i∗ξL

and
π∗ξ∇G = i∗ξ∇.

Proof.See [GS2].

If there exists a positive Kähler polarization P on M , and the Hamil-
tonian action of a compact connected Lie group G on M is such that the
polarization is G-invariant, i.e. invariant respect the action of G on M , then
there exists a positive polarization PG on Mξ canonically associated to P

[GS2]. Moreover, given that the Hermitian inner product 〈, 〉 on L
π→ M is

G-invariant, there exist a unique Hermitian inner product on LG
πG→ Mξ ,

notated 〈, 〉G such that
π∗ξ 〈, 〉G = i∗ξ 〈, 〉 .

Thus all the necessary quantum data for the quantization of (Mξ,ωξ) are
guaranteed by the existence of a G-invariant positive Kähler polarization on
M . In this case, if we define the spaces

HG
P = {s ∈ HP : Ĵ (ξ)s = 0 ∀ξ ∈ G}

and
HPG

= {s ∈ L2(Mξ, LG) : ∇G
Xs = 0 ∀X ∈ PG}

we have that
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Theorem:

HG
P and HPG

are isomorphic as vector spaces.
Proof.See [GS2].

Remark:

The condition of G-invariance for the polarization P is too strong in many
cases, but it is possible to weaken it15. For our purposes it is enough.

15See for example, Popov, A.D. Constraints, Complex Structures and Quantization.
Dubna Preprint E2-94-174, 1994.
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Chapter 2

Magnetic Monopoles and
Geometric Quantization

In this chapter we study the quantum description of a particle under the
influence of an electromagnetic field and its relation with the Dirac’s charge
quantization condition. In appendix 2 (from example 2 until the end of
the appendix) we have done the classical description of such a system from
a symplectic frame of work and in section 1.1.4 we studied the minimal
coupling, through the geometrical methods used in prequantization. In the
next pages we will see how the Dirac quantization condition for the electron
charge can be deduced just from the existence of a quantum description of
the system already mentioned, and we will relate this construction with the
construction on the configuration space known from the literature1.

2.1 The Dirac Condition from Geometric Quanti-
zation

One of the biggest unresolved questions in theoretical physics is that associ-
ated with the quantization of electric charge, i.e. why the observed electric
charges in all the electrically charged matter is an integer multiple of a ”fun-
damental charge” e, the electron charge. P. A. M. Dirac2 found that the
existence of a single magnetic charge m in the universe can be enough to an-
swer that question. As a matter of fact, the quantum dynamics of a particle

1See Greub, W. and Petry, H.R. ”Minimal Coupling and Complex Line Bundles”. J.
Math. Phys. 16, 1347, 1975.

2Dirac, P.A.M. Proc. Roy. Soc. A133, 60, 1931.
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with electric charge e under the influence of the magnetic field generated
by such particle is well defined if the condition 2em = h̄n, n ∈ Z, known as
Dirac Condition, is satisfied.

Lets consider the symplectic manifold (T ∗Q,ωe,F ) where ωe,F = ω+ eF ′

and ω is the canonical symplectic form on the phase space, correspond-
ing to a particle of charge e under the influence of a field F . Then, the
system concerning us can be described with this symplectic manifold and
a ”free” Hamiltonian H (see appendix 2). According with the integrality
condition for the existence of a prequantum bundle on such symplectic man-
ifold, our first step in the geometric quantization description, there exists
a complex line bundle L π→ T ∗Q and a connection ∇ on L with curvature
h̄−1ω if and only if

[
(2πh̄)−1ωe,F

]
∈ H2(T ∗Q,Z), i.e. if any integral of ωe,F

on an oriented 2-surface in T ∗Q is an integer multiple of 2πh̄. But given
that there exists an equivalence between this description and that obtained
from the manifold (TQ∗, ω) with the Hamiltonian ϕ∗e,F (H) = He,A (the so
called minimal coupling Hamiltonian), it must be verified simultaneously
that

[
(2πh̄)−1ω

]
∈ H2(T ∗Q,Z), and then that

[
(2πh̄)−1eF ′

]
∈ H2(T ∗Q,Z),

thus ∫
S

eF ′ε = 2πh̄n

n ∈ Z, for any closed oriented 2 surface in T ∗Q.

Now, the natural projection π from phase space T ∗Q on configuration
space Q pulls back cohomology classes on Q in cohomology classes on T ∗Q,
and then the condition for the existence of a quantum description of the
system, namely

[
(2πh̄)−1eF ′

]
∈ H2(T ∗Q,Z), is equivalent to

[
(2πh̄)−1eF

]
∈

H2(Q,Z), where F ′ = π∗F and (see example 2, appendix 2)

F = −Bxdy ∧ dz −Bydz ∧ dx−Bzdx ∧ dy

on configuration space. If we consider the magnetic field generated by a
magnetic monopole in the origin, then our configuration space is

.
R

3
, i.e.

R3 without the origin, and the field generated by such particle is given by

−→
B = −m

(−→r
r3

)
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with −→r the position vector in R3 and m the magnitude of the monopole
magnetic charge. From this we have that

F =
m

r3
(xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)

and in this case
∫
S
FdV ol represents the magnetic flux generated by the

monopole, an easy calculation shows that∫
S

F dV ol = 4πm

where S is any bounded region in R3 with regular boundary ∂S such that
the origin does not belong to it. Thus, from the integrality condition we
deduce that

2em = h̄n

for n ∈ N, i.e. the Dirac condition. Clearly, this condition is a topological
restriction to the existence of a quantum description for the system, given
that comes from the topological constraint

[
(2πh̄)−1eF ′

]
∈ H2(T ∗Q,Z).

2.2 Monopole Description on Configuration Space

In this section we review the construction of line bundles on configura-
tion space that are usually used in the description of the magnetic mono-
pole system. Bundles on configuration space corresponds to the projection
T ∗

.
R

3 p−→
.
R

3
of the bundles on phase space given by integrality condition

in the corresponding symplectic form, as a matter of fact the line bundles
L π−→ T ∗

.
R

3
and L′ π′−→

.
R

3
must be such that the diagram

L p̃−→ L′
↓ π ↓ π′

T ∗
.
R

3 p−→
.
R

3

commutes.
It is known that the set of line bundles on

.
R

3
is classified by the second

de Rham cohomology group H2(
.
R

3
,Z), and this group is isomorphic to

H2(CP1,Z) (given that S2 is a deformation retract of
.
R

3
and S2 ' CP1),

i.e. to Z [KN]. Thus, for any integer n there exist a complex line bundle
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(corresponding to the physical system defined by a magnetic monopole with
”charge” nh̄

2e in the integrality condition on phase space) from which we can
elaborate the corresponding quantum mechanical description of the system.
Another (equivalent) classification is the given by Milnor3, who classifies
all the nonequivalent fibre bundles with base space Sn and (arcwise and
connected) structure group G in terms of Πn−1(G). In fact Milnor shows a
one to one correspondence between the equivalent bundles on such manifold
with group G and Πn−1(G). In the case of electromagnetism these principal
bundles have as structure group U(1) ' S1 [C1], and Πn−1(S1) ' Z, having
again the same result.

2.2.1 Dirac Bundles over CP1

There are many descriptions of monopoles on configuration space4, all of
them equivalent to the Wu-Yang description5. Lets present here a equivalent
description of all the S1 bundles on S2, based on the general Hopf Fibration
[KN]. For the simplest case (as we will see later, the bundle corresponding
with n = 1) consider the Hopf map

h : S3 → S2

where we consider

S3 = {(x, y, z, t) ∈ R4 : x2 + y2 + z2 + t2 = 1}
= {(z0, z1) ∈ C2 : z0z0 + z1z1 = 1}

and we use the polar coordinate transformation given by

z0 = x+ iy = cos θ
2e

i
2
(χ+ϕ)

z1 = z + it = sin θ
2e

i
2
(χ−ϕ)

with 0≤ θ < π, 0 ≤ ϕ < 2π and 0 ≤ χ < 4π; and

S2 = {(x, y, z) ∈ R3 : x2 + y2 + z2 = 1}
' CP1 '

.
C

2
/ ∼

3See Husemoller, D. Fibre Bundles. Springer, 1966.
4See Greub, W. and Petry, H.R. ”Minimal Coupling and Complex Line Bundles”. J.

Math. Phys. 16, 1347, 1975; Quiros, M et al. ”On the Topological Meaning of Magnetic
Charge Quantization”. J. Math. Phys. 23, 873, 1982; and the standard descriptions of
the books quoted in bibliography.

5Wu, T. and Yang, C. N. Nucl. Phys. B107, 365, 1976 and Phys. Rev. D14, 437,
1976. See also [C1] in bibliography.
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where
.
C

2
= C2\{0, 0} with the equivalence relation in

.
C

2
given by (z0, z1) ∼

λ (z0, z1) ∀λ ∈ C, λ 6= 0. Hopf fibration maps (z0, z1) on S3 to its equiva-
lence class [z0, z1] in CP1 ≈ S2, and this map can be seen as the composition
of two maps,

h : S3 in−→ C ' R2 st−1

−→ S2

(z0, z1) 7−→ [z0, z1]

the first of which defines inhomogeneous coordinates on S2, the former is a
stereographic projection,

in : S3 −→ C ' R2

(z0, z1) 7→
{
z1/z0 if z0 6= 0
z0/z1 if z1 6= 0

and
st : S2 −→ C ' R2

(θ, φ) 7→ ρeiφ

where ρ = sin θ
1−cos θ .

GRAPHIC

Looking for a connection on this bundle we have at hand a natural
connection arising from the line element of S3

ds2 = 4(dz0dz0 + dz1dz1)

that can be discomposed uniquely into the line element of S2 (ds2 = sin2 θdφ2+
dθ2) and the tensorial square of the 1-form

α = dχ+ cos θdφ

having
ds2 = sin2 θdφ2 + dθ2 + α2.
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Note that 1
2α defines a connection over S3 [C1], and if we take the two set

open covering of S2 given by U+ = S2\{θ = 0} and U− = S2\{θ = π} and
the local sections

σ+ : U+ −→ S3

(θ, φ) 7→ (z0, z1) =
(
eiφ cos θ

2 , sin
θ
2

)

σ− : U− −→ S3

(θ, φ) 7→ (z0, z1) =
(
cos θ

2 , e
−iφ sin θ

2

)
then the respective local connection forms are given by

A+ = σ∗+α

and
A− = σ∗−α

on U+ and U−, respectively, where α is the connection 1-form on S3. So,

A+ = σ∗+ (dχ+ cos θdφ) = 1
2 (1 + cos θ) dφ

A− = σ∗− (dχ+ cos θdφ) = −1
2 (1− cos θ) dφ

and from this A+ −A− = dφ on U+ ∩U−, and the curvature 2-form can be
written as

Ω =
1
2

sin θdφ ∧ dθ.

