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Abstract

This thesis is devoted to the study of the relation between (weighted) trace anomalies
and:

• anomalies in Quantum Field Theory –illustrated by Chern-Simons models– on
one hand,

• duality in antisymmetric field theories with a discussion of the factorization
of the geometry of determinant line bundles associated to families of elliptic
complexes, on the other hand.

It is shown that the anomaly coming from a phase ambiguity for ζ-regularized de-
terminants, modelling partition functions in Chern-Simons theory, can be seen as a
tracial anomaly. These arise from the fact that weighted traces fail to commute with
exterior differentiation. Since they can be expressed in terms of Wodzicki residues,
it follows that they have a local feature.
Following Schwarz’s Ansatz for partition functions in antisymmetric field theories,
duality can be interpreted as a factorization of the analytic torsion, which can be
seen as a metric on the determinant line associated to a de Rham acyclic complex.
We extend this to a “factorization” of the geometry of the determinant line bun-
dle associated to a family of elliptic complexes, showing how the curvature of the
Bismut-Freed connection decomposes as a sum of two forms which, as a consequence
of the locality of trace anomalies, carry the same locality feature as the Bismut-Freed
curvature.
The thesis also presents a Fresnel integral approach to path integrals underlying for-
mal computations used by physicist to establish duality between partition functions
in antisymmetric field theories.



Résumé

Cette thèse est consacrée à l’étude des relations entre des anomalies traciales et:

• des anomalies en théorie des champs quantiques —illustrés par le cas de modèles
de Chern-Simons— d’une part,

• la dualité en théorie des champs antisymétriques, avec l’étude de la factorisation
de la géométrie des fibrés déterminants associés à des familles de complexes
elliptiques, d’autre part.

On montre que l’anomalie provenant d’une ambiguité de phase pour les déterminants
ζ-regularisés, qui décrivent des fonctions de partition de théories de Chern-Simons,
peut être interprétée comme une anomalie traciale. Ceci s’explique par le fait que
les traces régularisées ne commutent pas avec la différentiation extérieure. Pouvant
s’exprimer en termes de résidus de Wodzicki, ces anomalies traciales héritent d’une
propriété de localité.
En appliquant l’Ansatz de Schwarz pour des fonctions de partition en théorie des
champs antisymétriques, la dualité peut s’interpréter comme factorisation de la tor-
sion analytique, qui peut être vue comme métrique sur l’espace déterminant associé
à un complexe de de Rham acyclique. On étend ceci à une “factorisation” de la
géométrie du fibré déterminant associé à une famille de complexes elliptiques en
montrant que la courbure de la connexion de Bismut-Freed se décompose en une
somme de deux formes qui, en consequence de la localité des anomalies traciales,
sont elles-mêmes porteuses de cette propriété de localité.
Cette thèse présente de plus une approche utilisant l’outil des intégrales de Fresnel
pour donner un sens aux intégrales de chemin qui sous-tendent les calculs formels
utilisés par les physiciens pour établir une dualité entre des fonctions de partition de
théorie des champs antisymétriques.
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Blaise Pascal pour leur accueil, en particulier Jean-Yves Le Dimet et les mem-
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Florent Nicaise, Lionel Richard, Jean-Pierre Magnot, Catherine Ducourtioux,
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Introduction and Statement of Results

In order to describe physical systems at very short distances, Quantum Field
theorists use “path integrals”, which are objects without a rigorous mathemat-
ical definition due mainly to the infinite-dimensional character of the spaces
of fields (vector valued functions, or sections of fibrations on a Riemannian or
Mikowskian space-time manifold M) on which these objects must be defined.
These “integrals” model probability amplitudes, and formal manipulations
–which rely on classical facts and properties of finite-dimensional integrals
(Gaussian integrals, change of variable formulae, Fourier transforms,...)– lead
to numerical data which are in extraordinary accordance with experiments.
This phenomenological success has encouraged mathematical physicists to
search for a mathematical theory of path integrals, but at present this goal
has not yet been reached.

The general form of a path integral is

Z(F ) =
1
Zo

∫
Φ
F (φ) exp {−S(φ)} [Dφ],

where Φ is the space of configurations of the fields φ, F (φ) a functional on
Φ, [Dφ] a formal Lebesgue-type measure on Φ and S : Φ → IR (or IC) the
classical action of the theory under consideration. Here Zo denotes the par-
tition function of the theory, given by the integral at the right hand side
of this equation when F (φ) = 1, a normalization factor. Φ is typically an
infinite-dimensional manifold, so that the formal Lebesgue-type measure [Dφ]
is generally ill-defined.

Roughly speaking, there are mainly two approaches to path integrals. The
first one tries to describe path integrals as properly defined integrals, through
the study of measure theory on functional spaces. This approach, known as
the “constructive approach”, uses in an essential way the fact that Gaussian
measures (unlike Lebesgue measures) on infinite-dimensional spaces do exist.
Another approach, known as the “non-perturbative approach”, uses heuristic
manipulations of path integrals and their “semiclassical” limits. Important
examples of this second kind of approach are the so-called Topological Quan-
tum Field Theories, born from pioneering work of A. Schwarz and E. Witten
in the late 70’s and the 80’s. The search for a “regularized” definition of the
partition function for some particular models led them to set up links with
topological invariants of combinatorial type, such as the analytic torsion de-
fined by D. Ray and I.M. Singer in the early 70’s.

The basic idea is to interpret a partition function as a “regularized” determi-
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nant, imitating the Gaussian integral identity∫
V
e−

1
2
S(v) dv = (detTs)−

1
2 ,

valid for Lebesgue-type integrals on a finite-dimensional euclidean vector space
V , where S(v) = 〈Tsv, v〉 is a symmetric and positive quadratic form defined
on V , and dv denotes the “Lebesgue measure”.

ζ-Regularization of Determinants and Traces

In the case of action functionals defined by elliptic differential operators with
positive order acting on infinite-dimensional spaces of sections, the ordinary
determinant on the right hand side of the previous equality is replaced by the
regularized determinant, defined by Ray and Singer through ζ-function regu-
larization [RS71]. Combining this with the Faddeev-Popov procedure led A.
Schwarz to a definition for the partition function associated with a degenerate
action functional. The latter mimicks Milnor’s definition of the Reidemeister
torsion of a complex of vector spaces, and therefore yields a relation with the
Ray-Singer torsion, a secondary topological invariant used to classify topolog-
ical spaces with the same homotopy type. Using this approach in his study
of three-dimensional Chern-Simons theories, E. Witten showed that in this
context the corresponding partition function must contain (a phase given by)
another secondary invariant: the η-invariant defined by Atiyah, Patodi and
Singer in order to state an index theorem for manifolds with boundary, which
corresponds to a ζ-function regularization of the “signature” of an operator.

Regularization techniques used to define determinants of elliptic positive-order
differential operators are also used to regularize other ill-defined extensions
of finite dimensional concepts, such as traces (see Section 1.1). The classical
identity det(AB) = det(A) det(B), that holds for finite-dimensional determi-
nants, breaks down for ζ-regularized determinants, giving rise to the so-called
“multiplicative anomalies” for ζ-determinants. This is closely related to the
fact that the fundamental tracial identity tr(AB) = tr(BA) which holds for
ordinary matrices breaks down for ζ-regularized traces. As a matter of fact,
it is well-known that the only trace on the algebra Cl(E) of classical pseudo-
differential operators acting on sections of the vector bundle E over a closed
connected manifold M of dimension > 1 is the Wodzicki residue which, for
A ∈ Cl(E), is defined by

res(A) = q Resz=0

(
tr(AQ−z)

)
,

whereQ is any invertible admissible pseudo-differential operator and q denotes
the order of Q. An important feature of the Wodzicki residue of a classical
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pseudo-differential operator A is its locality, i.e. it can be described as an
integral of local density on M , namely

res(A) =
1

(2π)n

∫
M

resx(A)dµM (x)

where n is the dimension of M , µM the volume measure on M . A drawback
of the Wodzicki residue is that it vanishes on finite-rank operators and hence
it is not an extension of the usual trace. We therefore consider instead other
linear functionals that extend the finite-dimensional trace.

Weighted Trace Anomalies

Weighted traces of classical pseudo-differential operators are linear functionals
on the algebra of such operators, which were investigated in [P][CDMP] and
implicitly used, both in theoretical physics and mathematics, under the name
of ζ-regularized traces. By weighted trace of a classical admissible pseudo-
differential operator A we mean the complex number given by

trQ(A) := f.p.|z=0tr(AQ−z),

where f.p. refers to the finite part, the weight Q being an admissible invertible
elliptic operator of positive order. It follows from the definition that weighted
traces extend usual finite-dimensional traces, i.e. trQ(A) = tr(A), whenever
A is a finite rank operator. Taking the finite part and leaving out the diver-
gences leads to discrepancies, which we refer to as weighted trace anomalies
or tracial anomalies [CDMP][CDP]. These give rise to Wodzicki residues, and
hence have some locality features (see Section 1.1.1).

One of the purposes of this work is to relate logarithmic variations of reg-
ularized determinants of certain families of admissible operators with tracial
anomalies, thus giving an a priori explanation for the locality of these vari-
ations. For families of self-adjoint elliptic operators, such as Dirac operators
in odd dimensions, ζ-determinant functions can be defined using the Atiyah-
Patodi-Singer eta invariant [APSI] (see Section 3.1). For other types of elliptic
operators, such as chiral Dirac operators, one works instead with determinant
sections, namely sections of determinant line bundles.

Let us first turn to the self-adjoint case. Consider a family {Ax}x∈[0,1] of
elliptic self-adjoint positive order operators parametrized by [0, 1]. Then, the
η-invariant η(Ax) = ηAx(0) varies smoothly in x modulo integers, i.e. except
for jumps coming from eigenvalues of Ax “crossing zero”, and we prove in
Section 3.1 the following
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Theorem 7 [CDP] Let A0 and A1 be two elliptic invertible self-adjoint oper-
ators and {Ax}x∈[0,1] a smooth family of elliptic self-adjoint operators inter-
polating them, then

η(A1)− η(A0) = 2Φ({Ax}) +
∫ 1

0
ṫrAx(sign(Ax)) dx,

where Φ({Ax}) denotes the spectral flow of the family and ṫrAx = [ d
dx , tr

Ax ] is
the variation of the weighted trace trAx .

The local term given by the Wodzicki residue coming from the weighted
trace anomaly

∫ 1
0 ṫrAt(sign(At)) dt corresponds to the local term in the Atiyah-

Patodi-Singer index theorem. Furthermore, since the ζ-determinant of a (non
necessarily positive) self-adjoint elliptic operator is given by

detζ A = detζ |A|e
π
2 (ηA(0)−ζ|A|(0)),

this leads to

Corollary 1 Let {Ax}x∈[0,1] be a smooth family of self-adjoint elliptic op-
erators with vanishing spectral flow and such that A0 and A1 are invertible.
Then, if detζ |Ax| and ζ|Ax|(0) are constant,

log
detζ A1

detζ A0
=

π

2

∫ 1

0
ṫrAx(sign(Ax)) dx

= − π

2a

∫ 1

0
res
[
|Ax|−1 d

dx
Ax

]
dx.

Thus, under the above assumptions, the logarithmic variation of the ζ-determinant
is expressed as a weighted trace anomaly and is therefore local. Although these
assumptions seem strong, they are fulfilled in the case of families of signature
operators (Section 3.2).

Families of Signature Operators. Let M be a Riemannian manifold of odd
dimension n = 2k + 1, and W a Hermitian vector bundle over M with flat
connection. Given a smooth family of connections {∇W

t , t ∈ [0, 1]} on the
exterior bundle W , there is an associated family of operators {∗dt, t ∈ [0, 1]},
where dt is the exterior differential on M coupled with the connection ∇W

t

and ∗ the Hodge star operator. Let ∗dk,t denote their restriction to k-forms.
If n = 2k + 1, for k odd, ∗dk,t is self-adjoint, elliptic and detζ ∗d′′k,t is well-
defined, where ∗d′′k,t = ∗dk,t|ker(∗dk,t)

⊥ (see Section 3.2.2). Since the signature
of the manifold M × [0, 1] is zero, then (using the results of [APSI, APSIII])
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the index of the operator A = ∗d′′k,t⊗
d
dt is zero and hence the spectral flow of

the family {∗d′′k,t} vanishes. Theorem 7 shows that

η(∗d′′k,1)− η(∗d′′k,0) =
∫ 1

0
ṫr∗d

′′
k,t(sign(∗d′′k,t)) dt,

so that the difference of the eta invariants is given by a tracial anomaly, and
hence is local. Furthermore, in the case k = 1 (n = 3), if the family {∗d′′k,t}
is build from a family {gt}t∈[0,1] of Riemannian metrics, the modulus of the
ζ-determinant detζ |∗d1,t| is independent of t on the grounds of the topological
invariance of the analytic torsion. Therefore, in view of the above Corollary,

log
detζ(∗d′′1,1)
detζ(∗d′′1,0)

=
π

2
{
η(∗d′′1,1)− η(∗d′′1,0)

}
= −π

2

∫ 1

0
res
[
| ∗ d′′1,t|−1 d

dt
∗ d′′1,t

]
dt,

being an integrated tracial anomaly, and hence a Wodzicki residue, is the inte-
gral of a local term on the base manifold. This example plays a fundamental
role in phase anomaly computations in Chern-Simons theory, as we explain
in the sequel.

Weighted Trace Anomalies and Phase Anomalies in Chern-Simons theory

Using the results previously stated, in Chapter 5 we relate phase anomalies
in odd dimensions –coming from logarithmic variations of ζ-determinants of
Dirac operators– to weighted trace anomalies, thus giving an apriori expla-
nation for the locality we expect from these anomalies. In QFT an anomaly
occurs when a transformation in the fields, leaving invariant the action func-
tional, changes the corresponding path integral. In particular, when the clas-
sical action is quadratic, S(φ) = 〈Tφ, φ〉, transformations in the path integral
can be read off the transformations of the regularized determinant associated
to the corresponding partition function Z = (detζ T )−

1
2 . The “anomaly” is

defined to be the logarithmic variation of such partition function and hence
of the corresponding regularized determinants. Thus, the difference of loga-
rithms of ζ-determinants (log detζ T1 − log detζ T0) in Corollary 1, seen as an
anomaly of partition functions, can be seen as an “integrated tracial anomaly”
(
∫ 1
0 ṫrTx(sign(Tx)) dx), under the assumptions of the Corollary, in which case

the anomaly term comes from the phase of the determinant.

The variation of the partition function of the Chern-Simons model in dimen-
sion 3 –under a change of metric– gives rise to an “anomaly”, which can be
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written as an integrated tracial anomaly. Indeed, the Chern-Simons theory
in dimension n = 2k + 1 (see [S79][W89]) is modelled by the metric invariant
action functional SCS

k (ωk) = 〈ωk, ∗dkωk〉, which is degenerate on the space
Ωk of W -valued k-forms. Applying Schwarz’s Ansatz to SCS

k yields the cor-
responding partition function

ZCS
k (∗d′′k) =

[
k−1∏
l=0

(
detζ(∆′′

l )
)(−1)k−l+1

] 1
2

detζ

(
∗d′′k
)− 1

2 ,

which is well defined since in n = 2k + 1 dimensions, for k odd, the operator
∗d′′k is self-adjoint and hence has a well-defined ζ-determinant. We show in
Section 5.1 that

ZCS
k (∗d′′k) = (T (M))

(−1)k+1

2 e−i π
4
η(∗d′′k),

where η(∗d′′k) denotes the eta invariant of the operator ∗d′′k and T (M) the
analytic torsion of the manifold M . Note that the classical action functional
SCS

k is metric independent, but its associated partition function has a phase
which depends on the metric on M , i.e. there is a phase anomaly. Specializing
to the case k = 1, n = 3 the logarithmic variation of the partition function
under such transformation reads

log
ZCS

1 (∗d′′1,1)

ZCS
1 (∗d′′1,0)

= −π
2

∫ 1

0
res
[
| ∗ d′′1,t|−1 d

dt
∗ d′′1,t

]
dt,

so that the anomaly log
ZCS

1 (∗d′′1,1)

ZCS
1 (∗d′′1,0)

corresponds to an integrated weighted trace

anomaly. This leads (in Section 5.2) to the following

Theorem 12 The Chern-Simons phase anomaly between two Riemannian
metrics g0 and g1 is an integrated weighted trace anomaly, i.e.

phase anomaly = integrated weighted trace anomaly
↓ ↓

log
Zk(∗d′′k,1)
Zk(∗d′′k,0)

= −iπ
4

∫ 1

0
ṫr∗d

′′
k,t(sign(∗d′′k,t)) dt.

Using the APS index theorem [APSI], this anomaly is given by the Chern-
Simons term i 32

π2

∫
M tr(A ∧ dA+ 2

3A ∧A ∧A).
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Factorization of the Geometry of Determinant Bundles and Topologi-
cal Field Theory

In [S79] and [ST84] the relation between the partition function of degener-
ate action functionals and the analytic torsion of the underlying space-time
manifold M is considered in the cases of Chern-Simons theories and antisym-
metric field theories. In [ST84] (see also [C01]) the Ansatz of Schwarz is used
to study duality in antisymmetric quantum field theories, i.e. the equivalence
between two a priori different antisymmetric field theories. We riview these
facts in Section 6.2.

Let us consider two antisymmetric field theories defined by the action func-
tionals

S(ωk−1) = 〈dk−1ωk−1, dk−1ωk−1〉

and
S(ωn−k+1) = 〈dn−k+1ωn−k+1, dn−k+1ωn−k+1〉,

where dk denotes the restriction to W -valued k-forms of the exterior differen-
tial coupled to the connection ∇W . Hodge star duality implies the equivalence
between the action functionals S(ωn−k+1) and S∗(ωk+1) = 〈d∗kωk+1, d

∗
kωk+1〉.

The partition functions Zk(M) for S(ωk−1) and Z∗k(M) for S∗(ωk+1), are de-
fined using Schwarz Ansatz’s here again. Zk(M) and Z∗k(M) combine to give
back the analytic torsion.

Proposition 17 [S79] For any k ∈ {0, 1, . . . , n},

Zk(M) · Z∗k(M)−1 = T (M)(−1)k
.

Thus, the analytic torsion of the underlying space-time manifold M factor-
izes as a product of the partition functions associated to degenerate “dual”
actions. In the even dimensional case this yields Zk(M) = Z∗k(M), for all k,
and hence an identification of the two dual partition functions.

Proposition 17 can also be interpretated as follows. T (M) is the Quillen
metric || · ||Q on the determinant line associated to the acyclic elliptic de Rham
complex

0→ Ω0 d0−→ · · · → Ωk−1 dk−1−→ Ωk dk−→ Ωk+1→ · · · dn−1−→ Ωn→ 0,

Zk(M) the Quillen metric | · |(k) on the determinant line associated to the
elliptic resolvent

0→ Ω0 d0−→ · · · → Ωk−2 dk−2−→ Ω′k−1

d∗k−1dk−1−→ 0,
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Z∗k(M) the Quillen metric | · |(k)∗ on the determinant line associated to “dual”
elliptic resolvent

0→ Ωn
d∗n−1−→ · · · → Ωk+2

d∗k−1−→ Ω′′k−1

dkd∗k−→0.

Proposition 17 can be read as a factorization of the metric || · ||Q in terms of
the metrics of the two dual resolvents. Our next goal is to extend this factor-
ization to families of acyclic elliptic complexes, thus working on determinant
line bundles.

Geometry of Determinant Line Bundles. Let IM
πM→ X be a smooth lo-

cally trivial fibration of manifolds, where X is a smooth manifold of finite
dimension and the fibre Mx = π−1

M (x) a closed Riemannian manifold. To
a Hermitian vector bundle E → IM we associate the infinite-rank vector
bundle E → X whose fibre above x ∈ X is the space of smooth sections
Ex = Γ(Mx, Ex), where Ex →Mx denotes the restriction to Mx of E. Follow-
ing [Q86] and [BF88], in section 4.2 we consider the determinant line bundle
Det IT associated to a family {Tx}x∈X of positive-order elliptic differential op-
erators Tx : Ex → Ex. In particular, we recall the construction — by ζ-function
regularization— of the Quillen metric on Det IT and, assuming the existence of
a connection on E , that of the Bismut-Freed connection ∇BF , which is unitary
for the Quillen metric. In Theorem 10, along the lines of [PR], we prove that
the curvature ΩBF of the Bismut-Freed connection is local, i.e. it can be writ-
ten as the integral of a local density on the fibre M/X. This is a consequence
of the fact that the Bismut-Freed connection is built point-wise from a family
of unitary connections on the Hermitian bundles {Ex}x∈X .

Consider an acyclic elliptic complex (IE•, T•) of positive-order differential op-
erators acting on sections of Hermitian vector bundles over the manifold IM ,

0→ E0
T0−→ · · · → Ek−1

Tk−1−→ Ek
Tk−→ Ek+1→ · · ·

Tn−1−→ En→ 0.

For 0 ≤ k ≤ n, let Ek → X be the infinite-rank vector bundle associated
to Ek. The acyclic elliptic complex (IE•, T•) gives rise to an acyclic elliptic
complex (E•, IT•) of positive-order differential elliptic bundle maps on infinite-
rank vector bundles over X, namely

0→ E0
IT0−→ · · · → Ek−1

ITk−1−→ Ek
ITk−→ Ek+1→ · · ·

ITn−1−→ En→ 0,

where each map ITk corresponds to a family {Tk,x}x∈X of elliptic positive-order
differential operators, parametrized by the manifold X. Quillen’s construction
associates to each positive-order differential elliptic bundle map ITk a determi-
nant line bundle Det ITk → X with smooth Quillen metric and, assuming the
existence of a unitary connection on Ek, a Bismut-Freed connection unitary
for the Quillen metric. From the determinant line bundles Det ITk, for each k,
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we define in Section 6.4 the determinant line bundle of the acyclic complex
(E•, IT•) by

L IT =
n⊗

k=0

(Det ITk)(−1)k+1
.

Let || · ||Q,k denote, for 0 ≤ k ≤ n, the Quillen metric on the line bundle

Det ITk → X. Then, the natural metric on L IT, || · ||L IT
= ⊗n

k=0|| · ||
(−1)k+1

Q,k , is
the analytic torsion. Let us denote by ∇BF

(k) , for each 0 ≤ k ≤ n, the Bismut-
Freed connection on Det ITk, whose curvature ΩBF

(k) is local. This implies that
the curvature of the connection ∇L IT , induced by the unitary connections
{∇BF

(k)}0≤k≤n, also has a local curvature, denoted by ΩL IT . Let (E(k)
• , IT•) and

(E(k)∗
• , IT∗•) be the acyclic elliptic complexes given by

(E(k)
• ) 0→ E0

IT0−→ · · · −→ Ek−1
ITk−1−→ ITk−1Ek−1 → 0,

and

(E(k)∗
• ) 0← IT∗kEk+1

IT∗k←− Ek+1←− · · ·
IT∗n−1←− En← 0,

respectively. In Section 6.4 we show that the splitting of the geometry of the
determinant line bundle associated to the complex (E•, T•) holds as in the
finite-dimensional case (considered in Section 6.3), and the locality property
of the curvature is conserved.

Theorem 13 Let L IT → X be the determinant line bundle associated to the
family {E•,x, T•,x}x∈X of acyclic elliptic complexes. Then,

1. The Quillen metric factorizes according to (6.19), in terms of the metrics
of the determinant line bundles associated to the complexes E(k)

• and
E(k)∗
• , as

|| · ||Q = || · ||(k)|| · ||
(−1)k+1

(k)∗ ,

where || · ||(k) and || · ||(k)∗ denote the curvature of the determinant line

bundles associated to the complexes E(k)
• and E(k)∗

• , respectively.

2. The curvature splits

ΩLIT = Ω(k) ⊕ (−1)k+1Ω∗(k), (1)

where Ω(k) and Ω∗(k) denote the curvature of the determinant line bundles

associated to the complexes E(k)
• and E(k)∗

• , respectively.

3. This splitting respects the locality properties of the curvature given by
Theorem 10.
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The text is organized in three parts; although the heart of the thesis is con-
tained in the second and third part, Part I is essential to set up the framework
used in Parts II and III.

In Part I we introduce the mathematical tools used throughout the text
(Chapter 1) and some physical prerequisites (Chapter 2) aimed to give a self-
contained exposition of the physical applications.
In Chapter 1, Section 1.1, we define weighted traces, and we show how weighted
trace anomalies give rise to Wodzicki residues of pseudo-differential operators,
and hence are “local”. We also consider variations of ζ-regularized determi-
nants of invertible admissible pseudo-differential operators and eta invariants.
Elliptic complexes and the analytic torsion are considered in Section 1.2. The
first part of this section is devoted to the study of the three types of algebraic
torsions of a chain complex of finite-dimensional vector spaces (namely, the
Reidemeister torsion, the Torsion and the Analytic Torsion), their properties
and the relation between them. The analytic torsion for general elliptic com-
plexes is defined in Section 1.2.3, where its topological invariance is proven, as
well as the main features of the Ray-Singer analytic torsion of a Riemannian
manifold. Finally, in Section 1.3, we recall the definition of Dirac operators
on Clifford bundles and two index theorems for Dirac operators we use in the
sequel.
In Chapter 2, Section 2.1, we introduce the Fresnel integral approach to path
integrals along the lines of [AlH76], in which a mathematically rigorous defini-
tion can be given of heuristic infinite-dimensional integrals arising in quantum
physics. This approach to path integrals is used later (in Section 6.1) to give
a measure theoretical interpretation of duality in antisymmetric tensor fields.
In Section 2.2 we describe Schwarz’s Ansatz to define the partition function
of a degenerate action functional. This heuristic treatment of partition func-
tions underlies the geometric approach we follow in the rest of the work. The
Ansatz used to define anomalies in quantum fields is discussed in Section 2.3.

In Part II weighted trace anomalies are used as a geometrical tool. In
Chapter 3, Section 3.1, we prove Theorem 7 on logarithmic variations of
regularized determinants and tracial anomalies, and discuss in Section 3.2
its application to the case of families of signature operators –relevant in the
analysis of phase anomalies in Chern-Simons models.
Chapter 4 is devoted to the study of the geometry of determinant line bundles
through ζ-regularization tools. In Section 4.1 the geometry of the determinant
line bundle in finite dimensions is reviewed, as background material for the ex-
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tension in Section 4.2 to the infinite-dimensional case. We carry out there the
construction of the determinant line bundle associated to a family of elliptic
positive-order differential operators and, following Quillen [Q86] and Bismut
and Freed [BF88], we study its geometry. Finally, by means of weighted trace
anomalies, we prove Theorem 10 [PR] concerning the locality of the curvature
of the Bismut-Freed connection on the determinant line bundle.

In Part III we describe the physically relevant applications of the math-
ematical theory developed in the two previous parts, namely the study of
phase anomalies in Chern-Simons theories (Chapter 5), on one hand, and the
splitting of the geometry of determinant line bundles associated to families of
acyclic complexes (Chapter 6), on the other hand. Chern-Simons models, the
relation between the partition function –defined through Schwarz’s Ansatz–
and the analytic torsion are considered in Section 5.1, and Theorem 12 is
proven in Section 5.2.
In the last chapter, after a brief introduction to the heuristic manipulations
involved in path integral interpretations of duality, we give in Section 6.1 a
measure theoretical interpretation of this fact in terms of Fresnel integrals.
In Section 6.2 we state Proposition 17 and interpret it as a splitting in the
metric of a determinant line. Section 6.3 is devoted to the study of the split-
ting of determinant line bundles associated to complexes of finite-rank vector
bundles, and the situation in infinite dimensions is considered in Section 6.4,
where we prove Theorem 13.

Appendices A and B cover some basic background on pseudo-differential
operators and the path integral approach in quantum physics, respectively,
frequently used in the text.

17



Part I

Mathematical Tools and
Physical Prerequisites
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Chapter 1

Mathematical Tools

In this chapter we define weighted traces, weighted trace anomalies and we
show how they give rise to Wodzicki residues of pseudo-differential opera-
tors, and hence are given by local terms. We also consider variations of
ζ-regularized determinants and eta invariants of invertible admissible pseudo-
differential operators, Dirac operators on Clifford Bundles and the Analytic
Torsion of an elliptic complex of bundles over a Riemannian manifold.

1.1 Weighted Traces of Pseudo-differential Opera-
tors, Regularized Determinants and Tracial Anom-
alies

1.1.1 The Wodzicki Residue, Weighted Traces and Tracial
Anomalies

Let E be a vector bundle above a smooth n-dimensional closed Riemannian
manifold M , and let Cl(E) denote the algebra of classical pseudo-differential
operators acting on smooth sections of E. Let as before Ell(E), Ell∗(E) and
Ell∗ord>0(E) denote the set of elliptic, invertible elliptic and invertible elliptic
with positive order operators acting on sections of E, respectively, and Ad(E)
the subset of Ell∗ord>0(E) containing the invertible admissible elliptic classical
pseudo-differential operators which have positive order.

For Q ∈ Ad(E) and A ∈ Cl(E), the map z 7→ tr(AQ−z) is meromorphic
with a simple pole at zero [KV]. Given Q ∈ Ad(E), the Wodzicki residue of
A ∈ Cl(E) is defined by

res(A) = q Resz=0

(
tr(AQ−z)

)
, (1.1)

where q denotes the order of Q. The definition of res(A) is independent of the
choice of Q. Among the many remarkable properties of the Wodzicki residue
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(for a review see [K89]), let us point out some which will be relevant in this
work:

1. Traciality. If M is connected, the Wodzicki residue is (up to a constant)
the only trace on the algebra Cl(E), i.e.

res([A,B]) = 0, (1.2)

for any A,B ∈ Cl(E).

2. Locality. The Wodzicki residue of a classical pseudo-differential operator
A can be described as an integral of local expressions involving the
symbol of the operator [W69]

res(A) =
1

(2π)n

∫
M

∫
|ξ|=1

trx (σ−n(x, ξ)) dξdµM (x), (1.3)

where n is the dimension of M , µM the volume measure on M , trx the
trace on the fibre above x and σ−n the homogeneous component of order
−n of the symbol of A.

3. Triviality in finite dimensions. If A is of finite rank, or if its order is
less than −n, then

res(A) = 0. (1.4)

Even though property (1.2) is mathematically satisfactory, property (1.4) is
not what we want for our purposes. We should keep in mind –as recalled in
the introduction– that the heuristic objects considered by physicists in the
quantum description of field theories are built extending and imitating finite-
dimensional objects and relations between them; namely measures, integrals,
change of variable formulae, etc. But the Wodzicki residue “hides” the finite-
dimensional objects; it is not an extension of the finite-dimensional trace, and
extensions to the algebra Cl(E) of the ordinary trace on trace class operators
do not exist. Instead, we shall define an object –called weighted trace– that,
even if is no longer tracial on Cl(E), extends the usual trace on finite-rank
operators (matrices), allowing us to regard our work as an extension of the
finite-dimensional theory in the same line of thought as [P]. Nevertheless,
Wodzicki residues and their properties, in particular traciality and locality,
will play a very important role in the study of weighted traces.

In what follows by a weight we shall mean an element of Ad(E), often de-
noted by Q, and by q we shall denote its order. We shall very often take
complex powers Q−z of operators Q ∈ Ad(E), which involves a choice of
spectral cut for the operator Q. However, in order to simplify notations, we
shall drop the explicit mention of the spectral cut. In the case when Q is a
positive operator, any ray in IC different from the positive real half line serves
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as a spectral cut ray of the leading symbol.

Recall that the finite part at z = p of a meromorphic function ϕ with a
simple pole at z = p is given by

f.p.|z=p ϕ = lim
z→p

(
ϕ(z)− Resz=pϕ(p)

(z − p)

)
.

For A ∈ Cl(E) and Q ∈ Ad(E) the map z 7→ tr(AQ−z) is a meromorphic
function with a simple pole at z = 0 and we can set

Definition 1 [CDMP] Let Q be a weight and A in Cl(E). We call Q-weighted
trace of A the expression

trQ(A) = f.p.|z=0

(
tr(AQ−z)

)
. (1.5)

This definition can be extended to Cl(E)-valued forms on M by

trQ(ω) = trQ(α⊗A) = αtrQ(A), (1.6)

where α denotes a form on M and the Cl(E)-valued form ω on M is given by
ω = α ⊗ A. It follows from the definition that weighted traces extend usual
finite-dimensional traces, i.e.

trQ(A) = tr(A) (1.7)

whenever A is a finite rank operator.

Weighted Trace Anomalies

Unlike Wodzicki residues, weighted traces are not tracial and depend on the
weight Q. As a matter of fact both trQ([A,B]) and trQ1(A) − trQ2(A), for
Q,Q1, Q2 ∈ Ad(E) and A,B ∈ Cl(E), can be expressed in terms of Wodzicki
residues (see Proposition 1 below). This is the price we pay for having left out
divergences when taking the finite part of otherwise diverging expressions, and
we call these obstructions weighted trace anomalies. Weighted trace anomalies
play an important role in Chapters 3, 4 and 5, where we shall use them in the
study of the geometry of the determinant line bundle, and we shall show how
they relate to phase anomalies in Chern-Simons theories.

Recall that although the logarithm of a classical pseudo-differential opera-
tor is not classical, the bracket [logQ,A] and the difference log Q1

q1
− log Q2

q2
of

two such logarithms lie in Cl(E) (see Appendix A).

Definition 2 1. For A,B ∈ Cl(E) and Q ∈ Ad(E), we define the cobound-
ary anomaly by

∂trQ(A,B) = trQ([A,B]), (1.8)
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where ∂trQ denotes the coboundary of the linear functional trQ on the
Lie algebra Cl(M,E) in the Hochschild cohomology1.

2. We define the weight anomaly, which expresses how weighted traces de-
pend on the choice of the weight, by

4Q1
Q2

(A) = trQ1(A)− trQ2(A), (1.9)

where Q1, Q2 ∈ Ad(E).

The following proposition shows how these tracial anomalies can be written
in terms of Wodzicki residues.

Proposition 1 1. Given A,B ∈ Cl(E), Q ∈ Ad(E) with positive order q,
we have [CDMP][MN]

∂trQ(A,B) = −1
q
res (A[logQ,B]) . (1.10)

2. For Q1, Q2 ∈ Ad(E) with positive orders q1, q2 we have [CDMP]

4Q1
Q2

(A) = −res
(
A

(
logQ1

q1
− logQ2

q2

))
. (1.11)

Proof. It follows from the properties of the canonical trace established by
Kontsevich and Vishik (see [KV], Proposition 3.4) applied to the holomorphic
families 1

z [Q−z, A]B and A
(

1
z (Q−z

1 −Q
−z
2 )
)
, which yields (1.10) and (1.11),

respectively. tu

We can extend these results to variations of traces of one parameter families of
operators, which gives rise to another tracial anomaly. Let {Qx}x∈X ⊂ Ad(E)
be a smooth family of weights, with constant positive order q and common
spectral cut, parametrized by a smooth manifold X. We define for a fixed
operator A ∈ Cl(E)

(d trQ)(A) = d(trQ(A)). (1.12)

Proposition 2 Let {Qx}x∈X be a smooth family in Ad(E) with constant or-
der q, parametrized by a smooth manifold X. Then, for a fixed A ∈ Cl(E) we
have [CDMP] [P]

d trQ(A) = −1
q
res (Ad logQ) . (1.13)

Proof. It follows from the fundamental property of the canonical trace
of Kontsevich and Vishik [KV] applied to the family 1

tA
(

1
z (Q−z

x −Q−z
γt(x))

)
,

where γt(x) is a 1-parameter curve starting at x, t ≥ 0 generated by a tangent
1This coboundary extends the Radul cocycle in the physics literature

[R][M][MN][CDMP].
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vector h. tu

Thus, if we consider a smooth family {Ax}x∈X in Cl(E), it follows that

dtrQ(A) = (dtrQ)(A) + trQ (dA)

= −1
q
res (Ad logQ) + trQ (dA) . (1.14)

This extends to Cl(E)-valued k-forms on M by

d trQ(ω) =
(−1)k+1

q
res (ω d logQ) + trQ (dω) . (1.15)

An important observation in view of what follows is that all these weighted
trace anomalies being Wodzicki residues of some operator, can be expressed in
terms of integrals on the underlying manifold M of local expressions involving
the symbols of that operator.

Remarks.

1. For C ∈ Cl(E) invertible, A ∈ Cl(E) and Q any weight [CDMP]

trC−1QC(A) = trQ(CAC−1). (1.16)

We shall refer to this property as the covariance property of weighted
traces.

2. When Q has positive leading symbol, we can recover the ζ-regularized
trace (1.5) using a heat-kernel expansion. Let us first recall some results
about the Mellin transform of a smooth C∞ function on the positive real
line (here we follow [BGV92]). Let f ∈ C∞( IR+) decaying exponentially
at infinity, then the Mellin Transform of f is the function defined by

M[f ](z) =
1

Γ(z)

∫ ∞

0
f(t)tz−1 dt. (1.17)

Integration by parts shows that

M[t f ′](z) = −zM[f ](z). (1.18)

If f has an asymptotic expansion for small t of the form

f(t) ∼
∑

k≥−n

fkt
k
q + c log t, (1.19)

then its Mellin transform M[f ] is a meromorphic function with poles
contained in the set n

q −
IN
q , and with a Laurent series around zero of

the form −c s−1 + (f0 − γc) +O(s), where γ is the Euler constant.
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For A ∈ Cl(E) let f(t) = tr(Ae−tQ), then f(t) behaves as in (1.19),
where q = ordQ and (1.17) yields

f.p.|z=0

(
tr(AQ−z)

)
= f.p.|z=0M[f ](z) = f.p.|t=0

(
tr(Ae−tQ)

)
−γ · res(A)

where γ is the Euler constant. Thus, if res(A) = 0,

trQ(A) = f.p.|t=0

(
tr(Ae−tQ)

)
. (1.20)

When Q is a differential operator and A = I we have, as t → 0,
tr
(
e−tQ

)
∼
∑

k≥−dim M
q

akt
k
q (see e.g. [G95]), so trQ(I) = f.p.|t=0

(
tr(e−tQ)

)
.

3. The notion of weighted trace can be extended to the case when Q is
a non injective self-adjoint elliptic with positive order. Being elliptic,
such an operator has a finite dimensional kernel and the orthogonal
projection PQ onto this kernel is a pseudodifferential operator of finite
rank. Since Q is an elliptic operator so is the operator Q̄ = Q + PQ,
for the ellipticity is a condition on the leading symbol which remains
unchanged when adding PQ. Moreover, Q being self-adjoint the range
of Q is given by R(Q) = (kerQ∗)⊥ = (kerQ)⊥ so that Q̄ is onto. Q̄ being
injective and onto is invertible and being self-adjoint, then Q̄ ∈ Ad(E)
(it has the same order as Q). We set

trQ(A) = f.p.|z=0

(
tr(A(Q̄)−z)

)
. (1.21)

1.1.2 Weighted Traces and ζ-Determinants of invertible ad-
missible operators

Given A,Q ∈ Ad(E) with common spectral cut, the map z 7→ tr ((logA)Q−z)
is meromorphic on the complex plane with a simple pole at the origin [KV].
In order to define determinants in infinite dimensions we now extend weighted
traces to logarithms of pseudo-differential operators.

Definition 3 Given A,Q ∈ Ad(E) we set

trQ(logA) := f.p.|z=0

(
tr(logAQ−z)

)
.

As before, Q is referred to as the weight and trQ(logA) as the Q-weighted
trace of logA. We shall not make explicit mention in the notation of the
determination of the logarithm underlying this definition. Extending (1.11)
to logarithms we set 4Q1

Q2
(logA) = trQ1(logA)− trQ2(logA).

Theorem 1 [OI], (see also [D]) For Q1, Q2, A ∈ Ad(E) with positive orders
q1, q2 and a respectively,

4Q1
Q2

(logA) = res
((

logA− a

q1
logQ1

)(
logQ2

q2
− logQ1

q1

))
− a

2
res

((
logQ2

q2
− logQ1

q1

)2
)
.
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Let us recall here the definition and some basic properties of ζ-determinants
of admissible operators. Let A ∈ Ad(E), then the spectrum of A is discrete
and it is entirely contained in the real line, {λk}k∈ZZ ⊂ IR. The ζ-function of
A is defined as the Mellin transform of its heat kernel or, which is equivalent,
the trace of the operator A−z, i.e.

ζA(z) = M[tr
(
e−tA

)
](z) =

1
Γ(z)

∫ ∞

0
tz−1tr

(
e−tA

)
dt

= tr
(
A−z

)
=

∑
λ∈specA

λ−z, (1.22)

which is an analytic function for z ∈ IC with <(z) >> 0, and extends by
analytical continuation to a meromorphic function on IC, regular at z = 0, as
can seen from the previous remarks about the Mellin transform.

Definition 4 [RS71] The ζ-determinant of A, denoted by detζ A, is the com-
plex number given by

detζA = exp
{
−ζ ′A(0)

}
= exp trA(logA). (1.23)

Remarks.

1. Given Q ∈ Ad(E) and C ∈ Cl(E) invertible, then logCAC−1 = logA
and from (1.16) it follows that

trCQC−1
(C logAC−1) = trQ(logA).

Thus,
detζ(CAC−1) = detζ(A), (1.24)

so the ζ-determinant is invariant under inner automorphisms of Cl(E).

2. Note that the operator A is used as a weight to define detζ A. This is
a source of anomaly. In particular, ζ-determinants are not multiplica-
tive. In fact the multiplicative anomaly [KV], defined by the expression
Fζ(A,B) = detζ(AB)

detζ(A) detζ(B) which generally differs from one, is given in
terms of Wodzicki residues, namely (see [Wo] for the case [A,B] = 0,
[D] for the general case)

logFζ(A,B) =
1
2a

res

((
logA− a

a+ b
log(AB)

)2
)

+
1
2b

res

((
logB − b

a+ b
log(AB)

)2
)

+ trAB (log(AB)− logA− logB)
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for any two operators A,B ∈ Ad(E) of order a and b, respectively.
Specializing to B = A∗, the formal adjoint of A for the L2-structure
induced by a Riemannian metric on M and a hermitian one on E, in
general we have Fζ(A,A∗) 6= 0 and hence

detζ(A∗A) 6= | detζ(A)|2.

However, if A is self-adjoint this multiplicative anomaly vanishes, i.e.
detζ(A2) = detζ(A∗A) = |detζ(A)|2.

3. The ζ-determinants extends of the usual determinant in finite-dimensional
vector spaces, i.e. if A is a finite-rank operator (a matrix) then

detζ(A) =
N∏

i=1

λi, (1.25)

where λi, 1 ≤ i ≤ N , are the eigenvalues of A.

Lemma 1 [RS71] Let {Ax}x∈X ⊂ Ad(E) be a one parameter smooth family
of admissible operators with constant order and common spectral cut, parame-
trized by a manifold X. Then

d log detζ Ax = trAx
(
A−1

x dAx

)
. (1.26)

Proof. Follows from Theorem 1, using the covariance property and the
commutativity of Ax with any power of itself (see [CDP]). tu

1.1.3 Variations of determinants of invertible self-adjoint op-
erators

Let A ∈ Ell∗ord>0(E) be a self-adjoint elliptic (classical) pseudo-differential
operator. If A is not positive, its spectrum contains negative eigenvalues but
its ζ-function can still be defined by (1.22), taking now λ−z

k to be |λk|−ze−iπz

if λk is negative. In [APS73] Atiyah, Patodi and Singer define, for large <(z),
the η-function of A as the trace of the operator A|A|−z−1, i.e.

ηA(z) =
∑
k∈ZZ

(signλk)λ−z
k . (1.27)

They showed that this function extends meromorphically to the whole z-plane
and, moreover, that ηA(z) is finite at z = 0. Its value at z = 0 measures the
asymmetry of the spectrum of A. Following [APS73] we define the η-invariant
of A by

ηA(0) = f.p.|z=0 tr
(
signA|A|−z

)
= tr|A|(sign(A)), (1.28)

where the sign of A is the classical pseudo-differential operator defined by
sign(A) = A|A|−1.
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The following well-known result (see e.g. [Si] [AS95]) shows that the phase of
the ζ-determinant of a self-adjoint operator can be expressed in terms of its
η-invariant.

Proposition 3 Let A ∈ Ell∗ord>0(E) be any self-adjoint elliptic pseudo-differential
operator. Then

detζ A = exp tr|A| (logA) = detζ |A| · exp{ iπ
2

(ηA(0)− ζ|A|(0))}. (1.29)

Proof. Let us give a proof here in the language of weighted traces. Let A
be an elliptic self-adjoint operator and let a be the order of A, then [APSIII]

res(UA) = 0,

where UA = sign(A) = A|A|−1 denote the sign of A. Using the polar decom-
position A = |A|UA = UA|A| it follows that

logA = log |A|+ logUA

since [|A|, UA] = 0. Applying the results of Theorem 1, and using the fact
that UA = exp

(
iπ
2 (UA − I)

)
, we get

trA(logA)− tr|A|(logA) = −a
2
res
(
(logUA)2

)
= a

π2

8
res((UA − I)2).