Lets show now that this description corresponds to the case n=1 in quan-
tum conditions, and lets build up the general case. Consider the manifolds

S2n+1 = {(z0, z1, ..., zn) ∈ Cn+1 :
n∑

k=0

zkzk = 1}

and
CPn '

.
C

n+1
/ ∼

where
.
C

n+1
= Cn+1\{0} with the equivalence relation given by (z0, z1, ..., zn) ∼

λ (z0, z1, ..., zn) ∀λ ∈ C, λ 6= 0, and the general Hopf fibration

S2n+1 π−→ CPn
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seen as a principal fibre bundle with group S1 and total space S2n+1 [KN],
then

π
(
eiθ(z0, ..., zn)

)
= [z0, ..., zn] .

On CPn a set of open sets commonly used for a local chart description are
the sets Uk = {[z0, ..., zn] ∈ CPn : zk 6= 0}, and the local trivializations for
this bundle

Φj : π−1(Uj) −→ Uj × S1

z 7→ (π(z), zj/ | zj |)

where z = (z0, ..., zn), gives us the transition functions

Ψkj : Uj ∩ Uk −→ S1

z 7−→ zk | zj | /zj | zk | .

Now define on U0 the coordinates ξa = za/z0 for a = 1, ..., n, and z0 =
ρeiχ, then

Ψk0(z) = ξk/ | ξk |

and
ρ2

(
1 +

n∑
a=1

ξaξa

)
= ρ2

(
1 + z1z1

ρ2 + z2z2
ρ2 + · · ·+ znzn

ρ2

)

= ρ2
(
1 + 1−z0z0

ρ2

)
= ρ2

(
1 + 1−ρ2

ρ2

)
= 1

so (summation understood)

ρ2 =
(
1 + ξaξa

)−1
.

The connection on this bundle comes from the line element of S2n+1

ds2 = dz0dz0 + dz1dz1 + · · ·+ dzndzn

that can be written as (summation understood)

ds2 =
(
ρ2δb

a − ρ4ξaξb
)
dξadξb + α2

where
α = dχ+

i

2
ρ2
(
ξbdξa − ξadξb

)
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and the first term of right hand side defines the so-called Fubini-Study metric
[KN]. From this we have the curvature 2-form on CPn given by

Ω =
(
ρ2δb

a − ρ4ξaξb
)
idξa ∧ dξb.

Consider now the embedding

CP1 −→ CPn

ξ 7→ (ξ0, ξ1, ..., ξn)

given by

ξk =

(
n
k

)
ξk

then, by sustitution in Ω we found

Ωn = n
(
1 + ξξ

)−2
idξ ∧ dξ

so, for n = 1,

Ω1 =
idξ ∧ dξ(
1 + ξξ

)2

and defining ξ = ρeiφ, ρ = sin θ
1−cos θ ,

idξ ∧ dξ = i
(
(eiφdρ+ iρeiφdφ) ∧ (e−iφdρ− iρe−iφdφ)

)
= i2 (ρdφ ∧ dρ− ρdρ ∧ dφ) = 2ρdρ ∧ dφ

and (
1 + ξξ

)2
=
(
1 + ρ2

)2

so

Ω1 =
2ρdρ ∧ dφ
(1 + ρ2)2

but
ρdρ = sin θ

1−cos θd
(

sin θ
1−cos θ

)
= sin θ

1−cos θ

(
cos θ−1

(1−cos θ)2

)
dθ

= − sin θdθ
(1−cos θ)2
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and from this

2ρdρ
(1 + ρ2)2

=
−2 sin θdθ

(1− cos θ)2
(

1 +
(

sin θ
1−cos θ

)2
)2 = −1

2
sin θdθ,

then
Ω1 = −1

2
sin θdθ ∧ dφ

as we expected, the same curvature as in the first Hopf fibration, obviously
the case n = 1 of S2n+1 π−→ CPn.

The general result for the curvature

Ωn =
n

2
sin θdφ ∧ dθ

(that corresponds with the 2-form F = m
r3 (xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy)

in Cartesian coordinates) defined by the local connection 1-forms (on the
open sets U+ and U−)

An+ = n
2 (1 + cos θ) dφ

An− = −n
2 (1− cos θ) dφ

shows again the Wu-Yang classic result [N1] [C1] , from which we recover
the integrality condition for m. Finally, observe that from the curvature we
can calculate the first Chern class of each bundle

c1 = − 1
2π

Ωn =
n

4π
sin θdθ ∧ dφ

and thus, its Chern number (also called ”topological index”),

C1 =
∫
S2

c1 =
1
2π

∫
U+

Ωn+ +
∫

U−

Ωn−

 = −n,

just (minus) the integer defining the magnetic monopole charge.
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Chapter 3

n-Electron Systems

In this chapter we describe the geometric quantization of a system composed
by n electrons (at low temperature) in a two dimensional space, under the
action of an external homogeneous magnetic field (perpendicular to the plane
of motion of such electrons) and under an uncoupled harmonic potential.
The theoretical interest of this system comes from the topological theory of
the so-called Quantum Hall Effect1, our goal is to understand filling factors
as topological invariants founded through geometric quantization2.

3.1 n-Electron System: Canonical Description

In this section we study a n-electrons system in a 2 dimensional space with
an harmonic potential and (perpendicular) magnetic field, the configuration
space Q can be modelled as R2n, giving a phase space T ∗Q ' R4n with
local canonical coordinates {q1x, q2x, ..., qnx, q1y, q2y, ..., qny, p1x, p2x, ..., pnx,
p1y, p2y, ..., pny}. Classical Dynamics and Geometric Quantization will be
done in these canonical coordinates.

1See Hatsugay, Y. ”Topological Aspects of the Quantum Hall Effect”. J. Phys.: Con-
dens. Matter, 9, 2507, 1997.

2This chapter has benefited from early work of Professor Simon Scott, I acknowledge
him specially for permission to read his unpublished work about this subject.
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3.1.1 Harmonic Potential

Classical Description

On phase space T ∗Q ' R4n with local coordinates {q1x, q2x, ..., qnx, q1y, q2y, ..., qny,
p1x, p2x, ..., pnx, p1y, p2y, ..., pny} we take the canonical symplectic form

ω = dθ = dpix ∧ dqix + dpiy ∧ dqiy,

(i = 1, 2, ..., n). The Hamiltonian function describing this system has a
”free” part and the corresponding harmonic potential part

H =
1

2m
(p2

ix + p2
iy) +

mw2
0

2
(q2ix + q2iy)

where m denotes the electron mass and in the second term w0 is the fre-
quency of the oscillators, ahead taken equal to 1 unless it is indicated. In
this coordinates the Hamiltonian vector field generated by a function f is
then

Xf =
∂f

∂pix

∂

∂qix
+

∂f

∂piy

∂

∂qiy
− ∂f

∂qix

∂

∂pix
− ∂f

∂qiy

∂

∂piy
.

Geometric Quantization

Given that the phase space is simply connected there exist a line bundle for
the prequantization of this system, lets look for the representation corre-
sponding to the observables qix, qiy, pix, piy and H. Following chapter one,
such representation is given by

f̂ = f − ih̄∇Xf

where
∇Xf

s =
(
ds− ih̄−1θ(s)

)
(Xf )

it is easy to see that in this case

∇Xf
s =

∂f

∂pix

∂s

∂qix
+
∂f

∂piy

∂s

∂qiy
− ∂f

∂qix

∂s

∂pix
− ∂f

∂qiy

∂s

∂piy
−ih̄−1

(
pix

∂f

∂pix
+ piy

∂f

∂piy

)
(s)

and thus

f̂ = f−ih̄
(
∂f

∂pix

∂

∂qix
+

∂f

∂piy

∂

∂qiy
− ∂f

∂qix

∂

∂pix
− ∂f

∂qiy

∂

∂piy

)
−pix

∂f

∂pix
−piy

∂f

∂piy
,
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from this we have for the observables of our interest that

p̂ix = −ih̄ ∂
∂qix

p̂iy = −ih̄ ∂
∂qiy

q̂ix = qix + ih̄ ∂
∂pix

q̂iy = qiy + ih̄ ∂
∂piy

.

As we can observe (see canonical operators in example 1.1.4) it is necessary
the introduction of a polarization, in this case we work with the vertical
polarization Pv = Span

{
∂

∂pix
, ∂

∂piy

}
, then our physically admissible wave

functions s are such that
∇Xs = 0

for every X ∈ Span
{

∂
∂pix

, ∂
∂piy

}
. With this new information it is clear that

f̂ = f − ih̄

(
∂f

∂pix

∂

∂qix
+

∂f

∂piy

∂

∂qiy

)
− pix

∂f

∂pix
− piy

∂f

∂piy

having then
p̂ix = −ih̄ ∂

∂qix

p̂iy = −ih̄ ∂
∂qiy

q̂ix = qix

q̂iy = qiy.

Now we must note that the corresponding operator for H is obtained, fol-
lowing the end of the first chapter, as

Ĥ =
1

2m
(p̂2

ix + p̂2
iy) +

m

2
(q̂2ix + q̂2iy)
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where
p̂2

ix = −h̄2 ∂2

∂q2
ix

p̂2
iy = −h̄2 ∂2

∂q2
iy

q̂2ix = q2ix

q̂2iy = q2iy

so

Ĥ =
−h̄2

2m

(
∂2

∂q2ix
+

∂2

∂q2iy

)
+
m

2
(q2ix + q2iy).

3.1.2 n-Electron System under a Magnetic Field

Classical Description

In this section we will work with a modified symplectic form as is described
in the final part of appendix 2. This 2-form is

ω̃ = ω + eπ∗(F )
= dpix ∧ dqix + dpiy ∧ dqiy + eπ∗(Bdx ∧ dy)

= dpix ∧ dqix + dpiy ∧ dqiy + eB
2 dqix ∧ dqiy −

eB
2 dqiy ∧ dqix,

(i = 1, 2, ..., n), where e is the charge of each electron and we are using
the so called symmetric gauge in the potential A that defines the field B
(B = dA, where A = B

2 qixdqiy−
B
2 qiydqix). In this way we can work with the

”free” Hamiltonian without the introduction of a potential term obtaining
an equivalent description (see example 2 in appendix 2), i.e.

H =
1

2m
(p2

ix + p2
iy)

where m denotes the mass of each electron. With the new symplectic form
and this gauge we will obtain different expressions for the Hamiltonian vector
fields generated by a smooth function f and the symplectic potential θ̃, in
our coordinate system these Hamiltonian vector fields has the form

Xf =
∂f

∂pix

∂

∂qix
+
∂f

∂piy

∂

∂qiy
+

(
− ∂f

∂qix
+
eB

2
∂f

∂piy

)
∂

∂pix
+

(
− ∂f

∂qiy
− eB

2
∂f

∂pix

)
∂

∂piy
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and the symplectic potential is

θ̃ = pixdqix + piydqiy +
eB

2
qixdqiy −

eB

2
qiydqix = θ + eA.

Geometric Quantization

The existence of the prequantization line bundle for this system is ensured for
the same reason that in the harmonic case, so lets look for the representation
corresponding to the observables qix, qiy, pix, piy and H in this case, where
the change in the symplectic form alters all the canonical expressions. The
representation must be given by

f̂ = f − ih̄∇Xf

where
∇Xf

s =
(
ds− ih̄−1θ̃(s)

)
(Xf ) ,

in this case

∇Xf
s = ∂f

∂pix

∂s
∂qix

+ ∂f
∂piy

∂s
∂qiy

+
(
− ∂f

∂qix
+ eB

2
∂f

∂piy

)
∂s

∂pix

+
(
− ∂f

∂qiy
− eB

2
∂f

∂pix

)
∂s

∂piy
− ih̄−1

(
pix

∂f
∂pix

+ piy
∂f

∂piy

)
(s)

+ ih̄−1eB
2

(
qiy

∂f
∂pix

− qix
∂f

∂piy

)
(s)

and thus

f̂ = f − ih̄
[

∂f
∂pix

∂
∂qix

+ ∂f
∂piy

∂
∂qiy

+
(
− ∂f

∂qix
+ eB

2
∂f

∂piy

)
∂

∂pix
+
(
− ∂f

∂qiy
− eB

2
∂f

∂pix

)
∂

∂piy

]
−pix

∂f
∂pix

− piy
∂f

∂piy
+ eB

2

(
qiy

∂f
∂pix

− qix
∂f

∂piy

)
having for the observables representation

p̂ix = −ih̄
(

∂
∂qix

− eB
2

∂
∂piy

)
+ eB

2 qiy

p̂iy = −ih̄
(

∂
∂qiy

+ eB
2

∂
∂pix

)
− eB

2 qix

q̂ix = qix + ih̄ ∂
∂pix

q̂iy = qiy + ih̄ ∂
∂piy

.
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Again with the vertical polarization Pv =
〈

∂
∂pix

, ∂
∂piy

〉
we obtain that

f̂ = f − ih̄

(
∂f

∂pix

∂

∂qix
+

∂f

∂piy

∂

∂qiy

)
+
eB

2

(
qiy

∂f

∂pix
− qix

∂f

∂piy

)
so

p̂A
ix = p̂ix + eB

2 qiy = −ih̄ ∂
∂qix

+ eB
2 qiy

p̂A
iy = p̂iy − eB

2 qix = −ih̄ ∂
∂qiy

− eB
2 qix

q̂A
ix = q̂ix = qix

q̂A
iy = q̂iy = qiy.

The operator ĤA is obtained as

ĤA =
1

2m

((
p̂A

ix

)2
+
(
p̂A

iy

)2
)

but in this case(
p̂A

ix

)2
=
(
−ih̄ ∂

∂qix
+ eB

2 qiy
) (
−ih̄ ∂

∂qix
+ eB

2 qiy
)

= −h̄2 ∂2

∂q2
ix
− ih̄eB

2 qiy
∂

∂qix
+ e2B2

2 q2iy

(
p̂A

iy

)2
= −h̄2 ∂2

∂q2
iy

+ ih̄eB
2 qix

∂
∂qiy

+ e2B2

2 q2ix

q̂A 2
ix = q2ix

q̂A 2
iy = q2iy

so

ĤA =
1

2m

[
−h̄2

(
∂2

∂q2ix
+

∂2

∂q2iy

)
− ih̄eB

2

(
qiy

∂

∂qix
− qix

∂

∂qiy

)
+
e2B2

2
(q2ix + q2iy)

]

and this operator can be written as
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ĤA =
−h̄2

2m

(
∂2

∂q2ix
+

∂2

∂q2iy

)
+
eB

4m
L̂Z +

e2B2

4m
(q2ix + q2iy)

where L̂Z = q̂iyp̂ix − q̂ixp̂iy is the operator corresponding to the angular
momentum of the i-th electron around the z axis. A comparison of this
Hamiltonian with the corresponding to the harmonic oscillator case shows
us that the only differences between them are the constant corresponding to
the last term and the angular momentum part.

3.2 Kähler Quantization

3.2.1 Holomorphic Quantum Description

Consider a Kähler manifold (M,J, ω), where J is the almost complex struc-
ture defined on M and ω its (compatible) symplectic form. We know then
that on M there is a pseudo-Riemannian metric g given by the symplectic
and complex structures by g(X, JY ) = ω(X,Y ) for any tangent fields X, Y .
The complex valued vector fields on M satisfying J(X) = ±iX are called of
type (1, 0) and (0, 1) respectively, and if they are closed under commutation
J is called integrable.

OnM , parametrized with local (complex) coordinates {z1, z2, ..., zn} there
exist, locally at least, a real function K, called Kähler Potential, in terms of
which we can write both the metric and symplectic structures as [KN, N1]

ds2 = ωij(zi, zj)dzidzj

ω = i
2ωij(zi, zj)dzi ∧ dzj

where

ωij(zi, zj) =
∂2K

∂zi∂zj
.

If we define the operators ∂i and ∂i by ∂i = ∂
∂zi
dzi and ∂i = ∂

∂zi
dzi, follows

that d = ∂i + ∂i, we can write the symplectic form as

ω =
i

2
∂i∂jK
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and, from the Kähler potential, the symplectic potential can be written

θ = −i∂iK

or
θ = i∂iK.

The Kähler potential is not unique, under gauge transformations of the form

K(zi, zi) → K(zi, zi) + α(zi) + α(zi)

the metric and symplectic structures are invariant. Introducing the opera-
tors

∇i = ∂i + ∂iK

∇i = ∂i

then the commutators

[∇i,∇j ] = [∂i + ∂iK, ∂j ] = −iωij

[∇i,∇j ] = [∇i,∇j ] = 0,

show us that (∇i,∇i) defines a connection on a Holomorphic line bundle L,
with first Chern class ω [W2]. This obviously corresponds with the Holo-
morphic quantization obtained from the Kähler or Holomorphic polarization
defined on M by the distribution

〈
∂

∂zi

〉
, i.e. Holomorphic sections quanti-

zation for the system. In this case

H =
{
s ∈ Γ(M) : ∇iXs = 0

}
and then polarized sections are Holomorphic functions of zi, and any two
non zero polarized sections s, s′ are related by a Holomorphic function φ of
zi (s′ = φs).

In general, under gauge transformations in K(zi, zi) the Holomorphic
sections of our line bundle L transform as

s(zi) → eα(zi)s(zi)

so, on a Kähler manifold M with the Holomorphic polarization a Hermitian
structure on L is given by

〈s, s〉 = sse−h̄−1K(zi,zi)
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where K is the Kähler potential and s ∈ ΓP (M). Solutions to ∇iXψ = 0,
i.e. wave functions, adopt the form

ψ(zi, zj) = s(zi)e−
1
4h̄

Kzizj

Thus, the inner product on H can be written as3

〈
ψ,ψ′

〉
=
∫
M

ss e−
1
2h̄

Kzizj ε

where ε = ωn apart from a constant factor.
In the particular cases of our interest, Cn and CPn, we have as Kähler

potentials the functions

K =
1
2
zizi

and
K =

1
2

log(1 + w1w1 + w2w2 + · · ·+ wnwn)

where wk = zk/z0 in the chart U0 of CPn (U0 is the open defined by the set
of points (z0, z1, ..., , zn) in CPn where z0 6= 0, see chapter 2), respectively.

We have made this description of geometric quantization on a Kähler
manifold because we will work in this fashion. Our problem is to quan-
tize the n electron system in a 2 dimensional space considering the phase
space T ∗Q ' R4n (with local coordinates {q1x, q2x, ..., qnx, q1y, q2y, ..., qny,
p1x, p2x, ..., pnx, p1y, p2y, ..., pny} and symplectic form ω = dpix∧dqix +dpiy∧
dqiy) as the complex C2n with the complex coordinates {zq1, zq2, ..., zqn, zp1, zp2, ..., zpn},
where

zqi = qix + iqiy

zpi = pix − ipiy.

This is the standard coordinate description, so we are looking just to com-
pare our results with the literature ones.

The introduction of a metaplectic structure (half-forms correction) in
this description introduces new topological restrictions to the problem, al-
though this case (C2n) is very simple. We have a integrable and reducible
polarization on phase space, namely the Holomorphic polarization, so it is

3Note that the convergence of this is ensured because of g being positive definite.
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direct to verify that the canonical bundle associated is polarized. Take the
section of DetP ∗ given by the n-form

dzq1 ∧ dzq2 ∧ ... ∧ dzqn

that polarizes the half-forms bundle PfP . Thus the canonical bundle is the
bundle of Holomorphic n-forms and the quantization bundle has sections
that locally can be written as

s(zqi)⊗
√
dzq1 ∧ dzq2 ∧ ... ∧ dzqn

on L⊗ PfP .
Now, if the first Chern class of a Kähler manifold as complex manifold

is c, then the corresponding Chern class for its canonical bundle is4 -c,
and then from the topological condition for the existence of the half-forms
bundle we have that such structure exist if the 2-form ω

2πh̄ −
c
2 satisfies the

integrality condition ∫
R

(
ω

2πh̄
− c

2

)
ε ∈ Z

where R is any closed oriented 2-surface in C2n.

3.2.2 Holomorphic Description of the n-Electron System
and FQHE

From our preceding discussion lets write in complex (Holomorphic) coordi-
nates the corresponding expressions for the quantum Hamiltonian operators
and then the wave functions (sections on the corresponding quantum bun-
dle) that describe the system. The aim of this last part is to find this wave
functions and to relate topological conditions for the quantization existence
with physical effects, in a similar fashion that in the magnetic monopole
case, but relating our system with the description of the physically known
Quantum Hall Effect.