But U2
A = I for A self-adjoint, so

trA(logA)− tr|A|(logA) = a
π2

4
res(I − UA) = −aπ

2

4
res(UA) = 0.

Thus,

detζ(A) = exp trA(logA) = exp tr|A|(logA) = detζ |A|eiφ(A),

where φ(A) = −itr|A| log(π
2
) UA = π

2

(
ηA(0)− ζ|A|(0)

)
is the “phase” of the

zeta determinant of A. The equality ηA(0) = tr|A|(UA) yields (1.29).
tu

As a consequence of this, using the fact that ζ|A|(0) = 0 when A is a dif-
ferential operator acting on sections of some vector bundle based on an odd-
dimensional closed manifold [S][Si], it follows that

detζ(A) = detζ |A| · e
iπ
2
tr|A|(UA) = detζ |A| · e

iπ
2

(ηA(0)), (1.30)

whenever n is odd.
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Example 1 [BBW] Consider the operator

At = i
d

dx
+ t (1.31)

on C∞(S1), where S1 is identified with IR/[0, 2π] and 0 ≤ t ≤ 1. Then, if
f ∈ C∞(S1), Atf(x) = λf(x) if and only if f(x) = exp{−i(λ − t)x} which,
under the given boundary condition, implies that λ = n + t where n ∈ZZ, or
λ = ±n+ t where n ∈ZZ+. Thus, the spectrum of At is the set {±n+ t}n∈ZZ+,
so that

ζAt(z) =
∑

n∈ZZ+

(n+ t)−z +
∑

n∈ZZ+

(n− t)−ze−iπz

and
ηAt(z) =

∑
n∈ZZ+

(n+ t)−z −
∑

n∈ZZ+

(n− t)−z.

In terms of the Riemann-Hurwitz zeta function ζ(z, t) =
∑∞

n=0(n+ t)−z these
equations can be written as

ζAt(z) = ζ(z, t)− e−iπzζ(z,−t)

and
ηAt(z) = ζ(z, t)− ζ(z,−t).

Hence the ζ-determinant of At reads

detζAt =
2π

Γ(t)Γ(−t)
exp

{
iπ

2
(1− 2t)

}
, (1.32)

where Γ(z) denotes the gamma function

Γ(z) =
∫ ∞

0
e−ttz−1dt, (1.33)

and
ηAt(0) = 1− 2t. (1.34)

This shows that when t = 1
2 and the spectrum of At is symmetric, ηAt(0) = 0.

Finally, note that
ζ|At|(z) = ζ(z, t) + ζ(z,−t)

so ζ|At|(0) = 0, which is in accordance with our previous result for the ζ-
determinant of At.

Remark. The definition of η(A) extends to non invertible operators in a
similar way as weighted traces do, i.e. replacing A by Ā = A+PA, where PA

denotes the projection on kerA (see Remark 2 at the end of Section 1.1.1).
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1.2 Elliptic Complexes and Analytic Torsion

1.2.1 Determinant and Torsion of a Chain Complex

In this section we review the theory of determinants and torsions for chain
complexes of finite-dimensional vector spaces. Three types of algebraic “tor-
sions” arising in the literature are considered (Reidemeister torsion, Torsion
and Analytic torsion) and the relation between them are described.

Determinants in Finite Dimensions. Let E be a finite dimensional com-
plex vector space. The determinant of E is the one dimensional complex
vector space detE = ΛmE, where m = dimE. If there exists a ZZ-grading on
E, i.e. if E = E0 ⊕ E1 ⊕ · · · ⊕ En, n ∈ IN, where Ek is a finite dimensional
complex vector space for all k ∈ {0, 1, . . . , n}, its determinant is defined by
the tensor product

detE =
n⊗

k=0

(detEk)(−1)k+1
,

where we denote by V −1 = V ∗ = Hom(V, IC) the dual vector space to V ,
letting detV = (detV )−1 = (detV )∗ = IC if V = 0.

Recall that given a linear map T : E → E, the determinant of T is the
complex number given by the equality

(detT )(e1 ∧ · · · ∧ en) = Te1 ∧ · · · ∧ Ten,

i.e. detT = 〈Te | e∗〉, where {e1, . . . , en} is an oriented basis for E, e∗ the
dual of e = e1 ∧ · · · ∧ en, Te = Te1 ∧ · · · ∧Ten and 〈·|·〉 denote duality pairing
between detE and its dual vector space. It is equal to the product of the
eigenvalues of T , independently of the chosen basis. However, if we consider a
linear map between different finite-dimensional complex vector spaces (of the
same dimension)

T : E → F,

the complex number given by

(detT )(f1 ∧ · · · ∧ fn) = Te1 ∧ · · · ∧ Ten, (1.35)

where f1, . . . , fn is an oriented basis for F , and f1∧· · ·∧fn, Te1∧· · ·∧Ten, are
elements of the one-dimensional complex vector space detF , is no longer in-
dependent of the chosen basis for E and F . Thus, in this case the determinant
of T must be regarded as an element of the one-dimensional complex vector
space detE∗ ⊗ detF . A canonical representation of detT is giving by taking
any x ∈ detE such that Tx 6= 0, then the element x∗ ⊗ Tx of detE∗ ⊗ detF
is independent of the x chosen.
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Algebraic Torsions of a Chain Complex

Consider a chain complex (E•, T•) of finite-dimensional vector spaces, i.e. a set
of finite-dimensional vector spaces {Ek}k=0,...,n (which we assume equipped
with a Hermitian inner product) and linear maps {Tk}k=0,...,n,

0→ E0
T0−→ · · · → Ek−1

Tk−1−→ Ek
Tk−→ Ek+1→ · · ·

Tn−1−→ En→ 0, (1.36)

such that
Tk ◦ Tk−1 = 0. (1.37)

Associated to a complex (E•, T•) we shall define three objects, its Reidemeis-
ter Torsion, its Torsion and its Analytic Torsion, which generalize the idea of
determinant of a given linear map.

Reidemeister Torsion. The Reidemeister torsion of a complex was in-
troduced by Reidemeister, Franz and de Rham in the 30′s in order to dis-
tinguish topological spaces with the same homotopy type, and measures -in
some sense- the volume of the complex. (for a historical reference containing
original references see Milnor’s Collected Works [M95]).

Given a complex (E•, T•) consider the vector space IE =
⊕n

k=0Ek. The
standard short exact sequences

0→ Zk −→ Ek
Tk−→ Bk+1 → 0 (1.38)

and
0→ Bk −→ Zk −→ Hk → 0, (1.39)

where Bk = ImTk−1, Zk = kerTk and Hk is the kth-cohomology space of
complex, induce canonical isomorphisms detEk

∼= detZk ⊗ detBk−1 and
detZk

∼= detBk ⊗ detHk. Combining these isomorphisms gives an isomor-
phism

Φ : det IE→ det IH,

between the determinant space of the complex (E•, T•), defined as the deter-
minant space of IE,

det IE =
n⊗

k=0

(detEk)(−1)k+1
,

and the determinant of its cohomology det IH =
⊗n

k=0(detHk)(−1)k+1
. Let e

be an ordered basis for E•, i.e. an ordered basis ek = {e1k, e2k, . . . e
nk
k }, where

nk = dimEk, for each Ek. Let h be an ordered basis for H•. Let [e] ∈ det IE
and [h] ∈ det IH denote the resulting volume forms.
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Definition 5 [M62] The Reidemeister torsion of the complex (E•, T•) is the
non-zero complex number given by

τ̃R(E•, e,h) = 〈Φ([e])|[h]−1〉,

where the power −1 stands for dual and 〈|〉 denotes duality pairing in det IH.
We also define τR(E•, e) = τ̃R(E•, e, 1) if the complex is acyclic, i.e. H• = 0,
τR(E•, e) = 0 otherwise. Note that we omit in the notation the dependence of
the chain maps (T•), although the torsion depends on it.

The canonical isomorphism Φ can be described as follows [M62] [T01]. Let
e = (e0, e1, e2, . . . en) be the given ordered basis of E•, and consider, for each
k, the volume element vek

= e1k ∧ e2k ∧ . . . ∧ e
nk
k ∈ detEk associated to the

basis ek of Ek. Then [e] = v−1
e0
⊗ ve1 ⊗ · · · ⊗ v(−1)n+1

en ∈ det IE, where the −1

power denote the dual element, and [h] = v−1
h0
⊗ vh1 ⊗ · · · ⊗ v(−1)n+1

hn
is the

corresponding ordered basis h of H•.

By exactness of the short exact sequences (1.38) and (1.39), there is a canon-
ical isomorphism Ek

∼= Bk ⊕Hk ⊕ Bk+1. Let us choose, for each k, a subset
bk−1 = {b1k−1, . . . , b

lk
k−1} of Ek−1 such that Tk−1bk−1 = {Tk−1b

1
k−1, . . . Tk−1b

lk
k−1}

is a basis of Bk = ImTk−1, where lk = dimBk. Then, the collection ẽk =
{Tk−1bk−1,hk,bk} is a basis of Ek. Let us denote by T̃k the transition matrix
taking the basis ek into the basis ẽk of Ek. Then [T01],

Φ([e]) = (−1)nE

n∏
k=0

(
det T̃k

)(−1)k+1

[h],

where nE =
∑n

k=0 χ
E
k (IE)χ̄H

k (IE) (mod 2), with χE
k (IE) =

∑k
k=0 dimEk (mod

2) and χ̄H
k (IE) =

∑k
k=0 dimHk (mod 2). The definition is of course indepen-

dent of the basis bk used in the calculations.

In what follows we shall be interested in the acyclic case (so in τR rather
than τ̃R). Observe that if H• = 0 then nE = 0, and the previous discus-
sion shows that we can compute the Reidemeister torsion τR in terms of an
alternating product of determinants, as given by the following:

Lemma 2 If H• = 0, the Reidemeister torsion of the chain complex (E•, T•)
is given by

τR(E•, e) =
n−1∏
k=0

(det T̄k)(−1)k+1
.

where T̄k is the isomorphism taking the subcollection bk into the subcollection
{e1k+1, . . . , e

lk+1

k+1} of the basis ek+1.
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Indeed, acyclicity implies that, for any 0 ≤ k ≤ n,

0→ Bk ↪→ Ek
Tk→ Bk+1 → 0, (1.40)

is a short exact sequence. The result follows taking [h] = 1 in our previous
discussion.

In the acyclic case a ZZ2-grading is defined naturally on the vector spaces
appearing in the complex (E•, T•), and the torsion can also be computed
from the determinant of a map induced canonically for such a grading.

Lemma 3 [T01] Any acyclic chain complex (E•, T•) of finite-dimensional
vector spaces induces a canonical isomorphism

ιRτ(E•,e) : IE+ → IE−,

where IE+ =
⊕

k evenEk and IE− =
⊕

k oddEk, such that

τR(E•, e) = det ιRτ(E•,e). (1.41)

(see also [N01] and references therein).

The Torsion. As for the determinant of a linear map between different
vector spaces, to the Reidemeister torsion (which depends on the chosen basis
e and h involved in the computation) we can associate a canonical element
of the determinant line det IE. Let (E•, T•) be an acyclic complex and let,
for each 0 ≤ k ≤ n − 1, xk ∈ Λlk+1Ek be such that Tkxk 6= 0. Then, since
dimEk+1 = lk + lk+1, Tkxk ∧ xk+1 ∈ detEk+1 is a non-zero element.

Definition 6 The Torsion of the complex (E•, T•) is the canonical element
of det IE given by

τ(E•, T•) = x−1
0 ⊗(T0x0∧x1)⊗(T1x1∧x2)−1⊗· · ·⊗(Tn−1xn−1)(−1)n+1

. (1.42)

Here, as before, canonical means independent of the x0,x1, . . .xn−1 chosen.
The relation between the torsion and the Reidemeister torsion of (E•, T•) is
given by a duality pairing. Indeed, observe that taking an ordered basis e of
E• and the dual of the induced element [e] in det IE, [e]−1 = ve0 ⊗v−1

e1
⊗· · ·⊗

v(−1)n

en ∈ det IE−1, then

〈 τ(E•, T•) | [e]−1 〉
= 〈x−1

0 ⊗ (T0x0 ∧ x1)⊗ · · · ⊗ (Tn−1xn−1)(−1)n+1 |ve0 ⊗ v−1
e1
⊗ · · · ⊗ v(−1)n

en 〉

= 〈x−1
0 |ve0〉E0〈(T0x0 ∧ x1)|v−1

e1
〉E1 · · · 〈(Tn−1xn−1)(−1)n+1 |v(−1)n

en 〉En

where 〈|〉V denotes duality pairing between the vector spaces detV and (detV )−1.
Splitting vek

= v′ek
∧ v′′ek

, where v′ek
∈ ΛlkEk and v′′ek

∈ Λlk+1Ek, this gives

〈 τ(E•, T•) | [e]−1〉 =

〈x−1
0 |(v

′′
e0

)〉E0〈(T0x0 ∧ x1)|(v′e1
∧ v′′e1

)−1〉E1 · · · 〈(Tn−1xn−1)(−1)n+1 |(v′en
)(−1)n〉En .

32



Using the fact that τ(E•, T•) is independent of the xk, taking xk = v′′ek
we

find that

〈τ(E•, T•) | [e]−1〉 = 〈(T0x0)|(v′e1
)−1〉 · · · 〈(Tn−1xn−1)(−1)n+1 |(v′en

)(−1)n〉,

and comparing with equation (1.35), which can be written detT = 〈Te | f−1〉,
we recover the alternating product of determinants appearing in the expression
for τR(E•, T•, e) given by Lemma 2. This leads to

Proposition 4

τR(E•, T•, e) = 〈τ(E•, T•) | [e]−1〉.

Note that the advantage of the torsion τ(E•, T•) over the Reidemeister torsion
τR(E•, T•, e) is that the former does not involve the choice of a basis.

Analytic Torsion. Given a complex (E•, T•), consider the family (T ∗• ) of
formal adjoints of the family of linear maps (T•). The map T ∗k : Ek+1 → Ek

is defined by
〈Tkek, ek+1〉k+1 = 〈ek, T ∗k ek+1〉k,

where 〈, 〉k and 〈, 〉k+1 denote the inner products in Ek and Ek+1, respectively.

Definition 7 Let (E•, T•) be an acyclic chain complex of finite dimensional
vector spaces, and let, for 0 ≤ k ≤ n, ∆k : Ek → Ek be the Laplacian, defined
by

∆k = T ∗kTk + Tk−1T
∗
k−1.

The Analytic Torsion of the complex (E•, T•) is the positive real number given
by [BGS88]

T (E•, T•) =
n∏

k=0

(det∆k)
k
2
(−1)k+1

(1.43)

The relation between the torsion and the analytic torsion of an acyclic chain
complex is given by the following:

Proposition 5 [BGS88] Let (E•, T•) be an acyclic complex of vector spaces,
then

T (E•, T•) = ||τ(E•, T•)||, (1.44)

where ||·|| denotes the norm on det IE induced by the norms on the vector spaces
Ek.

Note that, through Proposition 4, Lemma 2 gives us an expression of τR(E•, T•, e)
as a contraction of τ(E•, T•), an element of det IE =

⊗n
k=0(detEk)(−1)k+1

,
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with an element of (det IE)−1. In the same way, Lemma 3 can be seen as a
contraction of an element of

(
det IE+

)∗ ⊗ det IE−, where

det IE+ =
⊗

k even

detEk , det IE− =
⊗
k odd

detEk,

with an element of its dual. In fact, these complex lines (one-dimensional
complex vector spaces) are isomorphic, the isomorphism being given by

i± :
n⊗

k=0

(detEk)(−1)k+1 →

(⊗
k even

detEk

)∗
⊗

(⊗
k odd

detEk

)
e−1
0 ⊗ e1 ⊗ e

−1
2 ⊗ . . .⊗ ε

(−1)n+1

n 7→ (e0 ⊗ e2 ⊗ . . .)∗ ⊗ e1 ⊗ e3 ⊗ . . . (1.45)

There is a canonical element in det IE, namely the torsion τ(E•), and the
determinant of the isomorphism D+

(E•,T•)
= ⊕n

k=0(Tk+T ∗k ) : IE+ → IE− (which
we shall denote simply by D+ when no explicit reference to the complex be
necessary) gives us a canonical element in

(
det IE+

)∗⊗det IE−. However, these
canonical elements do not correspond under isomorphism (1.45). As a matter
of fact [BGS88]

detD+ =

[ ∏
k even

det ∆′
k

]
i± (τ(E•, T•)) , (1.46)

where ∆′
k = ∆k|ImTk−1

.

Let (E•, T•) be an acyclic complex of finite dimensional vector spaces. Con-
sider the decomposition Ek = E′k ⊕ E′′k , where E′k = Tk−1Ek−1 and E′′k =
T ∗kEk+1, at each level of the complex. Let ∆k = ∆′

k ⊕∆′′
k be the correspond-

ing decomposition of the Laplacians, so that

det ∆k = det∆′
k det ∆′′

k. (1.47)

Proposition 6

T (E•, T•) =
n∏

k=1

(
det ∆′

k

) (−1)k+1

2 =
n−1∏
k=0

(
det ∆′′

k

) (−1)k

2 .

Proof. It follows from the definition of the analytic torsion and equation
(1.47). tu

1.2.2 Elliptic Complexes

A complex of Hilbert spaces {Ek}k=0,1,...,n and continuous linear maps {Tk}k=0,1,...,n,

(IE, IT) : 0→ E0
T0−→ · · · −→ Ek−1

Tk−1−→ Ek −→ · · ·
Tn−1−→ En→ 0,

(1.48)
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is called Fredholm if dimHk < ∞ for all k = 1, . . . , n, where Hk = Zk/Bk is
the cohomology of the complex (IE, IT). This is equivalent to all the Laplacians
of the complex

∆k = T ∗kTk + Tk−1T
∗
k−1

being Fredholm operators in their respective spaces Ek. If this is the case,
Hodge’s theorem says that the dimension of the kernel of ∆k coincides with
that of Hk. The Euler characteristic of the complex is defined as

χ(E) =
n∑

i=0

(−1)k dimHk, (1.49)

which, in the case in which dimEk <∞, coincides with
∑n

i=0(−1)k dimEk.

Let us now consider hermitian vector bundles {Ek}k=0,1,...,n over a manifoldM
and, for each k, let Dk : Γ(Ek) → Γ(Ek+1) be classical differential operators
of the same positive order l. Then, if the sequence

0→ Γ(E0)
D0−→ · · · −→ Γ(Ek−1)

Dk−1−→ Γ(Ek) −→ · · ·
Dn−1−→ Γ(En)→ 0,

(1.50)
is a complex (i.e. Dk ◦Dk−1 = 0 for 0 ≤ k ≤ n), it is called an elliptic complex
whenever the sequence of vector bundles

0→ π∗oE0

σD0−→ · · · −→ π∗oEk−1

σDk−1−→ π∗oEk −→ · · ·
σDn−1−→ π∗oEn→ 0,

(1.51)
is exact, where πo : T ∗oM → M denotes the cotangent bundle to M without
the zero section and the maps

σDk
: π∗oEk+1 → π∗oEk

are defined by the principal symbols of the operators Dk between sections of
the pull-back bundles over T ∗oM defined by πo (see Appendix A). This means
that, for every (x, ξ) ∈ T ∗oM , the sequence of vector spaces

0→ Ex
0

σD0
(x,ξ)
−→ · · · −→ Ex

k−1

σDk−1
(x,ξ)

−→ Ex
k −→ · · ·

σDn−1
(x,ξ)

−→ Ex
n → 0,

(1.52)
where Ex

k is the fibre above x in π∗oEk, is exact.

This definition of ellipticity of the complex (1.50) is equivalent to the el-
lipticity of all the laplacians

∆k = D∗
kDk +Dk−1D

∗
k−1,

where D∗
k is the pseudo-differential operator formal adjoint to Dk, defined

with respect to the Riemannian structure on M and the Hermitian structure
on each bundle Ek.
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Example 2 Consider a closed n-dimensional Riemannian manifold M and
let ρ : π1(M) → End(V ) be a representation of the fundamental group of M
on an inner product vector space V . The representation ρ defines a hermitian
vector bundle Vρ over M , with fibre V , by taking pairs (m, v), (m′, v′) in M×V
to be equivalent iff γ ·m = m′ and v = ρ(γ−1) · v′ for some γ ∈ π1(M). Vρ

comes with a flat connection ∇ρ which we couple with exterior differentiation
of k-forms on M to define a complex of differential forms on M with values
in Vρ. Indeed, consider the vector bundle of twisted k-forms ΛkT ∗M ⊗Vρ and
the operator dρ

k = dk⊗1⊕1⊗∇ρ acting on the space of sections of this bundle
Ωk(M,ρ) = Γ

(
(ΛkT ∗M)∗ ⊗ Vρ

)
; dρ

k
2 = 0 for all k, as a consequence of the

flatness of ∇ρ. We say that the representation ρ is acyclic if the sequence

0 −→ Ω0 dρ
0−→ · · · Ωk−1

dρ
k−1−→ Ωk

dρ
k−→ Ωk+1

dρ
k+1−→ · · · Ωn dρ

n−→ 0, (1.53)

is an acyclic complex, i.e. all the de Rham cohomology groups of the complex
are trivial (Hk(M,ρ) = {0}, 0 ≤ k ≤ n). The representation of π1(M) will
be fixed and no specific reference to it will be given (in the notation) in the
sequel (we shall denote Ωk(M,ρ) simply by Ωk, and dρ

k by dk, for all k).
The inner product on k-forms defined by the Riemannian metric on M through
the Hodge-star map ∗ : Ωk(M)→ Ωn−k(M),

〈αk, βk〉 =
∫

M
αk ∧ ∗βk,

and the Hermitian structure on each fibre of Vρ, also couple to define an inner
product on Ωk. From it we define the formal adjoints to dk, k = 0, 1, . . . , n,
by

〈dkωk, ηk+1〉 = 〈ωk, d
∗
kηk+1〉,

from which it follows that d∗k = (−1)nk+1 ∗ dn−k−1∗. The Laplacians acting
on twisted k-forms are given by

∆k = d∗kdk + dk−1d
∗
k−1.