4See Morrow, J. and Kodira, K. Complex Manifolds. Holt, Rinehart and Winston,
1971.
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Harmonic Potential

In coordinates{zq1, zq2, ..., zqn, zp1, zp2, ..., zpn}, where qix = 1
2(zqi + zqi) and

qiy = 1
2i(zqi − zqi), if we introduce the definitions

∂Oi = i
2 (p̂ix − ip̂iy)

∂Oi = i
2 (p̂ix + ip̂iy)

we obtain from the expressions for each operator

∂Oi = h̄
2

(
∂

∂qix
− i ∂

∂qiy

)
∂Oi = h̄

2

(
∂

∂qix
+ i ∂

∂qiy

)
but it is easy to see that the identities

∂
∂zqi

= 1
2

(
∂

∂qix
− i ∂

∂qiy

)
∂

∂zqi
= 1

2

(
∂

∂qix
+ i ∂

∂qiy

)
follow, and then

∂Oi = h̄ ∂
∂zqi

∂Oi = h̄ ∂
∂zqi

.

Now, given that ∂Oi∂Oi = −1
4

(
p̂2

ix + p̂2
iy + i [p̂ix, p̂iy]

)
, and [p̂ix, p̂iy] = 0, the

Hamiltonian operator Ĥ in terms of this variables can be written as

Ĥ = −2
m ∂Oi∂Oi + m

2 zqizqi.

Perpendicular Magnetic Field

In this case for the magnetic potential A we have that (in the symmetric
gauge)

A =
iB

4
zqidzqi −

iB

4
zqidzqi

(or A = iB
2 zqidzqi = − iB

2 zqidzqi in other gauges) and with the definition

∂Ai = i
2

(
p̂A

ix − ip̂A
iy

)
∂Ai = i

2

(
p̂A

ix + ip̂A
iy

)
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where we take the expressions for each operator, we obtain that

∂Ai = h̄
2

(
∂

∂qix
− i ∂

∂qiy

)
− eB

4 (qix − iqiy)

∂Ai = h̄
2

(
∂

∂qix
+ i ∂

∂qiy

)
+ eB

4 (qix + iqiy)

i.e.
∂Ai = ∂Oi − eB

4 zqi

∂Ai = ∂Oi + eB
4 zqi

and from this and ∂Ai∂Ai = −1
4

(
p̂A 2

ix + p̂A 2
iy + i

[
p̂A

ix, p̂
A
iy

])
follows that the

Hamiltonian operator ĤA can be written as

ĤA =
−2
m
∂Ai∂Ai −

2h̄eB
m

,

where we use the commutator[
p̂A

ix, p̂
A
iy

]
= [p̂ix, p̂iy] + e2B2

4 [q̂ix, q̂iy] + eB
2 ([q̂ix, p̂ix] + [q̂iy, p̂iy])

= 2ih̄eB
2 .

Observe that

ĤA =
−2
m
∂Oi∂Oi +

e2B2

8m
zqizqi −

2h̄eB
m

and then ĤA and ĤO have (apart of a constant shift) the same spectrum if

e2B2

8m
=
mw2

0

2

i.e. if eB
2m = w0, this give a condition on the intensity of the magnetic field in

order to obtain a good approximation in the model of oscillators in change
of magnetic field, in a physical sense.

Landau States and Geometric Quantization

Lets relate the system of n electrons in presence of a magnetic field (perpen-
dicular to the plane in which its dynamics take place) with the harmonic
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potential case, and this with the description of the Landau States of a sys-
tem of n electrons in a magnetic field, which is of interest in the theoretical
description of the Fractional Quantum Hall Effect. The constraint in the di-
mension of the system is not arbitrary, besides it corresponds with a physical
effect that only appears when this kind of systems is forced to this restric-
tion: the appearance of states that do not behave as bosons or fermions, but
as a mixture between them known as Anyons5.

The Landau states of this kind of system are the states corresponding
to the different values of the energy of the system, they are described by
the so-called Laughlin’s wave functions in physics literature, for the FQHE
the ground state (lowest Landau level) wave functions describe the anyonic
states and are specially interesting. Lets use all the calculations we have
made in the last few sections to recover the standard quantum mechani-
cal description of lowest Landau states6 from our geometric quantization
scheme. First observe that the Hamiltonians for the (quantum) description
of the n electron system under perpendicular magnetic field and harmonic
oscillator potential only differs (apart of a constant in the last term) in a
multiple of the angular momentum operator (sections 3.1.1 and 3.1.2) and it
is easy note that the commutator between the Hamiltonians and the angular
momentum operator is zero (because the z-component angular momentum
conservation), so the wave functions and eigenvalues of both Hamiltonians
(the energy spectrum of both systems), apart of some constant, are the
same, say (example 6, section 1.3)

En = h̄K
(
n+

1
2

)
,

where K is a constant (K = eB
m ).

Now, it is very clear that each Landau level (each submanifold of the
phase space defined by the condition E = 1

2m(p2
ix + p2

iy) + m
2 (q2ix + q2iy) =

constant) corresponds to a infinitely degenerated state, due to the ”rota-
tional symmetry” around the z axis. As a matter of fact if we consider the
surface defined by (we have taken away the constants 1

2m and m
2 correspond-

ing to each term)
p2

ix + p2
iy + q2ix + q2iy = 1

5See Wilczek, F. Fractional Statistics and Anyon Superconductivity. World Scientific,
1990.

6See Karlhede, A. and Wersterberg, E. Int. Jour. Mod. Phys. B, 6, 1595, 1992.
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i.e. S4n−1 ⊂ R4n, which is a coisotropic submanifold of R4n, then its tangent
space in a given point is generated by vectors of the form

ai
∂

∂pix
+ bi

∂

∂piy
+ ci

∂

∂qix
+ di

∂

∂qiy

for which aipix+bipiy +ciqix+diqiy = 0. From this, with ai = piy, bi = −pix,
ci = −qiy and di = qix, we can deduce that this tangent vectors defines a
foliation whose leaves are the solution curves to the differential equations

dpix
dt = piy

dpiy

dt = −pix

dqix
dt = −qiy

dqiy

dt = qix.

By identification with C2n, through the change in the coordinates {q1x, q2x, ..., qnx,
q1y, q2y, ..., qny, p1x, p2x, ..., pnx, p1y, p2y, ..., pny}→ {zq1, zq2, ..., zqn, zp1, zp2, ..., zpn},
this equations reads

dzqi

dt = dqix
dt + i

dqiy

dt = izqi

dzpi

dt = dpix
dt − i

dpiy

dt = izpi

i.e. the solution curves are given by

zqi(t) = eitzqi(0)

zpi(t) = eitzpi(0)

and thus, the Hamiltonian flow generated on C2n by the function H = zpizpi

+zqizqi = 1 is given by
φt : C2n → C2n

−→z 7→ eit−→z
where −→z denotes the vector (zq1, zq2, ..., zqn, zp1, zp2, ..., zpn) in C2n. This is
a Hamiltonian action on phase space, with orbits

O−→z = {φt(−→z ) : t ∈ R}

= {exp(it)−→z : t ∈ R}

= {α−→z : α ∈ C}
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so the orbit space (reduced phase space) is

C2n/φaction ' CP2n−1.

It is clear now that all we have done is the symplectic reduction procedure
described in appendix 3, applied to our symplectic manifold (C2n, ω) with
the 2-form (in zqi , zpi coordinates)

ω = 1
2 (dzpi ∧ dzqi + dzpi ∧ dzqi)

ω̃ = ω + eB
2i (dzqi ∧ dzqi)

(for the harmonic and magnetic field cases, respectively), with the symplectic
action

φ : U(1)×C2n → C2n(
eit, −→z

)
7→ eit−→z .

This action clearly preserves the Kähler potential K = 1
2(zqizqi + zpizpi)

on C2n and then the Hermitian and symplectic structures defined in terms
of it, so this is a symplectic action. Now, from our results on symplectic
reduction in the third appendix, having the canonical identification of the
Lie algebra u(1) with R, and taking the vector field, ξ = ∂

∂t , it is clear that

ξC2n = qix
∂

∂pix
+ qiy

∂

∂piy
− pix

∂

∂qix
− piy

∂

∂qiy

and thus, by definition with the symplectic form dqix ∧ dpix + dqiy ∧ dpiy,

dJ (ξ) = (dqix ∧ dpix + dqiy ∧ dpiy) (ξC2n)

= dqix ∧ dpix

(
qix

∂
∂pix

+ qiy
∂

∂piy
− pix

∂
∂qix

− piy
∂

∂qiy

)
+dqiy ∧ dpiy

(
qix

∂
∂pix

+ qiy
∂

∂piy
− pix

∂
∂qix

− piy
∂

∂qiy

)
dJ(ξ) = −qixdqix − qiydqiy − pixdpix − piydpiy

= d
[
−1

2 (zqizqi + zpizpi)
]

and then the momentum map for this action is

J : C2n −→ R
−→z 7→ −1

2 |
−→z |2
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where −→z denotes a vector (zq1, zq2, ..., zqn, zp1, zp2, ..., zpn) in C2n. It is
clear that S4n−1 = J−1(−1

2), and in the notation of appendix 3, M− 1
2

=

S4n−1/U(1) ' CP2n−1, given that each orbit is the intersection of the sphere
with a complex line through the origin7.

Lets study now quantization on the reduced phase space8, CP2n−1, with
its symplectic structure coming from its Kähler character. We will work
now with the coordinates (ξ1, ξ2, ...., ξ2n−1) defined on open sets {Uk} as in
chapter two. The Fubini-Studi metric on CP2n−1is [N1][KN]

ωFS = −imEdξk ∧ dξk − ξkξldξk ∧ dξl

(1 + ξkξk)2

so we must to quantize the Kähler manifold (CP2n−1, ωFS, Ph), where Ph

denotes the Holomorphic polarization (induced by C2n). The first Chern
class of CP2n−1is

c1(CP2n−1) = 2n [ω◦]

where ω◦ is a positive generator of H2(CP2n−1,Z), so the first Chern class
of its canonical bundle is -2n [ω◦]. From∫

CP2n−1

ω2n−1
FS = (2π)2n−1

we know that ωFS ∈ [ω◦], so the existence of a quantum bundle is guaranteed
if

Ω =
[ωFS ]
2πh̄

+
2n [ω◦]

2
is a positive generator of H2(CP2n−1,Z), and from this we deduce that then

−mE
2πh̄

+ n ∈ Z+

7Taking in account the constants in the surface of constant energy defined by E =
1

2m
(p2

ix + p2
iy) +

mw2
0

2
(q2ix + q2iy) = constant, we must obtain S4n−1 = J−1(−mE), and in

general the radius of this sphere is given by 2mE = eBE
w0

.
8Without the degeneracy, and then without the symplectic reduction, this quantization

corresponds with the Integral Quantum Hall Effect, the fractional characteristic of this
quantum effect is thus consequence of the symmetry. As a matter of fact Thoules et al.
have found the quantization in the Hall conductance in terms of the first Chern number
of a vector bundle divided by its rank, where the rank is equal to the degeneracy. See,
Thoules, D. et al. Phys. Rev. B31, 3372, 1985.
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and the possible values for the energies of the electrons in the system are
EN = 2πh̄

m (n+N), fact that illustrate the degeneracy in the spectrum.
The reduced Hilbert space in this case could be consider as the comple-

tion of the set of Holomorphic sections of the complexificated line (U(1))
bundle (with the Hopf fibration). However the set of Holomorphic line bun-
dles over CP2n−1 is parametrized by H1(CP2n−1, ), where  denotes the
sheaf of local Holomorphic functions on CP2n−1, and given the map

c1 : H1(CP2n−1, ) −→ H2(CP2n−1,Z) ' Z
L 7−→ c1(L) = i[F ]

2π

where [F ] is the cohomology class of the curvature of any connection on L,
we see that there are Holomorphic line bundles over CP2n−1 as many as
integer numbers.

Now, if we observe the form of the equations 3.2.1, for the operators ∇i

and ∇i , and we compare with the result (in a non-symmetric gauge)

∂Ai = ∂Oi + 1
2eBzqi

∂Ai = ∂Oi

we can deduce that these operators correspond to the connection operators
for a Kähler manifold with Kähler scalar potential

K =
eB

2
zqizqi

and this is just (apart from a constant factor) the potential corresponding to
Cn parametrized with local coordinates zqi. Thus, this quantization can be
identified with the quantization of Cn, with Kähler form ω = eB

2 dzqi ∧ dzqi,
and then the quantum bundle is a Holomorphic line bundle L on Cn with
first Chern class [ω].

Following this idea, our Hilbert space of quantization is the set of Holo-
morphic sections on L such that

∂ψ(zqi, zqi)
∂zqi

= 0

i.e.
ψ(zqi, zqi) = φ(zqi)e−

eB
2h̄

zqizqi
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where the φ(zqi) is a Holomorphic function in coordinates of configuration
space (in the usual sense), these sections must be L2 integrable respect to
the Hermitian structure

| ψ(zqi, zqi) |2= φφe−
eB
4h̄

zqizqi .

For the n-electron system Laughlin9 proposed the form of the wave functions
for different values of the ”filling factor” ν defined by the number of electrons
in the system divided the magnetic flux (in units of quantum flux Φ0)

ν =
n

Φ/Φ0
=

n

NΦ

whereN is the degeneracy of each Landau Level. This filling factor represent
the number of filled levels at T = 0, the IQHE consider all the (small) integer
values of and for FQHE it works (respect to the experimental data) with
almost all the fractions with odd denominators m = 2n+1 and n small. For
ν = 1/m the Laughlin wave functions are10 (following the Pauli exclusion
Principle and angular momentum conservation)

ψ(m)
n (zqi, zqi) =

n∏
i<j

(zqi − zqj)
m e−

eB
2h̄

zqizqi .

The analytic part of this wave function is a homogeneous polynomial of
degree M = mn(n − 1)/2 (i.e. a eigenstate of angular momentum). The
odd denominator rule observed experimentally can be explained by the phase
factor (−1)m that gives the exchange of sign to the wave function under
the exchange of two electrons of the system, this is the fermionic statistics
involved in electron systems. This results also can be obtained from the
geometric quantization of the system, as we can see from the canonical
representation of sections of Holomorphic line bundles over CP2n−1.

Now, from Cn to CP2n−1the symplectic form ω = eB
2 dzqi ∧ dzqi can be

pushed down to the Fubini-Studi form ωFS through the map σE : C2n →
CP2n−1 that takes the surface of constant energy E to its image under the

9Lauglin, D. Phys. Rev. Lett. 50, 1395, 1983.
10This wave function is the corresponding for the nonsymmetric gauge, in the symmetric

gauge it is ψnm(zqi, zqi) = (zqi)
n (zqj)

m e−
eB
2h̄

zqizqi , see Fubini, S. Int. Jour. Mod. Phys.
A5, 3533, 1990.
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reduction quotient, i.e. σE
∗

(
eB
2 dzqi ∧ dzqi

)
= eBE

w0h̄ ωFS , and this implies,
through the integrality condition,

eBE

w0h̄
∈ Z.

For the cases of odd integers (our fermionic system) this means that

eBE

w0h̄
= m

where m = 2n+ 1, and this is equivalent to
1

2n+ 1
=

w0h̄

eBE

for some n ∈ Z, precisely the filling factor ν11.

As in the magnetic monopole case lets look for the Holomorphic quantum
bundles corresponding to the different quantum numbers, We already know
that the first Chern class c1(L) = i[F ]

2π classifies this line bundles, and if
c1(L) = 1 and c1(L′) = m, then L′ ' L⊗m, the mth tensor power of L.
From the integrality condition we know that for each integer there is, up
to isomorphism, a unique connection corresponding to a Holomorphic line
bundle Lm, say ∇m = (∂Lm , ∂Lm) (written in terms of its (1,0) and (0,1)
components). In local coordinates

θm =
m(2n)
2πi

ξkdξk

1 + ξkξk

is a connection potential on Lm with curvature −imωFS , i.e. the expected
connection [KN]. Now, given that

c1(Lm) =
i

2π

∫
CP2n−1

−imω2n−1
FS = m

we deduce that Lm ' L⊗m, where our original L is L1, and for each
integer m the Hilbert space of quantization is the completion of Γm =
ΓPh

(CP2n−1,L⊗m). Finally, note that is in this sense that the filling factors
are topological numbers,

ν = 1/c1(Lm),

whose value is fixed by the integrality condition.
11See Hatsugay, Y. ”Topological Aspects of the Quantum Hall Effect”. J. Phys.: Con-

dens. Matter, 9, 2507, 1997.
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Appendix A

Symplectic Manifolds

A.1 Symplectic Forms on Vector Spaces

Definition 1:

Let V be a (real) vector space with finite dimension and V ∗ its dual space,
{v1, v2, v3, ..., vn} a base for V and {v1, v2, v3, ..., vn} the corresponding dual
base (i.e. vi(vj) = δij). Let L2(V,R) be the set of bilinear functions from
V × V on R and ω an element of this set, we say that ω is no-degenerated
if and only if

ω(v1, v2) = 0 ∀v2 ∈ V =⇒ v1 = 0,

this is equivalent to say that the matrix of ω, defined by ωij = ω(vi, vj), is no
singular, or that the application ω̃ : V → V ∗ defined by ω̃(v)(v′) = ω(v, v′)
is an isomorphism.

Definition 2:

A 2-form ω on V is a bilinear application such that for the transposed matrix
of ω, defined by ωt(v1, v2) = ω(v2, v1), follows that ωt = −ω . Λ2(V ) denotes
the set of 2-forms on the vector space.

The structure of a 2-form is determined by its range, if the dimension of the
vector space is n and the range of a 2-form on it is r, then r = 2p for some
integer p and there exist bases for V and V ∗ in terms of which

ω = v1 ∧ vp+1 + v2 ∧ vp+2 + · · ·+ vp ∧ v2p
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and then the matrix of such 2-form is

J =

 0 Ip 0
−Ip 0 0
0 0 0


where Ip is the p× p identity matrix. If ω have maximal range,

J =

(
0 In
−In 0

)
and then1

ω =
∑n

i=1 v
i ∧ vi+n ≡ vi ∧ vi+n.

If the dimension of V is even the ω can be written as in the last equation,
and then it is no degenerated. To verify this affirmation it is enough to
observe that given a vector space W , defining V = W ×W ∗, the function ω :
V × V → R defined by ω(v1, v2) = ω((w1, α1), (w2, α2)) = α2(w1)− α1(w2)
is a no-degenerated form. In this way if V is an arbitrary vector space
and DimV = 2n then V ∼= R2n ∼= Rn × Rn ∼= Rn × Rn∗, and the result
follows from this. Now, given the structure of the 2-form on V mentioned
before, it is clear that if ω is a no-degenerated form on V there exist a base
{v1, v2, ..., vn, w1, w2, ..., wn} for V such that

ω = vi ∧ wi

and then ω(vi, vj) = ω(wi, wj) = 0, ω(vi, wj) = ω(wj , vi) = δij . This base is
called canonical for V .

Definition 3:

A 2-form ω no degenerated on a vector space V is called Symplectic Form
and to the pair (V, ω) Symplectic Vector Space. A function t : V → V ′,
where (V, ω) and (V ′, ω′) are symplectic vector spaces, is called symplectic or
symplectomorphism if t∗ω′ = ω (this is ω′(t(v1), t(v2)) = ω(v1, v2) ∀v1, v2 ∈
V ).

Every symplectomorphism is an isomorphism (induced by the corre-
sponding 2-form) and the set of symplectomorphisms form a symplectic
vector space into itself has group structure, with the composition operation;
we denote that group as Sp(V, ω).

1From now we are using the repeated index summation convention.
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Theorem 1:

T ∈ Sp(V, ω) if and only if T tJT = J , where J is the matrix associated to
ω.

A.2 Symplectic Manifolds

Lets go now in our discussion to the case of differentiable smooth (C∞)
manifolds with finite dimension.

Definition 4:

A Symplectic Manifold (M,ω) is a pair composed by a smooth manifold M
and a differential 2-form ω defined on it, closed and no-degenerated (called
symplectic form). This means that

dω = 0

and the application

i : TmM −→ T ∗mM
X 7−→ i(X) = ω(X, ·) ≡ iXω

is a linear isomorphism for each m ∈M between the spaces of tangent and
cotangent vectors in m. Every symplectic manifold has even dimension and
is orientable, but no every differential manifold with even dimension admits
a symplectic structure.

Definition 5:

If a function C∞, f : (M,ω) → (M ′, ω′), is such that f∗ω′ = ω, this function
is called a symplectomorphism and is then a local diffeomorphism between
the manifolds. As in the case of vector spaces the symplectomorphisms with
the composition operation have group structure (denoted Sp(M,ω)).

In the symplectic vector spaces we have a canonical representation for a
symplectic 2-form; in this case, with symplectic manifolds, a similar result
is the following theorem
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Darboux Theorem:

Let (M,ω) be a symplectic manifold and m ∈M any point on it, then there
exists an open set Um aroundm with local coordinates {q1, q2, ..., qn, p1, p2, ..., pn}
(called canonical coordinates) in such way that on Um

ω = dpi ∧ dqi.