The operators dk are differential operators of order 1 (see Example 10 in
Appendix A), and hence so are the maps dρ

k = dk ⊗ 1⊕ 1⊗∇ρ (note that the
Vρ component does not affect the ellipticity of dρ

k). The sequence

· · · → Λk−1T ∗mM
ξ→ ΛkT ∗mM

ξ→ Λk+1T ∗mM → · · · ,

where the maps are left exterior multiplication by ξ, is exact. From Example
10 in Appendix A we know that σdk

(m, ξ) is left exterior multiplication by
ξ. On the other hand, from the definition of the ∗-operator (which, at each
m ∈M is given by 〈ω, ω′〉 = ∗(ω ∧ ∗ω′)) it follows that

(−1)nk ∗ ξ∗ : Λk+1T ∗mM → ΛkT ∗mM
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is the adjoint to ΛkT ∗mM
ξ→ Λk+1T ∗mM . Thus, d∗k is also a first order elliptic

differential operator for k = 0, 1, . . . , n, and hence the Laplacian ∆k is elliptic.
In fact

σ∆k
(m, ξ) = |ξ|2,

which is clearly non-singular for (m, ξ) ∈ T ∗mM − {0}.
Note that, because of the acyclicity assumption on ρ, we have at each level of
the complex the Hodge decomposition

Ωk = Ω′k ⊕ Ω′′k (1.54)

where Ω′k = Im dk−1 = Ker dk and Ω′′k = Im d∗k = Ker d∗k−1.

1.2.3 Analytic Torsion of a Riemannian Manifold

Consider a closed n-dimensional Riemannian manifold M and let (IE•, T•)
denote the complex

0→ Γ(E0)
D0−→ · · · → Γ(Ek)

Dk−→ Γ(Ek+1)→ · · ·
Dn−1−→ Γ(En)→ 0, (1.55)

where the maps Dk are fixed positive-order differential operators acting on
spaces of sections of the Hermitian vector bundles Ek over M . Let ∆k =
D∗

kDk +Dk−1D
∗
k−1 be the elliptic self-adjoint positive Laplacian operator act-

ing on sections of Ek. The formal adjoint operators D∗
k are defined with

respect to the Hermitian inner product hk on the spaces of smooth sections
Γ(Ek) induced by the Hermitian structure 〈·, ·〉k on Ek, and the Riemannian
metric g on M , namely

hk(σ1, σ2) =
∫

M
〈σ1(m), σ2(m)〉k dµM (m). (1.56)

Thus, the Laplacians ∆k, their spectra and ζ-regularized determinants are
functions of the Riemannian structure on M and the Hermitian structure on
the vector bundles. In [RS71], Ray and Singer define, when the elliptic com-
plex is acyclic and from a combination of ζ-determinants of the Laplacians,
a topological invariant of M – its Analytic Torsion, i.e. a quantity indepen-
dent of the Riemannian structure on M . They consider the case in which
Ek = Γ

(
(ΛkT ∗M)∗ ⊗ Vρ

)
, the space of differential k-forms with values in the

vector bundle Vρ associated to a representation ρ of the fundamental group of
M on an inner product vector space, and Dk is the flat connection (exterior
differentiation of forms coupled to the flat connection on Vρ) on sections of
this vector bundle (see Example 2). This construction can be extended to the
case of general (acyclic) elliptic complexes, as observed by Schwarz in [S79].
In this section we shall review their main features.
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Definition 8 [RS71] Let ∆k denote the Laplacian operator at the level k in
the acyclic elliptic complex (IE•, ID•) given by (1.55). The Analytic Torsion of
the complex (IE•, ID•) of vector bundles over the manifold M is the complex
number given by

T (IE•, ID•) = exp

{
1
2

n∑
k=0

(−1)kk ζ ′∆k
(0)

}
. (1.57)

Note that, using the definition of the ζ-determinant of an elliptic differen-
tial operator (1.23), this expression yields the same equality as in the finite-
dimensional case (Definition 7).

Theorem 2 [S79] If dimM is odd, then T (IE•, ID•) is independent of the
Riemannian metric on M and the Hermitian structure on the bundles Ek.

Proof. Let us consider a family {gu, 〈·, ·〉uk}u of Riemannian metrics and
Hermitian structures on Ek, respectively, parametrized by u ∈ [0,∞). Let

hk(u)(σ1, σ2) =
∫

M
〈σ1(m), σ2(m)〉uk dµMu(m), (1.58)

be the induced Hermitian inner product on sections of Ek, where µMu is the
Riemannian volume element on M defined by the metric gu. Then, for u 6= 0,
hk(0)(σ1, σ2) = hk(σ1, σ2) and hk(u)(σ1, σ2) are related by

hk(u)(σ1, σ2) = hk(Auσ1, σ2),

where Au : Γ(Ek) → Γ(Ek) is a zero order self-adjoint positive operator,
uniquely determined by the variation of the metrics. Thus, since hk+1(Dkσk, ϕk+1) =
hk(σk, (Au

−1D∗
kAu)ϕk+1), where σk ∈ Γ(Ek) and ϕk+1 ∈ Γ(Ek+1), then

D∗
k(u) = Au

−1D∗
kAu

and ∆k(u) = Au
−1D∗

kAuDk +Dk−1Au
−1D∗

k−1Au . Consider now the function

f(u, t) =
n∑

k=0

(−1)kk tr
(
e−t∆k(u)

)
,

where tr
(
e−t∆k(u)

)
is the heat kernel of the Laplacian ∆k(u). We are inter-

ested in the variation of this function with respect to the parameter u. Let
∆̇k(u) = ∂∆k(u)

∂u , then

∂

∂u
f(t, u) = −t

n∑
k=0

(−1)kk tr
(
e−t∆k(u)∆̇k(u)

)
,

and
∂

∂u
D∗

k(u) = D∗
k(u)X −XD∗

k(u),
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where X = Au
−1Ȧu. It follows that

∆̇k(u) = Dk−1D
∗
k−1(u)X −Dk−1XD∗

k−1(u) +D∗
k(u)XDk −XD∗

k(u)Dk,

which, through the relations ∆k(u)D∗
k(u)Dk = ∆k+1(u)DkD

∗
k(u), implies

∂

∂u
f(t, u) = −t

n∑
k=0

tr
(
e−t∆k(u)∆k(u)X

)
= t

∂

∂t

{
n∑

k=0

(−1)k tr
(
e−t∆k(u)X

)}
.

Thus, letting

F (t) =
n∑

k=0

(−1)k tr
(
e−t∆k(u)X

)
,

for <(z) large enough, (1.18) implies that

∂

∂t

{
n∑

k=0

(−1)k ζ∆k(u)(z)

}
= M[tf ′(t)](z) = −zM[F (t)](z).

It follows from (1.20) applied to Q = ∆k(u)+λX (since X is a multiplication
operator) that

tr
(
e−t∆k(u)X

)
= −1

t

d

dλ
tr
(
e−t(∆k(u)+λX)

)
.

Then for t→ 0, the function F (t) has an asymptotic expansion of the form

F (t) =
∞∑

j=0

ajt
j−n

2 ,

where n = dimM , so M[F (t)] is holomorphic at z = 0 and M[F (t)](0) = an
2
.

On the other hand, since

log
(
T (IE•, ID•)(u)2

)
=

n∑
k=0

(−1)k kζ ′∆k(u)(0),

it follows that
M[F (t)](0) = − ∂

∂u
log
(
T (IE•, T•)(u)2

)
,

where T (IE•, ID•)(u) denotes the analytic torsion defined by the ζ-determinants
of the Laplacians ∆k(u), which implies that for n odd T (IE•, ID•) is constant.
tu
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Ray-Singer Torsion. Let us now consider the analytic torsion in the
context of Ray and Singer, i.e taking the twisted de Rham complex described
in Example 2,

0 −→ Ω0 d0−→ · · · Ωk−1 dk−1−→ Ωk dk−→ Ωk+1 dk+1−→ · · · Ωn dn−→ 0, (1.59)

where ρ denote a (fixed) representation of the fundamental group of M on an
inner product vector space, dk is the flat connection (exterior differentiation
of forms coupled to the flat connection on Vρ) on sections of the vector bundle
Ωk(M,ρ) = Γ

(
(ΛkT ∗M)∗ ⊗ Vρ

)
(that we shall denote by Ωk) of differential

k-forms with values in Vρ. We assume that the complex (1.59) is acyclic. In
this case the formal adjoint to the first-order differential operator dk, denoted
d∗k and defined through the Hodge-star map ∗ : Ωk → Ωn−k, acts on Ωk+1 by

d∗k = (−1)nk+1 ∗ dn−k−1 ∗ . (1.60)

The Ray-Singer Torsion corresponds to the analytic torsion of the complex
(1.53), and we shall denote it by TRS(M). It follows from Theorem 2 that
TRS(M) is independent of the Riemannian structure on M when n is odd.
Other important properties of the Ray-Singer torsion of M follow from the
particular form of the inner product on Ωk, which is defined in terms of the
Hodge star map, and the Hodge decomposition in each level of the complex.
Recall that acyclicity of (1.53) implies, for any 1 ≤ k ≤ n − 1, a Hodge
decomposition (1.54)

Ωk = Ω′k ⊕ Ω′′k

where Ω′k = Im dk−1 = Ker dk and Ω′′k = Im d∗k = Ker d∗k−1, while Ω0 = Ω′′0
and Ωn = Ω′n. Hence, the spaces Ωk of k-forms are completely determined by
their neighbors in the complex

Ωk−1 dk−1−→ Ωk d∗k←− Ωk+1.

By restriction on the respective domains of the maps dk and d∗k, it follows
that

dk|Ω′′k : Ω′′k → Ω′k+1 and d∗k|Ω′k+1
: Ω′k+1 → Ω′′k

are isomorphisms, giving rise to the bijective maps

d∗kdk : Ω′′k → Ω′′k, and dkd
∗
k : Ω′k+1 → Ω′k+1.

Thus, Hodge decomposition yields an isomorphism

Ωk ∼= Ω′′k−1 ⊕ Ω′k+1.

Let us consider the Laplacian operator on k-forms,

∆k = dk−1d
∗
k−1 + d∗kdk, (1.61)
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and the restricted Laplacians, w.r.t. the decomposition (1.54),

∆′
k = ∆k|Ω′k and ∆′′

k = ∆k|Ω′′k . (1.62)

Note that, since ∆′
k = dk−1d

∗
k−1|Ω′k and ∆′′

k = d∗kdk|Ω′′k , we have

∆k = ∆′
k + ∆′′

k. (1.63)

Moreover, Ω0 = Ω′′0 and Ωn = Ω′n imply that ∆0 = ∆′′
0 and ∆n = ∆′

n, so that
we have 2n positive selfadjoint elliptic operators ∆′

1, . . . ,∆
′
n,∆

′′
0, . . . ,∆

′′
n−1.

Finally, the identities

∗dk−1d
∗
k−1 = d∗n−kdn−k ∗ (1.64)

∗d∗kdk = dn−k−1d
∗
n−k−1∗, (1.65)

imply that

∗∆′
k = ∆′′

n−k ∗ (1.66)
∗∆′′

k = ∆′
n−k∗,

which yields for the Laplacian on Ωk the well-known equality

∗∆k = ∆n−k ∗ . (1.67)

As consequence of acyclicity, and the corresponding Hodge decomposition, the
zeta-regularization techniques used to define the determinant of the Laplacian
operators can also be used to define regularized determinants for the restricted
Laplacians ∆′

k and ∆′′
k. As the restriction to Ω′k and Ω′′k of a self adjoint

elliptic operator on a closed manifold, the operators ∆′
k and ∆′′

k have purely
discrete real spectrum. Indeed, from (1.54) and the nilpotency of the d∗k and
dk operators, it follows that the set of eigenvalues of the Laplacian ∆k is the
union of the eigenvalues of dk−1d

∗
k−1 and d∗kdk. Hence,

ζ∆k
(z) = ζ∆′

k
(z) + ζ∆′′

k
(z), (1.68)

where ζ∆′
k
(z) and ζ∆′′

k
(z) are the ζ-functions of the restricted Laplacians

(1.62), defined by

ζ∆′
k
(z) = tr

(
∆′−z

k

)
=

∑
λ′∈Spec∆′

k

λ′−z

and
ζ∆′′

k
(z) = tr

(
∆′′−z

k

)
=

∑
λ′′∈Spec∆′′

k

λ′′−z,

where λ′′ and λ′ denote non-zero eigenvalues of ∆′
k and ∆′′

k, respectively.
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Let us set Ek(λ) = Ker (∆k − λ), then the Hodge decomposition (1.54) in-
duces a decomposition of such eigenspaces Ek(λ) = E ′k(λ) ⊕ E ′′k (λ), where
E ′k(λ) = Ek(λ) ∩ Ω′k and E ′′k (λ) = Ek(λ) ∩ Ω′′k. Let ωk−1 ∈ Ek−1(λ)′′, then
dk−1ωk−1 ∈ Ω′k and

∆kdk−1ωk−1 = dk−1d
∗
k−1dk−1ωk−1 = dk−1∆k−1ωk−1 = λdk−1ωk−1,

so dk−1 maps E ′′k−1(λ) bijectively into E ′k(λ), leading to a bijective correspon-
dence between (non-zero) eigenvalues (and their corresponding eigenvectors)
of the operators d∗k−1dk−1 and dkd

∗
k, which implies

ζ∆′
k
(z) = ζ∆′′

k−1
(z). (1.69)

Using (1.68) and (1.69) we have,

ζ∆′′
k
(z) = ζ∆k

(z)− ζ∆k−1
(z) + ζ∆k−2

(z)− · · ·+ (−1)kζ∆0(z).

Hence, from the properties of the zeta-function of the Laplacian, it follows
that, for all k, ζ∆′

k
and ζ∆′′

k
are well defined and analytic for z ∈ IC with

<(z) >> 0, and extend by analytic continuation to meromorphic functions
on IC, regular at the origin. Thus, the operators ∆′

k and ∆′′
k have honest

ζ-determinants.

Proposition 7

TRS(M) =
n∏

k=0

(detζ ∆k)
(−1)k+1k

2 =
n∏

k=1

(
detζ ∆′

k

) (−1)k+1

2 =
n−1∏
k=0

(
detζ ∆′′

k

) (−1)k

2 .

Proof. From (1.68) and the definition of ζ-determinant for ∆′
k and ∆′′

k it
follows that

detζ ∆k = detζ ∆′
k detζ ∆′′

k. (1.70)

Since log detζ ∆k = −ζ ′∆k
(0), from the definition of TRS(M) we find,

log TRS(M) =
n∑

k=0

log
{

(detζ ∆k)
(−1)k+1k

2

}
so

TRS(M) =
n∏

k=0

(detζ ∆k)
(−1)k+1k

2 .

Notice that (1.69) implies that detζ ∆′
k = detζ ∆′′

k−1 which, combined with
(1.70), yields

TRS(M) =
n∏

k=1

(
detζ ∆′

k

) (−1)k+1

2 =
n−1∏
k=0

(
detζ ∆′′

k

) (−1)k

2 .

tu
As a consequence of these relations we find the following
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Lemma 4 [RS71] If dimM is even, then TRS(M) = 1.

Proof. Let n = 2m be the dimension of M , Proposition 7 shows that

TRS(M) =
2m∏
k=1

(
detζ ∆′

k

) (−1)k+1

2 =
m∏

k=1

(
detζ ∆′

k

) (−1)k+1

2

2m∏
l=m+1

(
detζ ∆′

l

) (−1)l+1

2

and (1.69) implies that detζ ∆′
k = detζ ∆′′

k−1 which, by ∗-Hodge duality (1.66),
yields

detζ ∆′
k = detζ ∆′

n−k+1.

Putting this into the previous equality yields

TRS(M) =
m∏

k=1

(
detζ ∆′

n−k+1

) (−1)k+1

2

m∏
l=1

(
detζ ∆′

m+l

) (−1)m+l+1

2 = 1.

tu

1.3 Dirac Operators and Index Theorems

1.3.1 Dirac operators on Clifford bundles

Let M be a closed Riemannian manifold of dimension n and let C(M)→M
be the bundle of Clifford algebras over M , whose fibre above m ∈ M is the
Clifford algebra C(T ∗mM) of the Euclidean space T ∗mM . A Clifford module
over M is a ZZ2-graded Hermitian vector bundle E = E+ ⊕E− →M with an
odd action

Γ(M,C(M))× Γ(E) → Γ(E)
(a, σ) → c(a)σ

of the bundle of algebras C(M) on sections of E, i.e. c(a)E± = E∓, such that

〈c(a)σ1, σ2〉+ 〈σ1, c(a)σ2〉 = 0,

where 〈 , 〉 denotes the inner product on Γ(E) induced by the Hermitian struc-
ture on E and the Riemannian metric on M , namely

〈σ1, σ2〉 =
∫

M
〈σ1(m), σ2(m)〉m dµM (m). (1.71)

Let L2(E) be the completion of Γ(E) with respect to the induced norm. We
say that the Clifford module E is self-adjoint when c(a∗) = −c(a) for any
a ∈ Γ(M,C(M)).
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Let ∇ be a Clifford connection on E i.e. a connection ∇ on E such that,
∀a ∈ C(M), σ ∈ Γ(E) and any X ∈ Γ(TM),

[∇X , c(a)]σ = ∇X(c(a)σ)− c(a)∇Xσ = c(∇L.C.
X a)σ,

where ∇L.C. denotes the extension of the Levi-Civita connection to the bundle
C(M). From a Clifford connection ∇ and the Clifford multiplication, we build
an associated Dirac operator D∇ acting on sections of the Clifford module E
by composition,

Γ(E) ∇→ Γ(M,T ∗M ⊗ E) c→ Γ(E).

In local coordinates it reads

D∇σ =
n∑

i=1

c(dxi)∇ ∂
∂xi

σ, (1.72)

where σ ∈ Γ(E), {xi}, and where { ∂
∂xi
} and {dxi} denote local coordinates

for M , its tangent bundle and its cotangent bundle, respectively. D∇ is a
(formally) self-adjoint first order differential operator on Γ(E).

With respect to the ZZ2-grading of the Clifford module, i.e. the direct sum
decomposition E = E+ ⊕ E−, the Dirac operator D∇ can be written as

D∇ : Γ(E) → Γ(E)

σ 7→
[

0 D−
∇

D+
∇ 0

]
σ,

where D±
∇ : Γ(E±) → Γ(E∓) denote its corresponding components, with re-

spect to the inducedZZ2-graduation on Γ(E).

The operator ∆∇ = D2
∇ is a generalized Laplacian, in the sense that its leading

symbol σL(∆∇) satisfies the relation σ∆∇(x, ξ) = |ξ|2 for any (x, ξ) ∈ T ∗oM .

Example 3 If M is an oriented spin manifold then any Clifford bundle is a
twisted spinor bundle F = S ⊗W → M , where S is the spinor bundle on M
and W an exterior vector bundle on M . The Clifford connection ∇ arises in
that case from coupling the connection ∇S on S induced by the Levi-Civita
connection with a connection ∇W on W , ∇ = ∇S ⊗ 1⊕ 1⊗∇W . The Dirac
operator thus obtained is the twisted classical Dirac operator. In the case of
an even-dimensional manifold M , the ZZ2 grading on E is the one induced by
the ZZ2-grading S = S+ ⊕ S− of the spinor bundle, the decomposition being
orthogonal for the inner product induced from the metric on M , the Dirac

operator reads D =
[

0 D−

D+ 0

]
.
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Example 4 In the context of Example 2 let M be a closed Riemannian man-
ifold, ρ a representation of the fundamental group of M on an inner product
space V and let Vρ be the vector bundle over M defined by ρ. Then, the bun-
dle Eρ =

⊕
k ΛkT ∗M ⊗ Vρ is a Clifford module for the Clifford multiplication

given by

Γ(T ∗M)× Γ(Eρ) → Γ(Eρ)
(a, α) 7→ ε(a) ∧ α− i(a)α,

where ε(a) and i(a) denotes exterior and interior product, respectively. This
Clifford bundle is naturally graded by the parity on forms:

Eρ = E+
ρ ⊕E−ρ =

(⊕
k even

ΛkT ∗M ⊗ Vρ

)
⊕

(⊕
k odd

ΛkT ∗M ⊗ Vρ

)
.

The bundle Vρ comes with a flat (self-adjoint) connection ∇ρ that couples
with the Levi-Civita connection ∇LC to give a (self-adjoint) connection ∇ =
∇LC ⊗ 1⊕ 1⊗∇ρ on Eρ from which we can construct a Dirac operator D∇,
which we also call the de Rham operator. On the other hand, as seen in
Example 2, exterior differentiation d couples with the connection ∇ρ to yield
a twisted exterior differential dρ : Γ(Eρ)→ Γ(Eρ). Identifying dρ with ε◦∇LC ,
d∗ρ identifies to −i◦∇LC from which it easily follows that dρ+d∗ρ = (ε−i)◦∇ =
c ◦ ∇LC , and hence

D∇ = dρ + d∗ρ.

1.3.2 Index Theorems

Let H and H′ be two Hilbert spaces and A : H → H′ a Fredholm operator.
Then, the (formal) adjoint operator A∗ : H′ → H is also Fredholm, so that
ImA and ImA∗ are closed and there are orthogonal splittings

H = kerA⊕ ImA∗ and H′ = kerA∗ ⊕ ImA.

There exists a bounded operator R : H′ → H, called a parametrix of A, such
that πA = IH−RA and πA∗ = IH′ −AR are orthogonal projectors onto kerA
and kerA∗, respectively.

The analytic index of A is the integer number given by

indA = dim kerA− dim cokerA. (1.73)

Since cokerA ∼= kerA∗, this is equivalent to

indA = dim kerA− dim kerA∗

= dim ker(A∗A)− dim ker(AA∗).
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A positive order elliptic differential operator A : Γ(E) → Γ(E), where as
before Γ(E) denotes the space of smooth sections of a vector bundle E on a
compact manifold, extends to a Fredholm operator A : Hs(E) → Hs−a(E),
where Hs(E) is the completion with respect to the Sobolev Hs-norms of the
spaces of smooth sections of E and a = ordA. If there exists aZZ2-graduation

of E such that E = E+ ⊕ E−, and A =
(

0 A−

A+ 0

)
is self-adjoint and

odd with respect to this grading, then A− = (A+)∗. In this case we have
indA+ = dim kerA+ − dim kerA−, and we define the Q-weighted supertrace
of the operator A by

trQ
s (A) = trQ(γA), (1.74)

where γ =
(

I 0
0 −I

)
on E (i.e. E± is the ±1 eigenspace of γ) and Q denotes

a weight.