Example:

The main example is the Cotangent Bundle to a differential manifold. If
M is a smooth manifold with local coordinates {q1, ..., qn} and TmM , its
tangent space at m, then TmM can be seen in terms of derivations2 as the
space generated by the set { ∂

∂q1
, ..., ∂

∂qn
} and with this base we have the cor-

responding to the cotangent space T ∗mM (dual of TmM ) {dq1, ..., dqn}. The
Tangent Bundle to M is defined as the union (disjoint) TM =

⋃
m∈MTmM

and the cotangent bundle as T ∗M =
⋃

m∈MT
∗
mM , both of them have a nat-

ural structure of 2n-dimensional differential manifold. A ”point” in TM can
be determined by the 2n coordinates {q1, ..., qn, a1, ..., an}, the first n iden-
tifies the point m of M where the particular tangent space is taken and the
last n give the coefficients identifying the particular point on such tangent
space, in this case this ”point” is given by the following expression

a1
∂

∂q1
+ · · ·+ an

∂

∂qn
.

In a similar way, any element of T ∗M is in some of the T ∗mM , thus is
determined by n coordinates giving localization to the point m and on it
the desired element can be written as

p1dq1 + · · ·+ pndqn

so every local chart on T ∗M must have as coordinates {q1, ..., qn, p1, ..., pn}.

On the tangent and cotangent bundles described in this way results nat-
ural to think in the possibility of defining a symplectic form in each case
(given its even dimension), and in fact this forms exists. In the case of

2See S.G. Scott ”Some Notes on Geometry and Quantization”, in Proceedings of 1st.
Encuentro de Geometŕıa Diferencia y F́ısica, Uniandes, 1995.
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the cotangent bundle T ∗M π→ M , where π denotes the natural projection
{q1, ..., qn, p1, ..., pn} ≡ (q, p) π7→ {q1, ..., qn} ≡ q, this 2-form

ω = dpi ∧ dqi

is closed and no-degenerated, and is independent of the chosen coordinates
on M . More than closed (dω = 0) this symplectic form on the cotangent
bundle is exact, this means that exists globally a 1-form θ defined on T ∗M
such that

ω = dθ,

this 1-form is called canonical or symplectic potential in the literature, and
in local coordinates has the form

θ = pidqi.

On a general symplectic manifold, given that ω is closed and by the using
of the Poincare lemma, there exists this symplectic potential only locally
(and it is not unique), and in the corresponding canonical coordinates has
the structure given by the last equation. In general, the already mentioned
Darboux Theorem shows that every symplectic manifold has local structure
of cotangent bundle, and then any pair of symplectic manifolds with the
same dimension are locally diffeomorphic.
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Appendix B

Hamiltonian Dynamics and
Symplectic Geometry

The classical description of the dynamics of a given physical system can be
build up in many ways, from the Newtonian scheme until the more elabo-
rated and usual, Lagrangian and Hamiltonian, whose incorporation to the
structure of the physical theories follows from the facility that they offer
in the study of the symmetries and its relation with the conservation laws
(through Noethers Theorem in the lagrangian description, for example) and
the direct arrive to the corresponding quantum description (in the Hamil-
tonian scheme). Given a physical system composed by N particles it is
necessary, to determine the system configuration in a particular time, to
know 3N numbers corresponding to the 3N spacial coordinates of the sys-
tem particles, thus we can define the Configuration Space for that system
as the set of the ordered 3N numbers susceptible of being defined for the
possible configurations of the system. This coordinates can be position co-
ordinates, but not necessarily they must be1.

Defined in this way the configuration space Q of a physical system can
be seen naturally as a differentiable manifold (differentiability is imposed
here in order to define velocities, accelerations and other physical quantities
as in Newtonian mechanics) with dimension equal to the number of freedom
degree of the system (3N in the case described in last paragraph). If we
take the tangent bundle to this manifold we can see it as the space of all

1In general any set of numbers that determine completely the system configuration
can work as ”generalized coordinates” for it, velocities, temperatures and potentials are
possible examples.
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the possible tangent vectors to trajectories in configuration space, this is
the generalized velocities space of the system, where can be defined the
Lagrangian as a real function of the coordinates and velocities L(qi,

.
qi)2 in

terms of which the trajectories followed by the system in configuration space
can be determined and thus the equations of motion of the system, known
as Euler-Lagrange equations[A1]

∂L

∂qi
− d

dt

∂L

∂
.
qi

= 0.

This is the lagrangian description of the dynamics of a physical system,
accomplished on the tangent bundle to configuration space, TQ. From the
lagrangian of a system we define the ”generalized momentum” pi as

pi =
∂L

∂
.
qi

and the Hamiltonian function of the system as

H(qi, pi) = pi
.
qi −L(qi,

.
qi)

in terms of which the motion equations, also called Hamilton Equations, are

.
qi= ∂H

∂pi.
pi= −∂H

∂qi
.

The momentum pi can be seen here as coordinates in the cotangent bun-
dle T ∗Q, called Phase Space of the system, and we can define an algebraic
structure on the set of C∞ real functions on phase space (called ”physical
observables”) through the Poisson bracket operation3, that given two physi-
cal observables f and g (as energy, momentum, etc.) associate other defined
by

{f, g} =
∂f

∂qi

∂g

∂pi
− ∂g

∂qi

∂f

∂pi

2Notation:
.
qi=

dqi
dt

, where t is a parameter, in physics the time usually.
3It is direct to observe that the set of physical observables (smooth real functions

on phase space, with the usual sum and multiplication by scalars) have structure of Lie
algebra with the Poisson bracket operation, that means that given observables f , g and
h, and scalars α and β,
{f, g} = −{g, f}
{αf + βg, h} = α{f, h}+ β{g, h}
{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.
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Another way of writing Hamilton equations, by using the Poisson brackets,
follows recognizing that

dA

dt
=
∂A

∂qi

.
qi +

∂A

∂pi

.
pi=

∂A

∂qi

∂H

∂pi
− ∂H

∂qi

∂A

∂pi
= {A,H}

for any observable A, thus

{qi,H} = ∂H
∂pi

{pi,H} = −∂H
∂qi

are the same equations. Note that in terms of Poisson bracket we can
characterize the constants of motion for the dynamics of the system, because
A is a constant of motion if and only if {A,H} = 0.

The dynamical description of a classical system with higher interest for
us is the Hamiltonian description, in first place because it is carried on the
cotangent bundle to a manifold (configuration space) and this bundle has a
natural symplectic structure, and second because the step from the classical
to the corresponding quantum description is made from this formalism, and
this can give us some geometrical information about how this process must
be accomplished. Lets go on observing how classical dynamical description
looks in a geometric fashion, i.e. how the symplectic structure on phase
space determines the dynamics. Lets consider a system whose configuration
space is the manifold Q and its phase space its cotangent bundle T ∗Q, then
there exist, defined on phase space, a symplectic form ω that in canonical
local coordinates can be written as

ω = dpi ∧ dqi.

Given a physical observable f ∈ C∞(T ∗Q,R) we define the Hamiltonian
Vector Field associated to f as the field Xf given by the equation

iXf
ω = −df

where we use the isomorphism i defined by ω in the precedent appendix.
This vector field exists because the symplectic form is nondegenerated (ω is
nondegenerated if and only if iXω = 0 ⇐⇒ X = 0).
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Theorem 1:

The Lie derivative of the symplectic form along a Hamiltonian vector field
is zero.

Proof.

LXf
ω = d(ω(Xf )) + dω(Xf ) = d(−df) + dω(Xf ) = 0

ut
This means that along the integral trajectories of the field the symplectic

form is ”constant”.

Given a real function f on phase space T ∗Q, its exterior derivative locally
is written

df =
∂f

∂qi
dqi +

∂f

∂pi
dpi

thus the Hamiltonian vector field defined by this function is Xf = ai
∂

∂qi
+

bi
∂

∂pi
, and using the definition

ω(Xf , ·) = ω
(
ai

∂
∂qi

+ bi
∂

∂pi
, ·
)

= dpi ∧ dqi
(
ai

∂
∂qi

+ bi
∂

∂pi

)
= dpi ∧ dqi

(
ai

∂
∂qi

)
+ dpi ∧ dqi

(
bi

∂
∂pi

)
= −aidpi + bidqi = − ∂f

∂qi
dqi − ∂f

∂pi
dpi

so it is verified that
Xf =

∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi

and then, if γ(t) = (pi(t), qi(t)) is a integral curve of the vector field we have
that

− ∂f
∂qi

=
.
pi

∂f
∂pi

=
.
qi

precisely the Hamilton equations in the case in which f is the energy for the
system, thus dynamics follows from the 2-form ω.

In the same way the algebraic structure of the set of observables on
cotangent bundle T ∗Q is determined by the symplectic structure, given that
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Poisson bracket can be defined in terms of such form. For any two functions
f, g ∈ C∞(T ∗Q,R), the Poisson Bracket of f with g is defined as

{f, g} = Xf (g) = −Xg(f) = ω(Xf , Xg)

or, in local coordinates

{f, g} = Xf (g) =
∂f

∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

corresponding exactly with the old definition. It is easy to observe that,
defining the Lie bracket of vector fields X and Y as [X,Y ] = XY − Y X,
follows that

[Xf , Xg] =
(

∂f
∂pi

∂
∂qi

− ∂f
∂qi

∂
∂pi

) (
∂g
∂pi

∂
∂qi

− ∂g
∂qi

∂
∂pi

)
−

(
∂g
∂pi

∂
∂qi

− ∂g
∂qi

∂
∂pi

) (
∂f
∂pi

∂
∂qi

− ∂f
∂qi

∂
∂pi

)
=
(

∂2f
∂p2

i

∂g
∂qi

+ ∂f
∂pi

∂2g
∂pi∂qi

− ∂2f
∂pi∂qi

∂g
∂pi

− ∂f
∂qi

∂2g
∂p2

i

)
∂

∂qi

−
(

∂2f
∂q2

i

∂g
∂pi

− ∂f
∂pi

∂2g
∂q2

i
+ ∂2f

∂pi∂qi

∂g
∂qi

− ∂f
∂pi

∂2g
∂pi∂qi

)
∂

∂pi

= ∂Xf (g)
∂pi

∂
∂qi

− ∂Xf (g)
∂qi

∂
∂pi

= XXf (g)

= X{f,g} .

Very usual in some calculations is the change in the coordinates {q1, ..., qn, p1, ..., pn} →
{z1, ..., zn, z1, ..., zn}, where

zi = pi + iqi and zi = pi − iqi

in terms of which our expressions for the symplectic 2-form, the Hamiltonian
vector fields, Poisson brackets and all the expressions, before in coordinates
p’s and q’s, must be written. Observing that

qi =
zi + zi

2
and pi =

zi − zi

2i
then

θ = pidqi =
(
zi − zi

2i

)(
dzi + dzi

2

)
=
zidzi

4i
− zidzi

4i
=

1
2i
zidzi
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and
ω = dθ = dpi ∧ dqi =

dzi ∧ dzi

2i
.

Looking for the expression for the Hamiltonian vector field generated for an
observable f and Poisson bracket, in this new coordinates, it is enough to
note that

∂

∂zi
+

∂

∂zi
=

∂

∂qi
and

∂

∂zi
− ∂

∂zi
= i

∂

∂pi

so

Xf =
∂f

∂pi

∂

∂qi
− ∂f

∂qi

∂

∂pi
=

2
i

[
∂f

∂zi

∂

∂zi
− ∂f

∂zi

∂

∂zi

]
and

{f, g} =
∂f

∂zi

∂g

∂zi
− ∂f

∂zi

∂g

∂zi
.

Example 1:

An easy example of all this is the one dimensional harmonic oscillator mass
unity, case in which the configuration space for the system is R and phase
space T ∗R ' R2, with canonical form ω = dp ∧ dq, thus if we consider the
Hamiltonian function (energy) of the system

H =
1
2
(p2 + q2)

we have as Hamiltonian vector field

XH =
∂H

∂p

∂

∂q
− ∂H

∂q

∂

∂p
= p

∂

∂q
− q

∂

∂p

and then the equations of motion are
.
q= p

.
p= −q

just the classical definition of momentum (”the mass times the velocity”)
and Hook force equation for a spring. If we consider the n-dimensional case
it is enough to take ω = dpi ∧ dqi, with i running from one to n, and the
Hamiltonian H = 1

2(p2
i + q2i ), obtaining a similar result; and if we use the

change of variables described previously we can see for example that the
Hamiltonian takes the simplest form H = 1

2zizi, and then its vector field
associated is

XH =
1
i

[
zi
∂

∂zi
− zi

∂

∂zi

]
.
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Example 2:

Another example, very important for us, is the electromagnetic field. If we
take as configuration space the Minkowskian space-time Q for the study of
the dynamics of a charged particle under the influence of a field F 4, then
phase space TQ∗ ' R8 can be parametrized with coordinates (qi, pi) ≡
(q1, q2, q3, q4, p1, p2, p3, p4), where

π : TQ∗ −→ Q

is the natural projection π(qi) = xi, pi = ∂L
∂xi

, and L is the lagrangian
corresponding to the system. The canonical symplectic form on phase space
is

ω = dqi ∧ dpi

and in terms of it we can find the Hamilton equations (i.e. the dynam-
ics) using the Hamiltonian function of the system, this Hamiltonian must
contain a term given count of the interaction between the particle and the
field. Alternatively we can describe the dynamics using a Hamiltonian free
of interaction terms (called free Hamiltonian) H = pi

.
qi −L, modifying

”geometrically” the system, this means modifying the symplectic 2-form,
this modification works as follows.

From Maxwell equations

∗d ∗ F = j and dF = 0

where
F = Exdt ∧ dx+ Eydt ∧ dy + Ezdt ∧ dz
−Bxdy ∧ dz −Bydz ∧ dx−Bzdx ∧ dy

it is clear that F is closed. Now, taking the pull-back of F by the projection
π, say F ′ = π∗(F ), we can define the 2-form

ωe,F = ω + eF ′

4F is a 2-form called Faraday or Electromagnetic Field Tensor. In local coordinates on
Q

F =
1

2
Fµνdxµ ∧ dxν

where the coefitients Fµν are given by the matrix

Fµν =

 0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0


Here E and B denotes the electric and magnetic field respectively.
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on phase space, where e denotes the particle charge.

Proposition:

The 2-form ωe,F defined in this way is symplectic, i.e. closed and nondegen-
erated.

Proof.First observe that ωe,F is closed because

dωe,F = dω + edF ′ = 0

given that ω is closed and so is F , from Maxwell equations, thus its pull-back
F ′ too. To verify the no-degeneracy remember that ωe,F is nondegenerated
if and only if iXωe,F = 0 ⇐⇒ X = 0, thus the equations iXf

ωe,F = −df give
us an answer respect this. Expanding the vector field Xf in the TQ basis,

Xf = ai
∂

∂qi
+ bi

∂
∂qi

= a1
∂

∂q1
+ a2

∂
∂q2

+ a3
∂

∂q3
+ a4

∂
∂q4

+ b1
∂

∂p1
+ b2

∂
∂p2

+ b3
∂

∂p3
+ b4

∂
∂p4

then

iXωe,F = ωe,F (Xf ) = ω + eF ′
(
a ∂

∂q + b ∂
∂q

)
= dq1 ∧ dp1

(
a ∂

∂q + b ∂
∂q

)
+ dq2 ∧ dp2

(
a ∂

∂q + b ∂
∂q

)
+

dq3 ∧ dp3

(
a ∂

∂q + b ∂
∂q

)
+ dq4 ∧ dp4

(
a ∂

∂q + b ∂
∂q

)
+

eExdq1 ∧ dq2
(
a ∂

∂q + b ∂
∂q

)
+ eEydq1 ∧ dq3

(
a ∂

∂q + b ∂
∂q

)
+

eEzdq1 ∧ dq4
(
a ∂

∂q + b ∂
∂q

)
− eBxdq3 ∧ dq4

(
a ∂

∂q + b ∂
∂q

)
−

eBydq4 ∧ dq2
(
a ∂

∂q + b ∂
∂q

)
− eBzdq2 ∧ dq3

(
a ∂

∂q + b ∂
∂q

)

= a1(dp1 + eExdq2 + eEydq3 + eEzdq4) + b1dq1+

a2(dp2 + eExdq1 − eBydq4 − eBzdq3) + b2dq2+

a3(dp3 + eEydq1 − eBxdq4 − eBzdq2) + b3dq3+

a4(dp4 + eEzdq1 − eBxdq3 − eBydq2) + b4dq4

70



and for f we have that

df = ∂f
∂qi
dqi + ∂f

∂pi
dpi

= ∂f
∂q1
dq1 + ∂f

∂q2
dq2 + ∂f

∂q3
dq3 + ∂f

∂q4
dq4+

∂f
∂p1

dp1 + ∂f
∂p2

dp2 + ∂f
∂p3

dp3 + ∂f
∂p4

dp4

then, comparing coefficients,

∂f
∂q1

= − (b1 + eEx + eEy + eEz)

∂f
∂q2

= − (b2 + eEx − eEy − eEz)

∂f
∂q3

= − (b3 − eEx + eEy − eEz)

∂f
∂q4

= − (b4 − eEx − eEy + eEz)

∂f
∂p1

= −a1

∂f
∂p2

= −a2

∂f
∂p3

= −a3

∂f
∂p4

= −a4

thus, as we expect, iXωe,F = 0 ⇐⇒ X = 0 and then ωe,F is nondegenerated,
then the pair (T ∗Q,ωe,F ) is a symplectic manifoldut

The method we have just described (change the symplectic structure on
the manifold and leave unaltered the Hamiltonian H of a free particle, and
not to modify the Hamiltonian and work with the canonical symplectic form)
is equivalent to the so-called ”minimal coupling” in physics literature, this
consists in writing the Hamiltonian of a free particle changing the variable p
(momentum) by ”p+eA”, where A is the electromagnetic potential, defined
by

F = dA

71



(this 1-form exist locally by Poincare Lemma). A verification of the equiv-
alence between both methods can be made looking for a symplectomor-
phism between the manifolds (TQ∗, ωe,F ) and (TQ∗, ω), in such way that
ϕ∗e,F (H) = He,A where He,A denotes the minimal coupling Hamiltonian..
The symplectomorphism is

ϕe,F : (TQ∗, ωe,F ) −→ (TQ∗, ω)
(qi, pi) 7−→ (qi, pi + eπ∗(A)(qi))

(then ϕ∗e,F (ω) = ωe,F ), and then the solution trajectories to He,A relative
to ω are the images under ϕe,F of the solution curves of H relative to ωe,F ,
thus on Q the curves are the same. There exist a quantum version of this
method, very used in physics, also included in this work (see chapter one).

Given the changes in the symplectic form for the description of the elec-
tromagnetic field, we must have changes in the local expressions for Hamil-
tonian vector fields defined by ωe,F = ω + eF ′ according to the equation
df = −Xfωe,F , and the symplectic potential associated to this new sym-
plectic structure. This fields are

Xe,F
f =

∂f

∂pi

∂

∂qi
−
(
∂f

∂qi
+ eFij

∂f

∂pj

)
∂

∂pi

where the Fij are the components of F , and the symplectic potential 1-forma
is

θe,F = pidqi + eAidqi,

as a direct calculation can show.
There are many other applications of the methods of symplectic geome-

try to physics, additional information about this can be found in [C2] and
[GS1].
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Appendix C

Symmetries

A classical result in the mathematical physics literature is the so called
Noethers Theorem, in few words this theorem says that if a physical system
is invariant under a symmetry group action (rotations, traslations, etc.) then
on such system must be verified a corresponding conservation law (angular
momentum, linear momentum, etc.). In this appendix we want to introduce
the basic fact we must know from group actions on symplectic manifolds for
the geometrical formulation of the dynamics of a system with symmetries,
by introducing the concept of Moment Map on a symplectic manifold, the
main reference for the material reviewed in this appendix is [GS1].

C.1 Actions of Lie Groups on Manifolds

Through this appendix G will note a Lie group, G its associated Lie algebra
(G ' TeG), and the applications

Lh : G→ G
g 7→ hg

and
Rh : G→ G

g 7→ gh

the left and right translation diffeomorphism, respectively.

Definition 1:

Given ξ ∈ G, let Xξ denote the left invariant vector field on G defined by

73



Xξ(g) = TeLg(ξ)

then there exists a unique integral curve cξ : R → G for Xξ starting at e,
this means that { .

cξ (t) = Xξ(cξ(t))
cξ(0) = e

and cξ(t+ s) = cξ(t)cξ(s). Given such curve we define the Exponential Map
as1

exp : G → G
ξ 7→ cξ(1).

Examples:

If we take as Lie group a (finite-dimensional) vector space V , its Lie algebra
is V itself and in this case the exponential application is just the identity.
If G = GL(n,R), then G = L(Rn,Rn) and in this case

exp(A) =
∞∑
i=0

Ai

i!
.