Example 5 In the context of Example 2, note that

D =
n∑

k=0

(dk + d∗k) :
n⊕

k=0

Ωk →
n⊕

k=0

Ωk

is a first order elliptic differential operator, ∆k = D2|Ωk
, and that the index of

the operator D+ = D|Ω+, where Ω+ =
⊕

k even Ωk, is the Euler characteristic
of the complex defined in (1.49).

The main goal in index theory is to express the analytic index of an ellip-
tic pseudo-differential operator acting on sections of a vector fibration over a
Riemannian manifold as a local term, i.e. as an integral on the manifold of
characteristic classes associated to the underlying geometry of the fibration.
Recall that locality is also a feature of weighted trace anomalies, so it is nat-
ural to ask if there is a relation between those anomalies and the index, a
question we shall address in Chapter 3.

The index of an elliptic operator can be calculated from its symbol, as was
shown by Atiyah, Singer and collaborators in the sixties. The original proofs
used methods of algebraic topology and K-theory [AS], but index theorems
can also be proven by heat kernel methods, which use analytical properties of
the asymptotic expansions of (some functions of) the involved operators.

Let us consider a graded Clifford module E = E+⊕E− over a closed Rie-
mannian manifold M . A smoothing operator A ∈ Cl(E) has smooth kernel k
and, M being closed, its trace can be computed from the trace trx on EndEx

of the linear maps k(x, x) ∈ E∗x ⊗ Ex
∼= HomEx,

trA =
∫

M
trxk(x, x) dµM (x). (1.75)
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Applying this to the smoothing heat kernel operator e−tD2
, t > 0, where

D is the Dirac operator acting on sections of E, there is a section kt(x, y)
(parametrized by t) of the bundle E�E∗ over M ×M , called the heat kernel,
such that

tr
(
e−tD2

)
=
∫

M
trxkt(x, x) dµM (x). (1.76)

On the other hand, the McKean-Singer index formula [MS] show that, for all
t > 0,

ind(D+) = trs(e−tD2
) = tr(e−tD∗D)− tr(e−tDD∗

). (1.77)

The Atiyah-Singer index theorem follows from the asymptotic behavior of the
heat kernel.

Proposition 8 [G95] Let M be a closed Riemannian manifold of dimension
n and E a Clifford module on M with associated Dirac operator D. Then
there exists an asymptotic expansion for the heat kernel kt of M of the form

kt(x, y) ∼ ht(x, y)
[
κ0(x, y) + tκ1(x, y) + t2κ2(x, y) + · · ·

]
, (1.78)

where
ht(x, y) =

1
(4πt)

n
2

exp{−d(x, y)2/(4t)} (1.79)

and the κi are sections of E � E∗ whose values κi(x, x) along the diagonal
can be computed by algebraic expressions involving the metrics, connection
coefficients and their derivatives.

Thus, from the asymptotic expansion (1.78) for the heat kernel associated to
the smoothing operator e−tD2

, it follows that

trs(e−tD2
) ∼ 1

(4πt)
n
2

[∫
M
κ0(x, x) dµM (x) + t

∫
M
κ1(x, x) dµM (x) + · · ·

]
.

On the other hand, the McKean-Singer index formula (1.77) says that trs(e−tD2
)

is constant so, if n is even,

ind(D+) =
1

(4π)
n
2

∫
M
κn

2
(x, x) dµM (x), (1.80)

where κn
2
(x, x) can be expressed in terms of the underlying geometrical data,

and ind(D+) = 0 if n is odd. The Atiyah-Singer theorem [AS] (see [Pal] for a
careful exposition) gives an explicit expression of the right hand side of (1.80)
in terms of characteristic classes when the Clifford bundle is the given by the
spinor bundle on an even-dimensional spin manifold.
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Theorem 3 [AS] The index of a Dirac operator D+ on a Clifford module
E = S ⊗ W based on an even dimensional spin manifold M , S being the
spinor bundle and W an exterior bundle, is given by:

ind(D+) =
∫

M
Â(∇LC) Ch(∇W ), (1.81)

where Â(∇LC) =
√

det
(

ΩLC/4π
sinhΩLC/4π

)
is the Â genus of the Levi-Civita con-

nection on M and Ch(∇W ) = tr
(
e−ΩW

)
the Chern character of the Clifford

connection on W .

If we consider now a manifold with non-empty boundary, a similar statement
can be made about the index of the signature operator, having in mind some
precise boundary conditions. In this case a new term appears in the index
formula from the boundary, containing the eta invariant of a particular dif-
ferential operator. This is the Atiyah-Patodi-Singer theorem.

Theorem 4 [APSI] Let X be an oriented Riemannian manifold of dimension
4l with boundary M such that X is isometric to a product near the boundary.
Let ∇W be a connection on the exterior bundle W based on X and ∇LC

the Levi-Civita connection on X. Let D∇ = ⊕n
k=1(d

∇
k + d∇k

∗) where d∇k =
dk⊗1⊕1⊗∇W and d∇k

∗ = d∗k⊗1⊕1⊗∇W as in Example 2, and let as before
D+
∇ denote the restriction of D∇ to the even forms on X. Near the boundary,

D+
∇ = c ◦ (

d

dt
+B−)

where B− is the restriction to odd forms on the boundary of the operator
defined on 2p or 2p + 1 forms by B∇ = ⊕n

k=1(−1)k+p+1(ε ∗ d∇k − d∇k ∗), ε
denoting the grading operator on forms. Then, the index of the operator D+

∇
(restricted to the subspace of smooth sections satisfying the boundary condition
P+(s|M ) = 0, P+ being the projector on the space spanned by eigenfunctions
with non-negative eigenvalues) is given by

indD+
∇ =

∫
X
L(∇LC)Ch(∇W ) + η(B−), (1.82)

where L(∇LC) =
√

det
(

ΩLC/4π
tanhΩLC/4π

)
is the Hirzebruch polynomial of ∇LC

and η(B−) denotes the η invariant of B−.
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Chapter 2

Physical Prerequisites

In this chapter we consider the Fresnel integral approach to path integrals,
which gives a rigorous definition to some of the heuristic integrals considered
in quantum physics. We also describe the Ansatz given by Schwarz to define
partition functions associated to degenerate action functionals by the use of
ζ-regularized determinants, and the Ansatz to define anomalies from the path
integral point of view.

2.1 Fresnel Integrals

In this section we introduce the framework of Fresnel integrals as defined by
Albeverio and Høegh-Krohn [AlH76].

2.1.1 Infinite Dimensional Gaussian Integrals

In a finite dimensional vector space Bochner’s theorem ensures a one-to-one
correspondence between characteristic functions 1 (positive definite continu-
ous functions) and measures [Y85]. For example, to the function

χ : IRn → IR+

ξ 7→ χ(ξ) = e−
1
2
〈ξ,ξ〉

there corresponds a unique Borel measure on IRn, called Gaussian Measure
and denoted by µ, such that

χ(ξ) =
∫

IRn
ei〈ξ,φ〉dµ(φ).

1A characteristic function on a topological vector space E is a continuous (on every finite
dimensional subspace of E) function χ satisfying

NX

j,k=1

αjᾱk χ(ξj − ξk) ≥ 0

for αk ∈ IC, ξj ∈ E (j, k = 1, ..., N .)
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In infinite dimensions, starting from a characteristic function χ on a topolog-
ical vector space E, one typically ends up with a measure with support in a
larger space. Even in the case of a Hilbert space, the measure correspond-
ing to a characteristic function on this space lies in some Hilbert-Schmidt
extension of it. However, Bochner’s theorem holds in the case of continuous
characteristic functions on a nuclear Hilbert space (a topological vector space
whose topology is defined by a family {|| · ||α} of Hilbertian semi-norms such
that ∀α ∃α′ : || · ||α is HS with respect to || · ||α′ .) [GV64].

Let H be a Hilbert Space (with inner product 〈 , 〉H) and, for α > 0, con-
sider the characteristic function

χα(ξ) = e−
1
2α
〈ξ,ξ〉H .

Corresponding to this function there is a infinite dimensional Gaussian mea-
sure µα which, keeping in mind the path integral heuristic expressions, can
be formally written

dµα(φ) =
1
Zα

e−
α
2
〈φ,φ〉HDφ,

the support of which lies in a Hilbert-Schmidt extension of H, say H′. Here
Zα =

∫
Dφ e−

α
2
〈φ,φ〉H . All this can be summarized in the single equation

χα(ξ) =
∫
H
ei〈ξ,φ〉Hdµα(φ), (2.1)

that generalizes the classical relation

e−
1
2α
|~x|2 =

∫
IRn

ei〈~x,~y〉−α
2
|~y|2d~y, (2.2)

where ~x, ~y ∈ IRn and 〈 , 〉 denotes the inner product in this space. Equa-
tion (2.1) defines the function χα as the Fourier Transform of the Gaussian
measure µα, so we shall denote it as µ̂α.

2.1.2 Fresnel Integrals

Let H be a separable Hilbert space with inner product 〈, 〉 and norm || ||,
and letM(H) be the commutative Banach algebra of bounded complex Borel
measures on H (with the norm induced by ”total variation” and the product
given by convolution [DS58]).

Definition 9 The class F(H) of Fresnel integrable functions of H is the
set of continuous bounded complex-valued functions on H which are Fourier
transforms of some element of M(H). Namely, f ∈ F(H) if there exists
µf ∈M(H) such that

f(x) =
∫
H

exp {i〈x, y〉} dµf (y). (2.3)
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The Fresnel integral of f ∈ F(H) is defined by

F(f) =
∫
H

exp
{
− i

2
||x||2

}
dµf (x). (2.4)

In [AlH76] it is shown that F(H) is a Banach algebra with identity isometri-
cally isomorphic toM(H), and we refer to [AlH76] for additional information
concerning this algebra and proofs of some of the results which we are going
to use.

Note that F(f) is not properly speaking an integral, but it verifies some
properties of integrals that prompt that name (for example a Fubini theorem
for Fresnel integrals exist). Remark also that in the very suggestive notation
used by Albeverio and Høegh-Krohn, the expression

F(f) =
∫̃
H

exp
{
i

2
||x||2

}
f(x) dx,

which comes from the usual integral relation in finite-dimensional Gaussian in-
tegration, looks like a generating functional as defined in Appendix B (see also
equation 2.2). Actually the work of Albeverio and Høegh-Krohn on oscillatory
integrals was aimed to find a mathematically rigorous theory of integration
corresponding to the heuristic Feynman path integration in quantum physics.
Among the various applications of oscillatory integrals to physics, applica-
tions to quantum and statistical mechanics and the theory of quantized fields
can be found in [AlH76], and more recently to Chern-Simons field theories in
[AlS92] [AlS95]. For more applications and the relation of Fresnel integrals
with other approaches to the Feynman integral see also [JL00].

Theorem 5 [AlH76] Let H = H1⊕H2 be the orthogonal sum of two subspaces
H1 and H2. For f ∈ F(H) set f(x1, x2) = f(x1 ⊕ x2), xi ∈ Hi (i = 1, 2),
then, for fixed x2 ∈ H2, f̃ : x1 7→ f(x1, x2) ∈ H1 and

g(x2) =
∫
H1

exp
{
− i

2
||x1||2

}
dµf̃ (x1),

belongs to F(H2). Moreover,∫
H2

exp
{
− i

2
||x2||2

}
dµg(x2) =

∫
H

exp
{
− i

2
||x||2

}
dµf (x). (2.5)

The case when the inner product on H is defined by a symmetric bilinear form
is particularly interesting for us, for in that case we can define an associated
Fresnel integral as follows. Consider a densely defined symmetric operator B
acting on H, with domain and range equal to H, and with bounded inverse
B−1.
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Definition 10 Let
〈〈x, y〉〉B = 〈x,By〉,

then we define the Fresnel integral of a function f in FB(H), the Banach
algebra of Fresnel integrable functions (with respect to the bilinear form defined
by B), by

FB(f) =
∫
H

exp
{
− i

2
〈x,B−1x〉

}
dµf (x), (2.6)

where µf denotes the bounded complex measure defined by f through

f(x) =
∫
H

exp {i〈〈x, y〉〉B} dµf (y). (2.7)

Let us now consider the particular situation where H1 is a closed subspace of
H such that the restriction of 〈〈x, y〉〉B to H1 ×H1 is non-degenerate. Let H⊥1
be the orthogonal complement of H1 in H and H2 = B−1H⊥1 , so that H =
H1 ⊕H2 yields a splitting of H in closed subspaces such that the restriction
of 〈〈x, y〉〉B to H1 × H2 is identically zero. Then the restriction of 〈〈x, y〉〉B to
H2 ×H2 is non-degenerate, and Fubini’s theorem takes the following form.

Theorem 6 [AlH76] For any f ∈ F(H),

FB(f) =
∫
H

exp
{
− i

2
〈x,B−1x〉

}
dµf (x)

=
∫
H1

exp
{
− i

2
〈x1, B

−1x1〉
}[∫

H2

exp
{
− i

2
〈x2, B

−1x2〉
}
dµf (x2)

]
dµf (x1)

where f(x1, x2) = f(x1 ⊕ x2) with respect to the orthogonal splitting of H
defined by the inner product induced by B, the restrictions of f on the right
hand side being indicated by the subscripts.

Example 6 [AlS95] The partition function of abelian Chern-Simons theory
can be rigorously defined in the Fresnel integral approach, as shown in [AlS92]
[AlS95]. Let M be a three dimensional closed Riemannian manifold, G a Lie
group, A a Lie(G)-valued one form on M , and consider the Chern-Simons
action functional

S(A) =
k

4π

∫
M
A ∧ d1A, k ∈ IR, (2.8)

where d1 denotes the exterior differential on Lie(G)-valued one forms. Let
D =

∑
di + d∗i be the Dirac operator associated to the de Rham complex

(1.53), where d∗i denotes the formal adjoint to the exterior differential di, with
respect to the inner product 〈α, β〉 =

∫
M α ∧ ∗β, ∗ being the Hodge star map.

Let H be the closure of Ω1 ⊕ Ω3 with respect to the previously defined scalar
product, and consider the operator

BCS =
k

2π
(∗DJ + PD) , (2.9)
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where J : Ω1 ⊕ Ω3 → Ω1 ⊕ Ω3 is the operator given by the matrix
(

1 0
0 −1

)
and PD denotes the projection from H onto kerD. Then BCS is a self-adjoint
surjective operator and its inverse B−1

CS
is compact. This means that the Fres-

nel integral of a function f in the Banach algebra of Fresnel integrable func-
tions with respect to the linear form defined by BCS , as in Definition 10, is
well-defined and reads

FB
CS

(f) =
∫
H

exp
{
− i

2
〈x, B−1

CS
x〉
}
dµf (x). (2.10)

Setting x = (A,ω), from the definition of BCS it follows that

〈x, BCSx〉 = 〈(A,ω),
(
∗d1 d0∗
−d∗0 0

)
(A,ω)〉

= 〈A, ∗d1A〉+ 〈d∗0A, ∗ω〉 − 〈ω, d∗0A〉
= 〈A, ∗d1A〉

which shows that this Fresnel integral models the Chern-Simons action func-
tional (2.8). We refer to [AlS92] [AlS95] for further results concerning the
treatment of Wilson loops and more general correlation functions in this set-
ting.

2.2 The Partition Function of a Degenerate Gaussian
Action Functional

Consider the partition function2 (see Appendix B for the relevant prerrequi-
sites)

Zo(S)“ = ”
∫

Ξ
exp {−S(ξ)} [Dξ] (2.11)

associated to a non degenerate quadratic action functional S, i.e. when
S(ξ) = 〈ξ, Tsξ〉 and kerTs = {0}, Ts being a self-adjoint elliptic positive-
order differential operator on the inner-product Hilbert space Ξ (typically the
space of sections of a vector fibration on a manifold). As we pointed out in
the Introduction, in the “non perturbative approach” of quantum field theory,
there is a natural Ansatz to give a rigorous definition of this object through
regularized determinants, namely (as prompted by the equality (B.3) that
holds in finite dimensions) to define

Zo(S) ≡ (detζ Ts)
1
2 . (2.12)

2The notation “ = ” will be used to distinguish the heuristic statements communly used
in physics from mathematical equalities.
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Schwarz’s Ansatz for the Partition Function of a Degenerate Gaussian
Action Functional. The partition function associated to a degenerate ac-
tion functional was first studied by Schwarz [S79], who proposed an Ansatz
to associate to it an acyclic elliptic complex (called “resolvent”). Schwarz’s
Ansatz, inspired in the so-called Fadeev-Popov procedure, then imitates the
(combinatorial) definition of Reidemeister torsion [M66] of a chain of linear
maps between vector spaces –introduced by topologists in order to classify
topological spaces with the same homotopy type– making use of the theory of
zeta-determinants introduced by Ray and Singer in [RS71]. This was later re-
fined by Adams and Sen [AS95], who used this Ansatz to test the conjectured
behavior of the partition function of Chern-Simons theory (i.e. its behavior
for large k, in the notations of (2.8)).

Consider the partition function (2.11), but assume that kerTs 6= 0. Then,
given the degeneracy in the action Zo(S) heuristically diverges,

Zo(S)“ = ”vol(kerTs)
∫

(ker Ts)⊥
exp {−S(ξ)} [Dξ].

The formal extension of the Faddeev-Popov procedure led to Schwarz to the
following Ansatz to “compute” the divergent part of this formal equality, and
hence to define the partition function Zo(S).

Definition 11 An elliptic resolvent for S is an acyclic elliptic complex of the
form

R(S) : 0→ Γ(EN ) TN−→ · · · → Γ(E1)
T1−→ Γ(E0)

T0−→ Ξ Ts−→ 0, (2.13)

where the Γ(Ei) are spaces of sections of Hermitian vector bundles Ei over M ,
and Ti, i = 0, 1, . . . , N , are differential operators of the same positive order.

Recall that ellipticity of the complex is equivalent to ellipticity of the formal
Laplacians ∆k = T ∗kTk + Tk−1T

∗
k−1, 0 ≤ k ≤ N .

If the action is given by S(ξ) = 〈Tsξ, ξ〉, kerTs = E 6= {0}, and there ex-
ists an elliptic resolvent R(S) associated to it, Schwarz defined the partition
function of S in terms of the ζ-determinants of the Laplacian corresponding
to the differential operators T k by3

Z(Ts) ≡ (detζ Ts)−
1
2

N∏
k=0

(detζ ∆k)
(−1)k+1k

2 . (2.14)

Notice that the determinants detζ Ts and detζ ∆k on the right hand side must
be understood as the ζ-determinant of the operators Ts and ∆k restricted to
the orthogonal of their respective kernels.

3Here we follow the definition of Z(Ts) given in [AS95], the original definition of [S79] is
given in terms of determinants of the maps Tk, which are not defined.
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Example 7 [S79] Consider the partition function associated to the Chern-
Simons action functional (2.8) in the previous example. In this case Ts = ∗d1,
and the associated resolvent is

0→ Ω0 d0−→ Ω′1
∗d1−→ 0.

Then
Z(∗d1) = (detζ ∗d′′1)−

1
2 (detζ d0d

∗
0)

1
2 ,

where ∗d′′1 denotes the restriction of ∗d1 to Ω′′1.

2.3 Anomalies

In classical physics, Noether’s theorem associates to each symmetry of the
classical action (or Lagrangian) of a physical system, a corresponding con-
servation law or conserved current. This correspondence between symmetry
and conservation laws may not be preserved by quantization, in which case
we say that the theory under consideration suffers from anomalies. The first
historical example of this kind of phenomena is the so-called chiral anomaly,
which concerns fermionic lagrangians invariant under certain transformations
giving rise to currents that have been experimentally observed to fail to van-
ish. The relevant experimental evidence in this case is the πo → γγ decay,
and the corresponding action functional is given by a Dirac type operator (a
general introduction containing an extensive list of reference is given in [Ber]).

From a path integral point of view, we say that an anomaly occurs when
a transformation in the fields, leaving invariant the action functional, changes
the corresponding “effective action” W, defined by the path integral

e−W“ = ”
∫

Φ
[Dφ] e−So(φ) = Z.

The right hand side of this formal expression is the partition function of the
theory, so that the variations of the effective action under transformations
leaving the classical action invariant will be given by (logarithmic) variations
of the partition function. In the case in which the action functional is non
degenerate, the corresponding partition function is described by a regularized
determinant, so that the variations of the effective action will be given by (log-
arithmic) variations of regularized determinants. If the fields are interpreted
as sections of a vector bundle E over a closed Riemannian manifold M , and
if the classical action is the quadratic functional S(φ) = 〈Tφ, φ〉, T being a
positive order elliptic differential operator, then the variation of the effective
action will be given by

δW“ = ”− δ log detζ T.
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Recall that here we work with ζ-regularized determinants, but there are sev-
eral regularization procedures to define the right hand side of this last equality.
The anomaly must be, in principle, independent of the regularization proce-
dure used to define the determinant (a different approach can be found e.g.
in [LM], and a discussion on the independence of the regularization chosen in
[Ber], section 5.3).

There are several kinds of anomalies, depending on the nature of the trans-
formation defining the symmetry of the classical action and on the way it is
performed. Let us say a word about the type of anomaly we shall come across
in this work. Recall that we consider Clifford modules over a Riemannian
manifold M , and Dirac operators defined on it, and that in both examples
we consider (the spinor bundle on a spin manifold and the bundle of twisted
differential forms on a Riemannian manifold) the connection used to define
such Dirac operators is the coupling of the “exterior bundle” connection (∇W

in the first example, ∇ρ in the second) with a connection defined from the
geometry of M . Here, unlike in the case of gravitational anomalies, and as
is usual in gauge theory, we only consider the (logarithmic) variations of the
regularized determinant of the Dirac operator induced by transformations in
the “exterior” part of the connection of the Clifford bundle. Also we shall
not consider the infinitesimal (logarithmic) variations of the ζ-determinants,
but rather (logarithmic) quotients of ζ-determinants of a smooth family of
operators under gauge transformations, i.e.

log
Z1

Z0
= log

detζ(T1)
detζ(T0)

.