Definition 2:

For an element g of the Lie group G we define the Adjoint Application
associated to g as

Adg = Te(Rg−1 ◦ Lg) : G → G.

For A ∈ GL(n,R), by example, we have that

AdA(B) = ABA−1

for every B ∈ L(Rn,Rn). In general for every group G and Lie algebra G

exp(Adgξ) = g(exp ξ)g−1

where g ∈ G and ξ ∈ G.
1See by example Warner, J. Lie Groups, Lie Algebras and Differential Geometry,

Springer Verlag, 1980.
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Definition 3:

An Action of a Lie Group G on a manifold M is a smooth application

φ : G×M →M

such that for every m ∈ M follows that φ(e,m) = m and φ(g, φ(h,m)) =
φ(gh,m), where g, h ∈ G and m ∈M . The application

φg : M −→M
m 7→ φ(g,m)

is a diffeomorphism. If for every pair of elements m and m′ of M there exist
g in G such that φ(g,m) = m′ this action is called transitive, if φg(m) = m

implies that g = e then is called free, if the function φ̃ : G×M →M ×M :
(g,m) 7→ (m,φ(g,m)) is proper the action is called proper. Given an action
φ we define the Orbit of m ∈M as the set

Om = {φg(m) : g ∈ G} ⊂M

and the Isotropy Group of φ in m as

Gm = {g ∈ G : φ(g,m) = m}.
Thus the action is transitive if and only if there exist just one orbit for the
action, and is free if and only if Gm = {e} for every m.

Denoting M/G the set of all the orbits of the Lie group G action on M ,
called Orbit Space, and define on it the quotient topology induced by the
application

π : M →M/G
m 7→ Om

we have then a ”reduced” space on which the dynamics of a problem involv-
ing symmetries can be carried on.

Example:

Take M = R2 \ {0, 0} and G = SO(2) =

{(
cos θ −senθ
senθ cos θ

)
: θ ∈ [0, 2π)

}
,

defining the free action on M as

φ

((
cos θ −senθ
senθ cos θ

)
,

(
x
y

))
=

(
cos θ −senθ
senθ cos θ

)(
x
y

)

=

(
x cos θ − ysenθ
xsenθ + y cos θ

)
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it is clear that the corresponding orbits to each point of the plane will be
the corresponding concentric circumferences around the origin passing by
the respective points, i.e. M/G ≈ R+.

Given an action of a Lie group G on a manifold M it is possible, with
the help of the Lie algebra of the group, to define an action of R on the
manifold, this is a ”flux” on M .

Definition 4:

If ξ is an element of the Lie algebra G, we define the application

φξ : R×M →M
(t,m) 7→ φ(exp(tξ),m).

This in fact is an action, and define its infinitesimal generator as the smooth
vector field given by

ξM (m) =
d

dt
(φexp(tξ)(m) |t=0 .

A very useful and interesting result give us a relation between the struc-
ture of the tangent space to the orbits of an action and the infinitesimal
generators of it

TmOmo = {ξM (m) : ξ ∈ G}

where m and mo ∈M .
Two types of actions will be important for us, one on its proper Lie

algebra G, defined as

Ad : G× G → G
(g, ξ) 7→ Adg(ξ)

and called Adjoint Action, and other on the dual space to the Lie algebra,
defined as

Ad∗ : G× G∗ → G∗
(g, α) 7→ Ad∗g−1(α) = (Te(Rg−1 ◦ Lg))∗α

and called Coadjoint Action.
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Definition 5:

Let M be a manifold and φ an action of a Lie group G on M . We say that
a function f : M → M is equivariant respect to the action if f ◦ φg = φg ◦
f ∀g ∈ G, i.e. f(φg(m)) = f(φ(g,m)) = φg(f(m)) = φ(g, f(m)) ∀g ∈ G. If
f is a equivariant function respect to the action φ, then ∀ξ ∈ G

Tf ◦ ξM = ξM ◦ f.

C.2 The Moment Map

Definition 6:

Given a connected symplectic manifold (M,ω) and a symplectic action φ
on M (this is an action on M such that φg is a symplectomorphism for all
g ∈ G), if for any ξ ∈ G there exist a globally defined map

J (ξ) : M → R

such that
ξM = XJ (ξ)

(the Hamiltonian vector field generated by J (ξ)), then the map

J : M −→ G∗
m 7−→ J(m)

where
J(m)(ξ) = J (ξ)(m)

is called Moment Map for the action φ.

Proposition:

Let ξ, η ∈ G, and suppose there exist a moment map J such that J (ξ),J (η) ∈
C∞(M,R), then

XJ ([ξ,η]) = X{J (ξ),J (η)}

where [, ] and {, } denotes the Lie and Poisson brackets respectively.

The contends of the very known Noethers theorem can be summarized in
this context through the following result:
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Theorem (Noether):

Let φ be a symplectic action on a symplectic manifold (M,ω), with mo-
ment map J , and H : M → R a G-invariant function (i.e. H(φg(m)) =
H(m) ∀m ∈M, g ∈ G), then J (ξ) is a constant of motion for the dynamics
generated by H (i.e {H,J (ξ)} = 0 on M) and J ◦ φt = J , where φt is the
flux of XH .

Definition 7:

A symplectic action φ with moment map J is called Hamiltonian if J is
Ad∗-equivariant, i.e.

J(φg(m)) = Ad∗g−1(J(m))

for every g ∈ G and m ∈M .

An action is Hamiltonian if and only if J : G → C∞(M,R) : ξ 7→ J (ξ) is a
Lie algebras homomorphism. In fact can be easily checked that

{J (ξ),J (η)} = J ([ξ, η]).

In the cases of our main interest (cotangent bundles) there are a couple of
results that relate the action of the moment map J with the action of the
canonical symplectic potential, as a matter of fact if φ is a symplectic action
of G on (M,ω), where ω = dθ and the action preserves θ (i.e. φ∗gθ = θ ⇒
LξM

θ = 0), then the map
J : M → G

such that
J(m)(ξ) = (iξM

θ)(m)

is an Ad∗-equivariant moment map for this action2. If we have an action on
the base manifold Q for a cotangent bundle (TQ∗, ω = dθ), say

φ : G×Q→ Q

it is possible to lift this action to one on the cotangent bundle

φ∗ : G× TQ∗ → TQ∗

2See Marsden, J. Lectures on Geometrical Methods in Mathematical Physics. S.I.A.M.,
1981.
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in such way that the maps φg : Q→ Q defines maps φ∗g : TQ∗ → TQ∗ by

φ∗g(α)(X) = α(Tφ−1
g (X))

where α ∈ TqQ
∗ and X ∈ Tφg(q)Q. In this case the moment map is given by

J : TQ∗ → G : α 7→ J(α), where

J(α)(ξ) = α(ξQ(q))

for α ∈ TqQ
∗, and

(iξTQ∗θ)(α) = α(ξQ(q)).

Example 1: Linear Momentum Conservation

Consider the manifolds Q = Rn and TQ∗ = R2n and the Lie group G = Rn

acting as3
φ : G×Q→ Q

(−→t ,−→q ) 7→ −→
t +−→q

then G = Rn and

ξRn(−→q ) = d
dt |t=0 φexp tξ(−→q )

= d
dt |t=0 (−→q + exp tξ) = ξ

so
ξRn = ξ

∂

∂qi
.

Now, from our last results on R2n

J (ξ)(m) = J(m)(ξ) = (iξR2nθ)(m)

where m = pidqi = (−→p ,−→q ) ∈ R2n, so

J(−→p ,−→q )(ξ) = (iξR2npidqi)(−→p ,−→q ) = (ξRn(−→p ,−→q )) = ξ−→p

thus
J (−→p ,−→q ) = −→p

the linear momentum.
3Here −→q denotes the vector (q1, q2, ..., qn).
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Example 2: Angular Momentum Conservation

Lets take Q = R3 and TQ∗ = R6 and the Lie group G = SO(3) with the
action

φ : G×Q→ Q
(A,−→q ) 7→ A−→q

then G ' R3, the isomorphism given by

R3 −→ SO(3) x
y
z

 7→

 0 −z y
z 0 −x
−y x 0


as can be checked. Now, in this case

ξR3(−→q ) = d
dt |t=0 φ

exp t
−→
ξ

(−→q )

= d
dt |t=0 (exp t−→ξ · −→q ) = d

dt |t=0


 tξ1
tξ2
tξ3

×
 q1
q2
q3




= −→
ξ ×−→q .

From this we have on R6

J (ξ)(m) = J(m)(ξ) = (iξR6θ)(m)

where m = pidqi = (−→p ,−→q ) ∈ R6, so

J (−→p ,−→q ) = −→p ×−→q

is just the known angular momentum.

C.3 Symplectic Reduction

Given a symmetry on a classical system described through a symplectic
manifold (M,ω), and the corresponding group action on this manifold, we
want to take only a ”effective” part of the system in the corresponding
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description, reducing the freedom degrees. This can be or not carried on
depending on what kind of group defines the action and some properties of
the manifold, lets see some results that give sufficient conditions to do this
and how this works.

Theorem:

Let G be a Lie group and a transitive action of G on (M,ω), then the image
of M under the associated moment map for this action is a coadjoint orbit.

Proof: Because transitivity for any x, y ∈M there exist g ∈ G such that
g(x) = y, then

J(M) = {J(x) : x ∈M}
= {J(g(x)) : g ∈ G}
= {Ad∗g−1(J(x)) : g ∈ G}.

ut

Definition 8:

Suppose a Hamiltonian action φ : G ×M → M on a symplectic manifold
(M,ω) with the associated (Ad∗-equivariant) moment map J : M → G, and
let ξ ∈ G be a regular value for J , then J−1(ξ) is a submanifold of M . Let

Gξ = {g ∈ G : Ad∗g−1ξ = ξ}

be the isotropy group of ξ, then Gξ acts on J−1(ξ) (by Ad∗-equivariance).
If J−1(ξ)/Gξ ≡Mξ is a C∞ manifold for which the canonical projection

πξ : J−1(ξ) −→ J−1(ξ)/Gξ

is a smooth submersion, the manifold Mξ is called Reduced Phase Space by
the action of G.

Theorem (Marsden-Weinstein):

Take M,G, φ, J,Mξ and πξ as in the last definition, if all the conditions there
follows and

iξ : J−1(ξ) −→M
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is the inclusion, then there exist a unique symplectic structure ωξ on Mξ

such that
π∗ξωξ = i∗ξω,

thus (Mξ, ωξ) is a symplectic manifold.

Proof: See [GS1] or Marsden, J. quoted in a previous footnote. ut
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