One of our aims is to relate this type of anomaly occurring in physics with
the tracial anomalies described in section 3.1. Other types of anomalies in
physics can also be analysed using a weighted trace approach. When looking
at the geometry of line bundles associated to families of elliptic complexes we
shall implicitely be considering (first and second) logarithmic variations of ζ-
determinants of degenerate actions (namely, the Bismut-Freed connection and
its curvature), which can be seen as manifestations of chiral anomalies. In the
case of Dirac operators involved in QFT anomalies, the corresponding local
terms can be expressed via index theorems as integrals over a compact man-
ifold M of local expressions involving the underlying geometric data. These
questions are partially addressed in [CDP].
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Part II

Tracial Anomalies and
Geometry
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Chapter 3

Tracial Anomalies and Index
Theorems

Recall that in general, as shown in Proposition 1, tracial anomalies –which
can be expressed as Wodzicki residues– are local. Locality is also the main
feature of the index of a geometric operator, so it is natural to ask if there
is some relation between them, i.e. if it is possible to identify the local term
corresponding to a tracial anomaly in terms of indexes or viceversa. A first
relation between the coboundary anomaly ∂trQ (see equation 1.8) and the
index of a positive-order elliptic differential operator A : Γ(E)→ Γ(F ), acting
as before on spaces of sections of vector fibrations on smooth manifolds (which
extend to a Fredholm operator on the corresponding Sobolev completions...),
can be seen as follows. Suppose E = F , let IE denote the identity map on
Γ(E) and R be a parametrix for A. Since RA = IE −πA and AR = IE −πA∗ ,
where A∗ denotes the formal adjoint of A, it follows that

indA = dim kerA− dim kerA∗

= tr(πA)− tr(πA∗)
= trQ(πA − πA∗)
= trQ(AR−RA) = trQ([A,R]) = ∂trQ(A,R),

where Q denotes an arbitrary weight, and we use property (1.7) for the trace
of the finite-rank operator πA − πA∗ .

We shall see that in the case of some differential operators acting on sec-
tions of vector fibrations on smooth manifolds, a similar feature holds for the
local term in the Atiyah-Patodi-Singer index theorem, it can be written as a
trace anomaly of the type

∫
ṫrQ(signQ). These anomalies appear in the study

of Chern-Simons theories.
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3.1 Logarithmic Variations of Determinant and Weighted
Trace Anomalies

Our purpose here is to relate logarithmic variations of regularized determi-
nants of certain families of admissible operators with tracial anomalies, thus
giving an a priori explanation for the locality of these variations. For families
of geometric operators these variations can be expressed, via index theorems,
as integrals of characteristic forms on the underlying manifold.

Let {Ax}x∈X be a smooth family of elliptic self-adjoint operators of constant
order Ax : Γ(E) → Γ(E), parametrized by a smooth manifold X. The eta
invariant η(Ax) = ηAx(0) –which is part of the phase of the ζ-determinant of
Ax– varies smoothly in x modulo integers, i.e. except for jumps coming from
eigenvalues of Ax “crossing zero”. Indeed, since η(Ax) = tr|Ax|(signAx), it
gives the difference between the number of positive eigenvalues and negative
eigenvalues of Ax, and if one of the eigenvalues of Ax passes from positive to
negative η(Ax) jumps by two.

Example 8 Consider for instance the family of Example 1,

Ax = i
d

ds
+ x,

on C∞(S1), letting x ∈ IR. The eta function is given by η(Ax) = 1 − 2x for
x ∈ (0, 1) and η(Ax) = 0 for x ∈ ZZ. Hence, the value of η(Ax) jumps by
two when x goes from a positive to a negative value, showing that one of the
eigenvalues of Ax passes from positive to negative.

Let A1 and A0 be two invertible self-adjoint elliptic operators, the spectral flow
of a family of self-adjoint elliptic operators {Ax}x∈[0,1] interpolating them,
denoted Φ({Ax}), measures the net number of times the spectrum of the
family crosses the zero axis, i.e. the net change in the number of negative
eigenvalues of Ax as x varies between 0 and 1, it was introduced in [APSIII]
in order to study the “non-continuous” part of the η invariant. Making this
definition precise requires some care since there might well be an infinite
number of crossings of the zero axis (here we follow [Me], see also [CDP]).
Let us first observe that there is a partition x0 = 0 < x1 < · · · < xN = 1 of
the interval [0, 1] and there are real numbers λi, i = 1, · · · , N , λ0 = λN+1 = 0
such that the spectrum of Ax avoids λi for any x in the interval [xi, xi+1].
The spectral flow of the family {Ax} is defined by (see [Me] formula (8.134)):

Φ({Ax}) :=
N∑

i=0

∑
λ∈Si

sgn(λi+1 − λi)m(λ, xi), (3.1)

where Si = Spec(Axi) ∩ [λi, λi+1], m(λ, x) denotes the multiplicity of λ in
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the spectrum Spec(Axi) of Ax and sgn(α) is −1, 0 or 1 as α is negative, 0 or
positive. This definition is independent of the chosen partition and, if Ax is
invertible for any x ∈ [0, 1], then Φ(Ax) = 0 as expected.

Consider now a parametrized family of elliptic pseudo-differential operators
of positive order {Ax}, where x varies smoothly in a manifold X. Let, for
z ∈ IC,

ηAx(z) = tr(Ax|Ax|−z−1),

which we recall is a meromorphic function on the complex plane.

Proposition 9 [APSIII] For <(z) >> 0,

1.
dηAx(z) = −z tr(dAx|Ax|−z−1). (3.2)

2.
res [d (signAx)] = 0. (3.3)

Lemma 5 Let {Ax}x∈[0,1] be a smooth family of elliptic self-adjoint operators
of positive constant order a. Then, at points x ∈ X for which Ax is invertible,

−1
a
res
[
|Ax|−1 d

dx
Ax

]
= −1

a
res
[
A−1

x

d

dx
|Ax|

]
= ṫr|Ax| (signAx) = ṫrAx (signAx)

(3.4)

Proof. Recall that from [APSIII], see Proposition 9 (2),

res
(
d

dx
Ux

)
= 0,

where Ux = Ax|Ax|−1 = |Ax|A−1
x = signAx. Then

res
[
|Ax|−1 d

dx
Ax

]
= res

[
|Ax|−1 d

dx
(AxU

2
x)
]

= res
[
|Ax|−1 d

dx
(|Ax|Ux)

]
= res

[
d

dx
(Ux) +Ax

−1 d

dx
|Ax|

]
,

from which the first equality follows.
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On the other hand, from Proposition 2, using the fact that [Ux, |Ax|] =
[Ax, |Ax|] = 0,

ṫr|Ax| (signAx)− ṫrAx (signAx) = −1
a
res
[
Ux

d

dx
log |Ax|

]
+

1
a
res
[
Ux

d

dx
logAx

]
= −1

a
res
[
Ux|Ax|−1 d

dx
|Ax|

]
+

1
a
res
[
UxA

−1
x

d

dx
Ax

]
= −1

a
res
[
A−1

x

d

dx
|Ax|

]
+

1
a
res
[
|Ax|−1 d

dx
Ax

]
,

where a = ord(Ax), so the last equality in (3.4) follows from the first. tu

The following theorem relates the variation of the continuous part of the eta
invariant to an integrated tracial anomaly:

Theorem 7 [CDP] Let A0 and A1 be two elliptic self-adjoint operators and
{Ax}x∈[0,1] a smooth family of elliptic self-adjoint operators of constant order
interpolating them. Then, at points x ∈ X for which Ax is invertible,

η(A1)− η(A0) = 2Φ({Ax}) +
∫ 1

0
ṫrAx(sign(Ax)) dx, (3.5)

where Φ({Ax}) denotes the spectral flow of the family and ṫrAx = [ d
dx , tr

Ax ].

Proof. Using the invariance of the difference η(A1) − η(A0) under a shift
Ax 7→ Ax + α, α ∈ IR, it can be seen that we can reduce the proof of (3.5) to
the case of a family of invertible operators (for details see [CDP], section 3).
In order to show (3.5) in that case, let us first to show that

tr|Ax|
[
d

dx
signAx

]
= 0. (3.6)

By (3.4)

d

dx

[
tr|Ax|(signAx)

]
= ṫr|Ax|(signAx) + tr|Ax|

[
d

dx
signAx

]
= −1

a
res
[
A−1

x

d

dx
|Ax|

]
+ tr|Ax|

[
d

dx
signAx

]
.(3.7)

On the other hand,

d

dx

[
tr|Ax|(signAx)

]
=

d

dx

[
f.p.|z=0

(
tr
(
signAx|Ax|−z

))]
=

d

dx

[
f.p.|z=0

(
tr
(
Ax|Ax|−z−1

))]
.
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But Proposition 9 (i) implies that

d

dx
ηAx(z) =

d

dx
tr
(
Ax|Ax|−z−1

)
= −ztr

(
dAx

dx
|Ax|−z−1

)
,

hence

d

dx

[
tr|Ax|(signAx)

]
= f.p.|z=0

[
−ztr

(
dAx

dx
|Ax|−z−1

)]
= −Resz=0

[
tr
(
d

dx
Ax|Ax|−1−z

)]
= −1

a
res
[
d

dx
Ax|Ax|−1

]
,

where a = ordAx. Combining this with the first equality in (3.4) and (3.7)
yields equality (3.6). Now, by definition,

η(A1)− η(A0) = tr|A1|(signA1)− tr|A0|(signA0),

so that, whenever Ax is invertible,

η(A1)− η(A0) =
∫ 1

0

d

dx

[
tr|Ax|(signAx)

]
dx. (3.8)

Putting (3.6) into the first equality in (3.7) gives

η(A1)− η(A0) =
∫ 1

0
ṫr|Ax|(signAx) dx, (3.9)

so, by the last equality in equation (3.4), the result follows. tu

Remark. Notice that, even if Ax is not invertible, the weighted traces trAx

can be defined as in equation (1.21) because kerAx has constant dimension
on each continuity interval.

It follows from this that variations of η (on continuity intervals) are lo-
cal. In particular, for families of signature operators on a three dimen-
sional Riemannian manifold, a classical result of [APSI] expresses the local
term given by the Wodzicki residue coming from the weighted trace anomaly∫

ṫrAx(sign(Ax)) dx, as an integral on M in terms of the underlying geometry.

Corollary 1 Let {Ax}x∈[0,1] be a smooth family of self-adjoint elliptic op-
erators with vanishing spectral flow and constant order a, such that A0 and
A1 are invertible. Let φ(Ax) = π

2

(
ηAx(0)− ζ|Ax|(0)

)
be the phase of detζ Ax.
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Then, if ζ|Ax|(0) is constant, the difference of the phases φ(A1)− φ(A0) reads

φ(A1)− φ(A0) =
π

2

∫ 1

0
ṫrAx(sign(Ax)) dx

= − π

2a

∫ 1

0
res
[
|Ax|−1 d

dx
Ax

]
dx. (3.10)

If furthermore detζ |Ax| is constant, then

log
detζ A1

detζ A0
= φ(A1)− φ(A0)

= − π

2a

∫ 1

0
res
[
|Ax|−1 d

dx
Ax

]
dx. (3.11)

Proof. From the equality (1.29), relating the ζ-determinant of a (non
necessarily positive) self-adjoint elliptic operator and its η invariant, it follows
that

log detζ A = log detζ |A| i
π

2
(
ηA(0)− ζ|A|(0)

)
.

Thus, given that

ṫr|Ax|(signAx) = ṫrAx(signAx) = −1
a
res
[
|Ax|−1 d

dx
Ax

]
,

the result follows. tu

Thus, under the above assumptions, the logarithmic variation of the ζ-determinant
is expressed as a weighted trace anomaly and is therefore local. Although the
assumptions of the previous corollary seem strong, they are fulfilled for the
example of signature operators of interest to us here. Indeed, there is a nat-
ural family of examples where the equality between the index of an elliptic
differential operator and the spectral flow of an associated family of operators
can be made explicit (see [BBW] [Woj] [RoSa] and references therein), and to
have ζ|A|(0) = 0 it is enough to work on an odd-dimensional manifold. This
is ilustrated by an example described in the next section.

3.2 The Signature Operator on an odd Dimensional
Manifold

In this section we give an application of Corollary 1 to a family of geometric
operators that appears in our discussion about phase anomalies in Section 5.2.

Let M be a Riemannian manifold of odd dimension n = 2k + 1, and Vρ

the Hermitian vector bundle over M with flat connection ∇ρ defined by a
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representation ρ of the fundamental group of M as in Example 2. Consider
the acyclic de Rham complex (1.53)

0 −→ Ω0 d0−→ · · · Ωk−1
dk−1−→ Ωk

dk−→ Ωk+1
dk+1−→ · · · Ωn dn−→ 0,

where Ωk = C∞(ΛkT ∗M ⊗ Vρ) and dk denotes the restriction to Ωk of the
exterior differential on twisted forms given by dρ = d⊗ 1⊕ 1⊗∇ρ. Then the
de Rham operator D∇ =

∑n
k=0(dk +d∗k) is a Dirac operator taking even (odd)

forms to odd (even) forms. Let us set ∆∇ = D2
∇ and define the Laplacian

operator on Ωk by ∆k = d∗kdk + dk−1d
∗
k−1. Acyclicity of the complex (1.53)

implies a Hodge decomposition (1.54)

Ωk = Ω′k ⊕ Ω′′k

where Ω′k = Im dk−1 = Ker dk and Ω′′k = Im d∗k = Ker d∗k−1

In odd dimensions the square of the Hodge star operator ∗ : Ωp → Ωn−p

is the identity map, and the operator ∗dk : Ωk → Ωk as a formally self-adjoint
elliptic differential operator of order one. Restricting ∗dk to Ω′′k gives us an
invertible self-adjoint elliptic differential operator that we shall denote ∗d′′k,
which has a well defined ζ-determinant.

Consider a family of operators {∗d′′t , t ∈ [0, 1]} (which can be built from
a smooth family of connections {∇ρ

t , t ∈ [0, 1]} on the exterior bundle Vρ,
which interpolates two given connections ∇ρ

0 and ∇ρ
1, or from a smooth fam-

ily {gt, t ∈ [0, 1]} of metrics on M , which induces a family of Hodge star
operators) and let ∗d′′k,t denote their restriction to k-forms. We consider now
the manifold M × [0, 1], and from the family ∗d′′k,t we construct an elliptic
operator acting on sections of the bundle Ωk × [0, 1], namely

A = ∗d′′k,t +
d

dt
.

It follows from [APSIII] (see also [Woj] [RoSa] and references therein) that

indA = Φ({∗d′′k,t}),

but, since the signature of the manifold M × [0, 1] is zero, then indA = 0 and
hence the spectral flow of the family {∗d′′k,t} vanishes. Thus, it follows from
Theorem 7 that

η(∗d′′k,1)− η(∗d′′k,0) =
∫ 1

0
ṫr∗d

′′
k,t(sign(∗d′′k,t)) dt, (3.12)

so that the difference of the eta invariants is given by a tracial anomaly, which
makes it a local quantity. Furthermore, in odd dimensions ζ|A|(0) = 0 for any
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elliptic self-adjoint differential operator A, so that

log

[
detζ(∗d′′k,1)
detζ(∗d′′k,0)

detζ(|∗d′′k,0|)
detζ(|∗d′′k,1|)

]
=
π

2
{
η(∗d′′k,1)− η(∗d′′k,0)

}
coincides with the tracial anomaly given by the right hand side of (3.12).
From Corollary 1 follows the following

Proposition 10 Let M be a 3-dimensional closed manifold and consider the
family of first-order invertible differential operators {∗d′′1,t, t ∈ [0, 1]} —built
from a smooth family of connections {∇ρ

t , t ∈ [0, 1]} on the exterior bundle Vρ

or from a smooth family {gt, t ∈ [0, 1]} of metrics on M . Then the difference
of phases of the ζ-determinants of ∗d′′1,t at t = 0 and t = 1 is given by a
Wodzicki residue coming from a tracial anomaly

φ(∗d′′1,1)− φ(∗d′′1,0) =
π

2

∫ 1

0
ṫr∗d

′′
1,t(sign(∗d′′1,t)) dt

= −π
2

∫ 1

0
res
[
| ∗ d′′1,t|−1 d

dt
∗ d′′1,t

]
dt. (3.13)

Finally, note that for k = 1 (n = 3) the analytic torsion of M is given by

T (M) = detζ ∆0 · (detζ ∆′′
1,t)

−1,

and the determinant of ∆0 is constant given the definition of D∇t. Hence, it
is clear that when the family {∗d′′t } is built from a family of metrics on M ,
topological invariance of T (M) implies that

detζ | ∗ d′′1,t| = (detζ ∆′′
1,t)

1
2

is constant. Therefore, in view of Corollary 1,

log
detζ(∗d′′1,1)
detζ(∗d′′1,0)

=
π

2

∫ 1

0
ṫr∗d

′′
k,t(sign(∗d′′k,t)) dt,

= −π
2

∫ 1

0
res
[
| ∗ d′′k,t|−1 d

dt
(∗d′′k,t)

]
dt.

Thus, being an integrated tracial anomaly, and hence a Wodzicki residue,
the term log

detζ(∗d′′1,1)

detζ(∗d′′1,0)
is the integral of a local term on the base manifold.

This example plays a fundamental role in phase anomaly computations in
Chern-Simons theory, as we explain in Chapter 5.
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Chapter 4

Geometry of Determinant
Line Bundles and Tracial
Anomalies

In this chapter we consider Quillen’s determinant line bundle associated to
a family of elliptic differential operators with constant positive order acting
on an infinite-dimensional vector bundle over a closed Riemannian manifold.
Using the ζ-regularization method introduced by Ray and Singer [RS71] to
define determinants of elliptic operators, we follow Quillen [Q86] to define a
smooth metric and Bismut and Freed to define a compatible connection on
the determinant line bundle associated to the family. We discuss the locality
of its curvature on the basis of [PR]. Following Bismut and Freed [BF88],
we specialize to a family of Dirac operators defined by a fibration of spin
manifolds, for which this curvature can be expressed as an integral of Chern-
Weail forms.

4.1 Determinant Line Bundles in Finite Dimensions

Let M be a smooth closed finite-dimensional Riemannian manifold, E → M
a Hermitian complex line bundle over M and ∇E a connection on E. If in
some local frame the connection has the form

∇E = d+ θ, (4.1)

where θ denotes a U(n)-valued 1-form, then the curvature of ∇E , defined by
ΩE = (d+ θ)2, is locally given by ΩE = dθ + θ ∧ θ, and hence it satisfies the
Bianchi identity

dΩE = [ΩE , θ]. (4.2)

Induced by ∇E there is a connection on the bundle Hom(E) ∼= E∗ ⊗E given
by ∇Hom(E) = ∇E∗ ⊗ 1⊕ 1⊗∇E , which extends to Hom(E)-valued forms on
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M and is given locally by

∇Hom(E) = d+ [θ, ]. (4.3)

It follows from (4.2) that
∇Hom(E)ΩE = 0,

and, for any Hom(E)-valued form α on M ,

d (tr(α)) = tr
(
[∇E , α]

)
,

since tr ([θ, α]) = 0. Bianchi identity shows then that tr(ΩE) is closed. More-
over it is related with the curvature of the connection on the determinant line
bundle detE →M induced by ∇E as expressed in the following well known

Proposition 11 Let Ωdet E denote the curvature of the connection on the
determinant bundle associated to E →M induced by ∇E. Then

tr(ΩE) = Ωdet E . (4.4)

Proof. It follows from the definition of the Hermitian structure on detE
induced by the one on E, namely

〈σ, σ′〉 = det[〈σi, σ
′
j〉]i,j

where σ, σ′ ∈ Γ(detE) are given by σ = σ1∧σ2 . . .∧σn and σ′ = σ′1∧σ′2 . . .∧σ′n
in local bases of sections of E. tu

If there is a ZZ2-graduation E = E+⊕E− such that rank(E+) = rank(E−), a
section T ∈ Γ (Hom(E+, E−)) of the homomorphism bundle Hom(E+, E−)→
M induces a canonical section, denoted detT and called the determinant
of T , of the line bundle L = (detE+)∗ ⊗ detE− over M . This section
associates to each m ∈ M the element detTm ∈ Hom(detE+

m,detE−m) ∼=
(detE+

m)∗ ⊗ detE−m, i.e. the determinant of the map Tm ∈ Hom(E+
m, E

−
m). If

Tm is invertible for all m ∈M we say that T is invertible, in which case detT
defines a trivialization of the line bundle L.

As before, Hermitian structures and connections on the bundles E±, which
we denote | · |E± and ∇E±

, respectively, induce (by fibrewise operations)
Hermitian structures | · |det E± and | · |Hom(E±), and connections ∇det E±

and
∇Hom(E±), on the bundles detE± and Hom(E+, E−), respectively. The con-
nection induced on Hom(E+, E−), is given by ∇Hom(E±) = ∇(E+)∗ ⊗ 1⊕ 1⊗
∇E−

. It induces a connection ∇L on the determinant bundle L given, on a
neigborhood on which T is invertible, by

∇L(detT ) = (detT ) trE+(T−1∇Hom(E±)T ), (4.5)
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where trE+ is the trace on Hom(E+). Notice that this definition of ∇L is a
generalization of the classical equality

(detAt)−1 d

dt
(detAt) = tr(A−1

t

d

dt
At), (4.6)

which holds for every smooth family {At} of invertible finite-dimensional ma-
trices parameterized by t.

The curvature of ∇L defined by ΩL = (∇L)2 = tr(∇Hom(E±))2, is equal to

ΩL = ΩE+∗ ⊗ 1⊕ 1⊗ ΩE−
,

(we shall write this in the following ΩL = −ΩE+∗ ⊕ ΩE−
, the tensorization

with 1 in each case being understood). All the above mentioned results extend
(up to a sign) to the super-vector bundle setting with connection replaced by
superconnections, commutators replaced by supercommutators and traces re-
placed by supertraces (see [BGV92]), in particular d (trs(α)) = trs

(
[∇E , α]s

)
,

and
trs(ΩE) = −ΩL, (4.7)

where ΩE is the curvature of the superconnection on E defined by the con-
nections ∇E±

.

4.2 Regularized Traces, Regularized Determinants
and Quillen’s construction

4.2.1 Some Geometry of Families of Fibrations

Let X be a smooth manifold of finite dimension, IM be a closed finite-
dimensional Riemannian manifold and πM : IM → X a smooth locally trivial
fibration such that π−1

M (x) = Mx, the fibre over x (which will be also denoted
by IM/X or simply M when no reference to the base point be nescesary) be
a closed Riemannian manifold. By a smooth family {Ex}x∈X of Hermitian
vector bundles over the fibration of manifolds IM → X, we mean a smooth,
ZZ2-graded Hermitian vector bundle πE : E → IM so that Ex –the restriction
of the bundle E to Mx– is a Hermitian vector bundle with connection ∇Ex .
Let E± be the infinite-rank bundle over X whose fibre at x ∈ X is the space
of smooth sections E±x = Γ(Mx, E

±
x ), where E±x →Mx is the restriction of the

bundle E = E+⊕E− to Mx, and let ∇E±
x be the Hermitian connection on E±x .

Let us assume that on the bundle M/X there is a horizontal distribution,
i.e. a splitting T IM = TH IM ⊕ T (M/X) so that the subbundle TH IM is
isomorphic to the bundle π∗MTX. This gives us a canonical projection on the
vertical tangent bundle T (M/X)

Π : T IM → T (M/X),
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with kernel the chosen horizontal tangent subbundle TH IM . This projection
allows to lift tangent vectors ξ ∈ TX to horizontal vector fields along the fi-
bres. Let ξM ∈ T IM to be the vector field on IM defined as a section of TH IM
which projects to ξ under the push-forward πM∗ : (TH IM)m → TπM (m)X.
Then a tangent vector ξ(x), x ∈ X, lifts to a vector field ξx

M along the fibre
Mx.

From the Riemannian metric gM/X on the fibre M/X and the Hermitian
structure on E±x we define a Hermitian structure on the spaces of smooth
sections E±x = Γ(Mx, E

±
x ) by

〈σ1, σ2〉x =
∫

M/X
〈σ1(x), σ2(x)〉E±

x
dµMx(x), (4.8)

where σ1, σ2 ∈ E±x and µMx denotes the volume element defined by the Rie-
mannian metric on each fibre Mx = π−1

M (x).

Since the volume form µMx changes from fibre to fibre, the connection ∇E±
x

fails to be unitary for the L2-inner product (4.8). Following [BF88], we modify
the connection ∇E±

x taking1

∇̃± = ∇E±
x +

1
2
divMx(m), (4.9)

where divMx(m) is the divergence of the volume form at m in the base direc-
tions.

Definition 12 [BF88] Let ξ be a tangent vector to X, ξM its horizontal lift to
a fibre in IM and ψ a section of E±. The Bismut connection on the bundles
E± → X is defined as

∇E±ξ ψ = ∇̃±ξM
ψ, (4.10)

by point-wise action.

The choice of ∇̃± in (4.9) makes this connection unitary for the inner product
(4.8).

The Bundle Cl(E). Let E be the infinite-rank bundle over X modelled on
Γ(M,E), whose fibre at x ∈ X is the space of smooth sections Ex = Γ(Mx, Ex).
Let Cl(Ex) be the class of operators Ax : Ex → Ex such that, for any local triv-
ialization of E around x

Ψ : E|Ux → Uϕ(x) × Γ(M,E),

1This modification of the connection can also be done by introducing a “density bundle”
[BGV92], here we follow [BF88].
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where ϕ is a local chart of X on an open set Ux containing x, the operator

AΨ(x) ≡ Ψ(x)AxΨ(x)−1

lies in Cl(E). The collection {Cl(Ex)}x∈X defines a vector bundle over X,
modelled on Cl(E), which we denote Cl(E) [P][CDMP]. Moreover, given that
the properties (on the operators and their principal symbols) characteriz-
ing the notions of order, ellipticity and admissibility are independent of the
choice of the local trivialization Ψ, it makes sense to talk about the order of
Ax ∈ Cl(Ex), its ellipticity or admissibility, and these notions can be extended
to sections of Cl(E). In this context a weight is defined as section Q of Cl(E)
which is locally elliptic and admissible, and has a given (constant) positive
order.

Given a section A ∈ Γ (Cl(E)) and a weight Q, the covariance property (1.16)
implies that the expression trQΨ

(AΨ) is independent of the local trivialization
Ψ. Hence, the definition of weighted trace can be extended to sections of Cl(E)
setting

trQ (A) = trQΨ
(AΨ).

In the same way, the notion of Wodzicki residue carries out to sections of
Cl(E), aswell as weighted trace formulae of Section 1.1. In particular, for
A,B ∈ Γ (Cl(E)) and a weight Q

trQ ([A,B]) = −1
q
res ([logQ,A]B) . (4.11)

This extends to Cl(E)-valued forms on X in a straightforward way using the
equality

trQ (α⊗A) = αtrQ (A) , (4.12)

for A ∈ Γ (Cl(E)) and α a differential form on X. Extending (1.14) we have
that

dtrQ(ω) = trQ (dω) +
(−1)k+1

q
res (ωd logQ) , (4.13)

for a Cl(E)-valued k-form ω and a weight Q of order q on E .

Proposition 12 [P][CDMP] Let E be the infinite-rank bundle over X whose
fibre at x ∈ X is the space of smooth sections Ex = Γ(Mx, Ex) and ∇E a
connection on E which induces a connection on Γ (Cl(E)). Then, for any
weight Q with (constant) order q and ω ∈ Γ

(
ΛkT ∗X ⊗ Cl(E)

)
, a Cl(E)-valued

k-form

[∇E , trQ](ω) =
(−1)k+1

q
res
(
ω[∇E , logQ]

)
. (4.14)
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Proof. By definition

[∇E , trQ](ω) = d trQ(ω)− trQ([∇E , ω]).

Let (U,Ψ) be a local trivialization in which ∇E = d + ΘE , where ΘE is a
Cl(E)-valued 1-form on U , then

[∇E , ω] = dω + [ΘE , ω]

so that, given that [∇E , ω] ∈ Γ (Cl(E)) by the assumption on ∇E , [ΘE , ω] ∈
Γ (Cl(E)) and it follows from (4.11) that

trQ
(
[ΘE , ω]

)
= −1

q
res
(
[logQ,ΘE ]ω

)
,

which implies that

trQ
(
[∇̃E , ω]

)
= trQ (dω)− 1

q
res
(
[logQ,ΘE ]ω

)
. (4.15)

Thus, from (4.13) it follows that

[∇E , trQ](ω) = dtrQ(ω)− trQ (dω) +
1
q
res
(
[logQ,ΘE ]ω

)
=

(−1)k+1

q
res (ωd logQ) +

1
q
res
(
[logQ,ΘE ]ω

)
=

(−1)k+1

q
res (ωd logQ) +

(−1)k

q
res
(
ω[logQ,ΘE ]

)
=

(−1)k+1

q
res (ωd logQ) +

(−1)k+1

q
res
(
ω[ΘE , logQ]

)
=

(−1)k+1

q
res
(
ω[∇E , logQ]

)
.

tu

4.2.2 Tracial Anomalies and the Locality of the Curvature of
Determinant Line Bundles

Let IM
πM→ X be a smooth locally trivial fibration, where X is a smooth

manifold of finite dimension, such that Mx = π−1
M (x) be a closed Riemannian

manifold for every x ∈ X. Let E be a smooth ZZ2-graded Hermitian vector
bundle over IM . Consider a smooth family of differential elliptic operators of
order d

Tx : Γ(Mx, E
+
x )→ Γ(Mx, E

−
x ),

where E±x → Mx denotes the restriction to Mx of the Hermitian vector
bundle E±

π±→ M . This family extends to a family of Fredholm opera-
tors T : Hs(E+

x ) → Hs−d(E−x ), where Hs(E±x ) denote the Sobolev space

71



of s-differentiable L2-sections on E±x . Thus, both kerTx and cokerTx are
finite-dimensional vector spaces (of smooth sections), so that (det kerTx)∗ ⊗
(det cokerTx) defines a one-dimensional complex vector space which we call
the determinant line associated to Tx, and which we denote by detTx. If T ∗x
denotes the formal adjoint of Tx, defined with respect to the inner product
induced by the Riemannian structure on M and the Hermitian structure on
Ex, then

detTx = (det kerTx)∗ ⊗ (det kerT ∗x ) . (4.16)

Let E± → X be the smooth Hermitian infinite-rank Fréchet bundle whose
fibre above x ∈ X is the space of sections E±x = Γ(Mx, E

±
x ). We summarize

this saying that we have an elliptic positive-order differential bundle map of
order d between smooth Hermitian infinite-rank Fréchet bundles

IT : E+ → E−,

by which we mean a family {Tx}, parametrized by the manifold X, of elliptic
positive-order differential operators Tx : E+

x → E−x of constant order d, taking
the Fréchet space E+

x into the Fréchet space E−x . This bundle map gives rise
to a corresponding family of complex lines {detTx}x∈X , given by (4.16). We
shall build, following [Q86], a complex line bundle over X, denoted

Det IT→ X

and called the determinant bundle associated to the family {Tx}x∈X . Using
the ζ-regularization method introduced by Ray and Singer [RS71] to define
determinants of elliptic operators, we shall define a smooth metric on this
determinant line bundle, called the Quillen metric, which can be seen as the
regularization of the Hermitian structure induced on it by the Hermitian struc-
ture on E . Moreover, assuming the existence of a unitary connection on E±,
we shall define the Bismut-Freed connection on Det IT, a connection which is
unitary for the Quillen metric. Finally, following [PR], we shall show that the
curvature of this connection is “local”, i.e. can be written as the integral of
a density on the fibre X. In the next section, following [BF88] and [F90], we
shall apply these results to describe the line bundle associated to a family of
Dirac operators on spin fibrations.

Quillen’s Determinant Line Bundle

Consider a family {Tx}x∈X of fixed positive-order differential operators acting
fibrewise from E+ to E− as before, Tx depending smoothly on x in a manifold
X. We want to patch up the lines detTx = (det kerTx)∗ ⊗ (det kerT ∗x ) into a
line bundle over X.

For each x ∈ X, let us consider the formal Laplacians,

∆+
x = T ∗xTx and ∆−

x = TxT
∗
x . (4.17)
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The construction of the determinant line bundle associated to the family
{Tx}x∈X is based on specific properties of the spectrum of these Laplacian
operators. Recall from the theory of elliptic operators acting on compact
manifolds, that ellipticity and self-adjointness of the “Laplacians” imply that
∆+

x and ∆−
x have a discrete real spectrum, with the same set {λx} of non-zero

eigenvalues, and that the spaces of smooth sections E± decompose into direct
sums of (finte-dimensional) eigenspaces of ∆+

x and ∆−
x , respectively. This

eigenspace decomposition gives us a complete orthogonal basis for the metric
〈〈 , 〉〉E± , in terms of which –when restricted to a finite number of eigenvalues–
we can define determinant spaces just like in the finite-dimensional case, i.e.
by taking direct products and sums.

Let us make this more precise. Following [Q86] [F90] (see also [BGV92]),
we exhibit a trivialization over a collection of open sets covering X. For a > 0
such that a /∈ Spec∆+

x , let E+,a
x and E−,a

x be the spaces defined by

E+,a
x =

⊕
λ∈Λ+

a

E+
x (λ) and E−,a

x =
⊕

λ∈Λ−a

E−x (λ),

respectively, where Λ±a = {λ ∈ Spec∆±
x : λ < a}, E+

x (λ) and E−x (λ) denote
the subspaces (of E+

x and E−x , respectively) spanned by eigenvectors (of ∆+
x

and ∆−
x , respectively) with eigenvalues lower than a. Since the spectra of the

Laplacians ∆±
x are discrete and bounded below by zero, E+,a

x and E−,a
x are

finite-dimensional spaces, and the set

Ua = {x ∈ X : a /∈ Spec∆+
x } (4.18)

is open in X. Moreover, since Tx varies smoothly with x, the number of eigen-
values of ∆+

x less than a is constant in Ua, so that E+,a
x and E−,a

x define vector
bundles over Ua, from which it follows that La

x = (detE+,a
x )∗ ⊗ (detE−,a

x ) de-
fines a complex line bundle La over Ua.

On the other hand, for each x ∈ X, the sequence

0→ ker ∆+
x → E+,a

x
Tx−→ E−,a

x → ker ∆−
x → 0, (4.19)

is exact, and hence, given that ker∆+
x = kerTx and ker ∆−

x = kerT ∗x , for each
x ∈ X, there is a canonical isomorphism

La
x
∼= (det kerTx)∗ ⊗ (det kerT ∗x ). (4.20)

Theorem 8 [Q86] The line bundles La over Ua defined above patch up to
a line bundle over X, the determinant line bundle associated to the familly
{Tx}x∈X , denoted by Det IT→ X.
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Outline of the proof. Consider the bundles La and Lb, defined on a non-
empty intersection Ua ∩ Ub, for b > a. We want to see how they patch up
on Ua ∩ Ub. Let E+,(a,b)

x and E−,(a,b)
x be the vector spaces defined similarly as

E+,a
x and E−,a

x , but taking into account only eigenvalues λ between a and b,
then

E+,b
x = E+,a

x ⊕ E+,(a,b)
x and E−,b

x = E−,a
x ⊕ E−,(a,b)

x . (4.21)

From this, and the fact that

T (a,b)
x := Tx|E+,(a,b)

x
: E+,(a,b)

x → E−,(a,b)
x (4.22)

is an isomorphism, it follows that

Lb
x
∼= La

x ⊗ L(a,b)
x , (4.23)

where L(a,b)
x = (detE+,(a,b)

x )∗⊗ (detE−,(a,b)
x ). The morphism T

(a,b)
x induces an

isomorphism
detT (a,b)

x : detE+,(a,b)
x → detE−,(a,b)

x , (4.24)

which defines a non-zero local section of the line bundle L(a,b) on Ua∩Ub, with

fibre L(a,b)
x . Thus, La and Lb patch up via the isomorphism

La
x → La

x ⊗ L
(a,b)
x = Lb

x

ψa 7→ ψa ⊗ detT (a,b)
x .

(4.25)

When ind Tx = 0, given that dimE+,a
x = dimE−,a

x , the line La has a
canonical section

detT a : detE+,a
x → detE−,a

x , (4.26)

and, for b > a, the multiplicativity of finite-dimensional determinants shows
that detT a and detT b corresponds under the isomorphism (4.25).

Notice that we obtain a canonical global section det IT of Det IT picking out
the canonical element of the line Lx (which is mapped to 1 by the canonical
isomorphism Lx

∼= IC) when ind Tx = 0 and Tx is invertible, and taking it
to be identically zero on components of X for which ind Tx 6= 0 or Tx is not
invertible. On components where the dimensions of kernels and cokernels of
the family -and hence the index- are constant, (non canonical) sections can
also be defined [F88].

Finally, let us point out that the determinant line bundle associated to the
elliptic positive-order differential bundle map IT : E+ → E− which we denoted
by Det IT (and not det E , as in the finite-dimensional case), seen as a gener-
alization of the finite-dimensional construction of a determinant line bundle,
should be seen here as the determinant line bundle associated to the bundle
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E+ ⊕ E− equipped with an additional family of elliptic differential operators
IT, because it is completely determined by the family of elliptic differential
operators. A better notation could be Det(E , IT), making explicit that the
patching has been done with respect to the reference operator ∆+ = T ∗T
(that plays the same role as the weight in the construction of the weighted
traces of Chapter 1), and will be the reference operator for the definition of
the smooth metric and connection on this bundle, as we shall see in the next
section.

Quillen’s Metric on the Determinant Line Bundle

Following [Q86], let us now use ζ-regularized determinants to construct a
smooth metric on the determinant line bundle Det IT, associated to the family
of elliptic first order differential operators {Tx}x∈X . There is a natural metric
on Det IT, namely the metric || · ||L2 induced on it by the hermitian structures
on E±, but it does not agree on the intersection of two open subsets Ua and
Ub. In fact, consider a section σ on the overlap Ua ∩ Ub, with b > a. If σ on
Ua takes the form

σa = fa(v1 ∧ . . . ∧ vm)⊗ (w1 ∧ . . . ∧ wn)−1, (4.27)

v1, . . . , vm and w1, . . . , wn being basis for E+,a
x and E−,a

x , respectively, and
fa a complex function on Ua, the canonical identification of sections given by
isomorphism (4.25) yields

σb = σa ⊗ (T (a,b)x1 ∧ . . . ∧ T (a,b)xk)⊗ (x1 ∧ . . . ∧ xk)−1, (4.28)

where x1, . . . , xk denotes a basis for E+,(a,b)
x . From this it follows that

||σb||2L2 = ||σa||2L2

∏
a<λi<b

λi,

where || · ||L2 denote the induced metric induced on La
x and Lb

x by the hermitian
structure on E and F , and λi are the eigenvalues of ∆+

x |(a,b). Hence

||σb||2L2

||σa||2L2

= det∆+
x |(a,b), (4.29)

so that the metrics || · ||L2 do not agree in general over Ua and Ub.

Theorem 9 [Q86] The metric defined on La
x by

|| · ||Q = (detζ ∆+
x |(a,∞))

1
2 || · ||L2 , (4.30)

agrees with the corresponding metric on Lb
x. All these metrics patch into a

smooth metric on Det IT, called the Quillen metric.
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This result follows from (4.29), using the fact that ζ-determinants coincide
with ordinary determinants when restricted to finite rank operators, and hence
with the ordinary product of eigenvalues. Notice that, as in the construction
of the determinant line bundle itself, the metric is given in terms of (the ζ-
determinant of) the Laplacian ∆+. As a matter of fact, for the canonical
section det IT defined by (4.26), it follows that

|| det IT(x)||2Q = detζ ∆+
x . (4.31)

The Bismut-Freed Connection

In this section, following [BF88] (where it was done in the case of a family of
Dirac operators, see next section), from the unitary connection ∇E on E , we
build a connection ∇BF

on Det IT. Recall that, for each x ∈ X, the maps

T a
x : E+,a

x → E−,a
x and T (a,b)

x : E+,(a,b)
x → E−,(a,b)

x ,

are isomorphisms. Let ∇a± be the projections of the connections ∇E± on the
bundles E±,a

x → Ua, which are unitary for the restricted metrics, giving rise
to connections ∇a on La, unitary for the L2 metric on Ua. For a < b, consider
the overlap Ua ∩ Ub. We have two connections on Lb, ∇a and ∇b, such that,
on an open set containing x ∈ X,

∇b
x = ∇a

x + tr(T−1
x ∇Hom±

a Tx|a<λ<b), (4.32)

where ∇Hom±
a is the connection on Hom(E+,a

x , E−,a
x ) induced by ∇a±. (Com-

pare with (4.5).)

Proposition 13 [BF88] Let us set

∇̄a
x = ∇a

x + tr∆
+
x (T−1

x ∇Hom±
a Tx|λ>a), (4.33)

where the second term at the right is the ∆+
x -weighted trace of T−1

x (∇Hom±
a Tx)

restricted to λ > a, i.e.

tr∆
+
x (T−1

x (∇Hom±
a Tx)|λ>a) =

d

dz

∣∣∣∣
z=0

{
z tr

(
(∆+

x )−zT−1
x (∇Hom±

a Tx)|λ>a

)}
.

(4.34)
Then ∇̄a and ∇̄b agree on the overlap Ua ∩ Ub, for a < b, and patch together
to a connection ∇BF

on L, called the Bismut-Freed connection.

This fact is a consequence of the independence on a of the term under differ-
entiation in (4.34), and of the fact that tr∆

+
x coincides with the usual trace

on finite rank operators, and hence with a finite sum of eigenvalues, i.e. for
a < b

tr∆
+
x (T−1

x ∇Hom±
Tx|λ>a) = tr∆

+
x (T−1

x ∇Hom±
Tx|λ>b)+tr∆

+
x (T−1

x ∇Hom±
Tx|a<λ<b).

(4.35)
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Notice that, as for the construction of the determinant line dundle and its
Quillen metric, the Bismut-Freed connection is defined in terms of ∆+

x , namely
through a ∆+

x -weighted trace.

Remark. Let det IT be the canonical section of Det IT defined before (see
equation (4.31)), then whenever Tx is invertible we have

∇BF
det IT(x) = (detTx)tr∆

+
x

(
T−1

x ∇Hom±
Tx

)
. (4.36)

If it had not been choosen using ∆+
x as the weight in the definition of the

Bismut-Freed connection, it would not be compatible with the Quillen metric.

Locality of the Curvature of the Bismut-Freed Connection

Let us now consider the curvature of the Bismut-Freed connection on the
determinant line bundle. Recall that the Bismut connection on the bundles
E± → X was defined by pointwise action. This means that given a section
ψ of E±, i.e. a map associating to each x ∈ X a section ψx of the bundle
Ex → Mx, and a vector field ξ in TX with horizonatl lift ξM in TM (the
vector ξx ∈ TxX lifts to a vector field ξx

M along the fibre Mx), the Bismut
connection associates the section given by(

∇E±ξ ψ(x)
)

(m) = ∇̃±ξx
M (m)ψx(m),

where ∇̃± is the connection on Ex given by (4.9) and m ∈ π−1(x) = Mx.

The “point-wise” definition of ∇E± implies that its curvature ΩE
±

x ∈ Λ2(S±⊗
W |Mx , S

±⊗W |Mx) is an endomorphism on the fibres, i.e. that for any section
ψ and vector fields ξ, η(

ΩE
±
(ξ, η)ψ(x)

)
(m) = Ω̃±(ξx

M (m), ηx
M (m))ψx(m),

where Ω̃± denotes the curvature of the connection ∇̃± and m ∈ π−1(x) = Mx.

Theorem 10 [PR] The curvature of the Bismut-Freed connection is local, i.e.
it can be written as the integral of a density on the fibre M/X.

Proof. Let α be a Cl(E)-valued 1-form and Q a weight of order q on E .
Then, from Proposition 12 it follows that

[∇E , trQ](α) =
1
q
res
(
α[∇E , logQ]

)
so that

dtrQ(α) = trQ
(
[∇E , α]

)
+

1
q
res
(
α[∇E , logQ]

)
. (4.37)
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Applying this equality to the Cl(E)-valued 1-form α = D+−1∇Hom±
D+ and

taking as weight ∆+ (used in the definition of the Bismut-Freed connection),
gives

d tr∆
+
(D+−1∇Hom±

D+) = tr∆
+
(
[∇E± , D+−1∇Hom±

D+]
)
− 1

2
res (Ξ) ,

where Ξ = D+−1∇̃±D+[∇̃±, log ∆+]. The first term on the right hand side
breaks into two terms as follows

tr∆
+
(
[∇E± , D+−1∇Hom±

D+]
)

= tr∆
+
(D+−1ΩHom±

D+)

− tr∆
+
(
D+−1∇Hom±

D+D+−1∇Hom±
D+
)

= tr∆
−
(ΩHom∓

)

− tr∆
+
(
D+−1∇Hom±

D+D+−1∇Hom±
D+
)

where ΩHom∓
is the curvature of ∇Hom∓

. Since ΩHom±
is a multiplication

operator, tr∆
−
(ΩHom∓

) can be written as an integral of a density on M/X,
so that to finish the proof it is enough to show that the second term at the
right is a Wodzicki residue. Indeed, the evaluation of two tangent vectors
on the two form tr∆

+
(
D+−1∇Hom±

D+D+−1∇Hom±
D+
)

gives pointwise the
weighted trace of a commutator, so this term is a weighted trace anomaly, and
follows from our results about tracial anomalies that it is given by a local
term. This shows that the curvature of the Bismut-Freed connection on the
determinant line bundle Det IT is local.
tu

4.2.3 The Determinant Line Bundle Associated to a Family
of Dirac Operators

In this section we apply the previous construction to a family of Dirac op-
erators on sections of vector bundles over a fibration of spin manifolds. Our
main task here is to build a connection on the infinite-rank bundle E .

A Family of Dirac Operators

In this section we build a smooth family {Ex}x∈X of vector bundles over a par-
ticular fibration of spin manifolds πM : IM → X, considered by Bismut and
Freed in [BF88], and we associate to this family a family of first order elliptic
differential operators to which we shall apply Quillen’s construction of a de-
terminant bundle. The main assumptions we shall make are related with the
nature of the fibre, a compact even-dimensional manifold throughout denoted
M/X. As before, let us assume that on the bundle M/X there is a horizontal
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distribution, i.e. a splitting T IM = TH IM ⊕ T (M/X) so that the subbundle
TH IM ∼= π∗MTX. Let T (M/X) using the projection Π : T IM → T (M/X) be
the canonical projection with kernel the chosen horizontal tangent subbundle
TH IM , from which we lift tangent vectors ξ(x) ∈ TX to horizontal vector
fields ξx

M ∈ T IM along the fibres.

From the Riemannian metric gM/X on the fibre M/X we define a Riemannian
metric gM on T IM by pulling up to TH IM the metric gX on X, by means of
the identification TH IM ∼= π∗MTX, and letting gM = gX ⊕ gM/X . From the
Levi-Civita connection ∇gM associated to this metric, we define a connection
∇M/X on T (M/X) by ∇M/X = Π∇gM Π. This connection is independent of
the choice of gX on TX [BF88] [BGV92]. Finally, let us assume that there
exists a (fixed) Spinc structure on the tangent space along the fibres and a
Hermitian vector bundle W over IM with compatible connection ∇W , this
means that ∇W restricts to a connection on Wx = W |Mx , compatible with
the Hermitian structure on Wx. The metric gM/X and the spin structure
along the fibres determine a Spin(n)-bundle of frames of the vertical tangent
space over IM , we denote it by S → T (M/X).

Let us now build from this data a family of Hermitian vector bundles and
a family of constant order differential operators coupled to W . Let E±x =
S± ⊗W |Mx , where S± →M is the spin fibration associated to the construc-
tion above, see example 3, and consider the smooth family {Dx}x∈X of Dirac
operators on Ex = S ⊗W |Mx ,

Dx : Γ(S ⊗W |Mx)→ Γ(S ⊗W |Mx),

i.e. the Dirac operators on Mx coupled to the bundles W |Mx via their cor-
responding connections. This yields a family of first-order elliptic differential
operators, odd with respect to the ZZ2-grading (±) of S,

Dx =
(

0 D−
x

D+
x 0

)
where D−

x
∗ = D+

x , and a family of generalized Laplacians {∆x = D2
x}x∈X .

Let E±x = Γ(E±x ) be the space of smooth sections of E±x = S±⊗W |Mx →Mx,
and consider the infinite-rank vector bundle E± over X whose fibre above x is
E±x . From the metrics on S± and W , together with the volume forms on Mx,
we define a L2-metric on E± by (4.8). Taking the L2-completions of the spaces
of smooth sections, and extending the family {D+

x }x∈X to a family of Fred-
holm operators, as before, we shall see it as a elliptic first order differential
bundle map

ID+ : E+ → E−,
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where E+ and E− are the corresponding Hilbert bundles of sections.

As in (4.9), in order to define a unitary connection on the infinite-dimensional
bundles E± (which will be used in order to build a unitary connection on
the determinant line bundle), we modify the connection ∇M/X on T (M/X),
which is not unitary for the L2-inner product defined earlier. Then, taking

∇̃M/X = ∇M/X +
1
2
divMx(m), (4.38)

where divMx(m) is the divergence of the volume form at m in the base direc-
tions, gives a unitary connection T (M/X). Correspondingly, the connections
∇̃± on the bundles S± ⊗W |Mx are induced by ∇̃M/X and ∇W , which give
rise to the Bismut connection ∇E±ξ ψ = ∇̃±ξM

ψ on the bundles E±. The choice
of ∇̃M/X made in (4.38) makes this connection unitary for the inner product
(4.8).

In the particular case of a family of Dirac operators associated to the fi-
bration considered in this section, the local form of Ω

BF
(see Theorem 10) is

given by the following theorem, due to Bismut and Freed [BF88]

Theorem 11 The curvature of the determinant line bundle is the 2-form
component of

Ω
BF

= 2πi
∫

M/X
Â(∇M/X) Ch(∇W ), (4.39)

where

Â(∇M/X) =

√
det
(

ΩM/X/4π
sinhΩM/X/4π

)
is the Â genus of the spinor bundle on M/X, Ch(∇W ) the Chern form of W
and ∇M/X is the Levi-Civita connection on M/X.
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Part III

Elliptic Complexes, Gauge
Anomalies and Duality
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Chapter 5

Phase Anomalies in
Chern-Simons Models

This part of the work uses the results stated in Section 3.1 to relate phase
anomalies in odd dimensions —coming from logarithmic variations of ζ- de-
terminants of Dirac operators— to weighted trace anomalies, thus giving an
apriori explanation for the locality we expect from these anomalies. We dis-
cuss in detail the Chern-Simons model and we apply the results of Section
3.2 to the study of integrated phase anomalies in this model. Finally we use
the Atiyah-Patodi-Singer index theorem to recover the Chern-Simons term as
local term corresponding to the associated tracial anomaly.

5.1 The Chern-Simons Model and Analytic Torsion

Let N be a three dimensional oriented manifold and P a principal G-bundle
over N which is assumed trivial. The non-abelian Chern-Simons model is
defined by the action functional

SCS =
k

4π

∫
N

tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
,

where k is a constant (inverse of the Planck constant) and the fields A which
are Lie(G)-valued one-forms on N , elements of the space A of connections of
the principal G-bundle P over N . The study of the corresponding partition
function

ZCS“ = ”
∫
A

[DA] exp
{
ik

4π

∫
N

tr
(
A ∧ dA+

2
3
A ∧A ∧A

)}
has been carried out by Witten in [W89], who showed by stationary phase
method (see Appendix B) that this partition function gives rise, in the “weak
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coupling limit”, to (a sum of) path integrals of the form

Zo =
∫
A

exp
{∫

N
tr (ω ∧ dω)

}
.

Hence the so-called abelian Chern-Simons theory in three dimensions is the
semiclassical limit of the non-abelian theory. In the following we shall con-
sider abelian Chern-Simons theories over closed odd-dimensional Riemannian
manifolds (see [AS95][S79][W89]).

Let us come back to the context of Section 3.2, i.e. the acyclic de Rham
complex (1.53)

0 −→ Ω0 d0−→ · · · Ωk−1
dk−1−→ Ωk

dk−→ Ωk+1
dk+1−→ · · · Ωn −→ 0,

where Ωk = C∞(ΛkT ∗M⊗Vρ) and the de Rham operatorD∇ = ⊕n
k=0(dk+d∗k),

seen as a Dirac operator, ∇ being the flat connection on W . As before we
set ∆∇ = D2

∇ and ∆k = ∆∇|Ωk . Recall that acycliclicity implies Hodge
decomposition (1.54)

Ωk = Ω′k ⊕ Ω′′k,

where Ω′k = Imdk−1 = ker dk and Ω′′k = ker d∗k−1 = Imd∗k−1. Restricting the
operator ∆k = d∗kdk + dk−1d

∗
k−1 to Ω′k and Ω′′k, we get invertible operators

∆′
k = dk−1d

∗
k−1|Ω′k and ∆′′

k = d∗kdk|Ω′′k , and the ζ-function techniques can be
extended to define detζ(∆′

k) and detζ(∆′′
k) (see equations (1.68) to (1.70)).

Thus,

detζ(∆′′
k) = exp

[
k∑

i=0

(−1)k−i log detζ(∆i)

]
,

with the convention that d∗−1 = dn = 0.

The Chern-Simons model in dimension n = 2k + 1 is modelled, in the “weak
coupling limit”, in terms of a metric invariant action functional of the type

SCS
k (ωk) = 〈ωk, ∗dkωk〉 =

∫
M
ωk ∧ dkωk,

whereM is a (2k+1)-dimensional manifold. This action presents a degeneracy
on Ω′k for, writing ωk = ω′k ⊕ ω′′k in the above mentioned decomposition,
we have SCS

k (ωk) = SCS
k (ω′′k). To deal with this type of degeneracy, we use

Schwarz’s Ansatz (see equation 2.14) for the corresponding partition function,
which yields

ZCS
k (∗dk) =

[
k−1∏
l=0

(
detζ(∆′′

l )
)(−1)k−l+1

] 1
2

detζ

(
∗d′′k
)− 1

2 (5.1)
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It is motivated by the formal computation

ZCS
k (∗dk) “ = ”

∫
Ωk

[Dωk]e−〈ωk,∗dkωk〉

“ = ”

[
k−1∏
l=0

(
detζ(∆′′

l

)(−1)k−l+1

] 1
2 ∫

Ω′′k

[Dω′′k ]e−〈ω
′′
k ,∗dkω′′k 〉,

where we have inserted inverted commas around identities involving heuristic
objects such as [Dωk], which are to be understood on a heuristic level. How-
ever, the right hand side of equation (5.1) is well defined since in n = 2k + 1
dimensions the operator ∗d′′k is invertible, self-adjoint and hence has a well-
defined determinant. Thus, from the fact that

|detζ(∗d′′l )| = detζ(| ∗ d′′l |) =
√

detζ(∆′′
l )

it follows that

|ZCS
k (∗dk)| =

[
k−1∏
l=0

(
detζ ∆′′

l

) (−1)k−l+1

2

]
(detζ ∆′′

k)
−1
4 .

Using Hodge duality we have

|ZCS
k (∗dk)| =

[
k−1∏
l=0

(
detζ ∆′′

l

) (−1)k−l+1

4

]
(detζ ∆′′

k)
− 1

4

k−1∏
j=0

(
detζ ∆′′

n−j−1

) (−1)k−j+1

4



=

n−1∏
j=0

(
detζ ∆′′

j

) (−1)j

2


(−1)k+1

2

= T (M)
(−1)k+1

2 ,

where T (M) is the analytic torsion of the manifold M . Hence the modulus
of the partition function ZCS

k (∗dk), associated to the metric invariant action
SCS

k (ωk), is metric invariant. From Proposition 3 it follows that

detζ(∗d′′k) =
√

detζ ∆′′
ke

i π
2

n
η∗d′′

k
(0)−ζ|∗d′′

k
|(0)

o
.

Using the fact that

T (M) =
k∏

l=0

(
detζ(∆′′

l )
) (−1)k−l+1

2 ,

and ζ|∗d′′k |(0) = 0 if the dimension of M is n = 2k + 1, we find

ZCS
k (∗dk) = (T (M))

(−1)k+1

2 e
−i π

4
η∗d′′

k
(0)
. (5.2)

Notice that, for k = 1, this yields back the fact that |ZCS(∗d1)| =
√
T (M),

as shown in [W89].
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Proposition 14 Let ZCS
k (∗dk) and ZCS

k (d∗k∗) denote the partition functions
associated to the action functionals SCS

k (ωk) = 〈ωk, ∗dkωk〉 and SCS ∗
k (ωk) =

〈ωk, d
∗
k ∗ ωk〉, respectively. Then, for n = 2k + 1, with k odd,

ZCS
k (∗dk)ZCS

k (d∗k∗)−1 = T (M)
(−1)k+1

2 . (5.3)

Proof. Both SCS
k and SCS ∗

k are degenerate action functionals on Ωk, so
that we apply Schwarz’s Ansatz’s (2.14) in order to define the corresponding
partition functions ZCS

k (∗dk) and ZCS
k (d∗k∗). The elliptic resolvent associated

to SCS
k is

0 −→ Ω0 d0−→ · · ·
dk−2−→ Ωk−1 dk−1−→ Ω′k

∗dk−→ 0, (5.4)

and hence we define the partition function ZCS
k (∗dk) as

ZCS
k (∗dk) = detζ(∗dk)

−1
2

k∏
j=0

(detζ ∆′′
k−j)

(−1)j+1

2 . (5.5)

In the same way, the resolvent associated to SCS ∗
k is

0 −→ Ωn
d∗n−1−→ · · ·

d∗k+1−→ Ωk+1
d∗k−→ Ω′′k

d∗k∗−→ 0, (5.6)

so

ZCS
k (d∗k∗) = detζ(d∗k∗)

−1
2

k+1∏
j=1

(detζ ∆′
k+j)

(−1)j+1

2 . (5.7)

Since for k odd dk∗ = ∗d∗k from (5.2) it follows that

ZCS
k (∗dk) · ZCS

k (d∗k∗)−1 =

 k∏
j=0

(
detζ ∆′′

k−j

) (−1)j+k

2

k+1∏
j=1

(
detζ ∆′

k+j

) (−1)j+k+1

2

(−1)k+1

= T (M)
(−1)k+1

2 ,

where we used Proposition 7 and the equality detζ ∆′
k = detζ ∆′′

k−1. tu

5.2 Tracial Anomalies, Phase Anomalies and the
Chern-Simons Term

Recall that the (classical) action functional used to model the abelian Chern-
Simons theory in odd dimensions is metric invariant, but its associated (quan-
tum) partition function is not, since it contains a phase which depends on the
metric on M (see equation 5.2). We will refer to this as a phase anomaly in
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the partition function, since it arises as an anomaly in the quantum level in
the sense of section 2.3.

Given a smooth family of connections {∇ρ
t , t ∈ [0, 1]} on the exterior bun-

dle Vρ, let dt be the family of exterior differential operators built from these
connections, and let dk,t denote their restriction to k-forms. This gives rise to
a family {ZCS(∗dk,t)}t∈[0,1] of partition functions of the form (5.2). Another
family of partition functions can be built taking a fixed connection on Vρ and
letting the metric g on M (and its associated Levi-Civita connection) vary.
It follows from the results of chapter 3 (Proposition 10) that the difference of
phases of the ζ-determinants of d′′1,t and partition functions at t = 1 and t = 0
is given by a Wodzicki residue coming from an integrated tracial anomaly.

In [W89], in order to build a metric invariant partition function, Witten adds
to the partition function (5.2) a local counter-term. For this he proceeded in
two steps, first fixing the metric and measuring the dependence of the phase
on the choice of connection and then, whenever the manifold M has trivial
tangent bundle, fixing the connection and measuring the dependence of the
phase on the choice of metric. Both these dependences can be measured in
terms of tracial anomalies along the lines of Corollary 1, i.e. the variation of
the partition function Zk(∗d′′k,t) induced by a change of metric reads

Zk(∗d′′k,1)
Zk(∗d′′k,0)

= exp
{
−iπ

4
(η∗d′′k,1

(0)− η∗d′′k,0
(0))

}
where {∗d′′k,t, t ∈ [0, 1]} is the family of operators induced by a family {gt, t ∈
[0, 1]} of Riemannian metrics interpolating g0 and g1, the connection on Vρ

being left fixed. As we will see, for k = 1, and when the tangent bundle is triv-
ial –in which case we can write the Levi-Civita connection ∇L.C. = d+A– it
gives rise, via the Atiyah-Patodi-Singer theorem, to the familiar Chern-Simons
term

∫
M tr

(
A ∧ dA+ 2

3A ∧A ∧A
)

arising in topological quantum field the-
ory in dimension 3 (cfr. formula (2.20) in [W99]).

The results of Section 3.1 and equation (3.10) imply that the phase anomaly

φ(∗d′′1,1)−φ(∗d′′1,0) = log
Zk(∗d′′k,1)

Zk(∗d′′k,0)
corresponds to an integrated weighted trace

anomaly:

Theorem 12 The Chern-Simons phase anomaly between two Riemannian
metrics g0 and g1 is an integrated weighted trace anomaly, i.e.

phase anomaly = integrated weighted trace anomaly
↓ ↓

log
Zk(∗d′′k,1)
Zk(∗d′′k,0)

= −iπ
4

∫ 1

0
ṫr∗d

′′
k,t(sign(∗d′′k,t)) dt.
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Using APS index theorem [APSI], is given by the Chern-Simons term

i
32
π2

∫
M
tr(A ∧ dA+

2
3
A ∧A ∧A).

Let us see now how the Atiyah-Patodi-Singer index theorem [APSI, APSII,
APSIII] implies that the local term corresponding to this weighted trace anom-
aly is the classical Chern-Simons term. We restrict ourselves to odd dimen-
sions n = 2k+ 1 with k odd so that n+ 1 is a multiple of 4 as required in the
Atiyah-Patodi-Singer theorem.

Proposition 15 The difference of phases φ(∗d′′1,1)− φ(∗d′′1,0) reads

φ(∗d′′1,1)− φ(∗d′′1,0) =
π

2

∫
M×[0,1]

Ch(∇W ) = i
32
π2

∫
M
tr(A ∧ dA+

2
3
A ∧A ∧A)

Proof. From Proposition 3 it follows that

φ(∗d′′1,1)− φ(∗d′′1,0) =
π

2

(
η∗d′′1,1

(0)− η∗d′′1,0
(0)
)

so that we are left to compute a difference of η-invariants which can be ex-
pressed using the Atiyah-Patodi-Singer theorem. Let X = M × [0, 1] where
M is an 4l − 1 dimensional closed Riemannian manifold and let us equip X
with the product metric so that we are in the situation described above. The
boundary of X is the odd dimensional manifold M × {0}

⋃
M × {1}. With

the notations of Theorem 4, where we set p = k, since k is odd we have
Bk = ∗dk − dn−k∗, where Bk is the restriction of B to the odd k forms. Since
∗2 = 1 on k forms in dimension n = 2k + 1, we have d∗n−k = − ∗ d∗k so that
the restriction B′′k to R(d∗k−1) coincides with the restriction ∗d′′k.

We therefore need to compute the difference of η-invariants of B′′k . Following
Atiyah, Patodi and Singer [APSII], let us first investigate the metric depen-
dence of the eta invariants η∗d′′k (0) in order to build an invariant independent
on the choice of metric. To two metrics g and g′ on M correspond two oper-
ators B and B′, and it follows from the Atiyah-Patodi-Singer index theorem
that (see (2.3) in [APSII])

ηB(0)− ηB′(0) = n

∫
M×[0,1]

L(∇LC)

using the fact that sign(M × [0, 1]) = 0 and that the connection on W is flat.
Let us now fix the metric and take two flat connections ∇W

0 and ∇W
1 on W

restricted to M , this leading again to two eta invariants ηB′′
k,1

(0) and ηB′′
k,0

(0).
From the above it follows that this expression is independent of the choice of
metric (see Theorem 2.4 in [APSII]).
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We now equip W restricted to M with a one parameter family of connec-
tions ∇W

t := (1 − t)∇W
0 + t∇W

1 and correspondingly a one parameter family
of operators

Bt = (−1)k+p+1(ε ∗ dt − dt∗).

We can equip W seen as a bundle over X = [0, 1] ×M with the connection
∇W = d

dt +∇W
t , and build the corresponding Dirac operator

D+
∇ = c ◦ (

d

dt
+Bodd

t ).

Because ηB′′
k,1

(0) − ηB′′
k,0

(0) does not depend on the choice of metric, we can
choose a flat metric. Thus the L-form will be trivial. On the other hand
sign(X) = 0 for the particular choice of manifold X = M × [0, 1] we took, so
that the spectral flow Φ({B′′k,t}) vanishes. Applying once again the Atiyah-
Patodi-Singer theorem yields

ηB′′
k,1

(0)− ηB′′
k,0

(0) =
∫

M×[0,1]
Ch(∇W ).

Finally, using Stokes theorem from the existence of a Chern-Simons form
Q3(A) = −1

2
1

2π3 tr(A ∧ dA + 2
3A

3) such that locally Ch(∇W ) = dQ3, which
ends the proof. tu
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Chapter 6

Splitting of the Geometry of
Determinants of Families of
Complexes and Duality

The aim of this chapter is to extend the splitting in the analytic torsion of the
de Rham complex induced by “duality” in AFT’s to the curvature of the de-
terminant line bundle associated to a family of complexes of Hermitian vector
bundles over a closed Riemannian manifold, parametrized by a smooth mani-
fold. This involves the construction of the determinant line bundle associated
to the infinite-rank elliptic complex associated to this family, which follows
from the constructions of the precedent chapters.

Introduction: Duality in Antisymmetric Field Theories

Consider a closed n-dimensional smooth Riemannian manifoldM and let Ωk =
C∞(ΛkT ∗M∗ ⊗ Vρ) be the space of differential k-forms on M with values in
Vρ, the vector bundle over M defined in Example 2. We assume that the
complex

0 −→ Ω0 d0−→ · · · Ωk−1 dk−1−→ Ωk dk−→ Ωk+1 dk+1−→ · · · Ωn dn−→ 0,

is acyclic. An Antisymmetric Field Theory is a field theory in which the
“fields” are modelled by twisted forms on a manifold M , i.e. elements of the
space of sections Ω =

⊕n
k=0 Ωk. A k-rank (or degree k) antisymmetric tensor

field is an element of Ωk, and “duality” establishes an equivalence between a
particular theory of (k− 1) and (n− k− 1)-rank antisymmetric tensor fields.

A generalization of the electromagnetic action to higher rank twisted forms,
gives rise to the classical action for the theory of antisymmetric tensor fields
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that we shall consider. The set of fields is Ωk−1, and the action takes the form

Sk−1(ωk−1) = 〈dk−1ωk−1, dk−1ωk−1〉 =
∫

M
dk−1ωk−1 ∧ ∗dk−1ωk−1, (6.1)

giving rise to the partition function

Z(Sk−1) =
∫

Ωk−1

exp{−〈dk−1ωk−1, dk−1ωk−1〉}[Dωk−1]. (6.2)

Notice that the classical action Sk−1 is a degenerate functional on Ωk−1, in
fact ker dk−1 = Ω′k−1 (with the notations of (1.54)). Since we can associate to
Z(Sk−1) an elliptic resolvent, Schwarz’s Ansatz (2.14) is in order. “Duality”
conjectures the equivalence of the partition function (6.2) and the one defined
on Ωn−k−1 by the action functional

Sn−k−1(ωn−k−1) = 〈dn−k−1ωn−k+1, dn−k−1ωn−k−1〉, (6.3)

(which is also degenerate). Strictly speaking, two field theories are said to
be “dual” if their correlation functions coincide. Here, on the grounds of the
“semiclassical approximation” explained in Appendix B, we only require iden-
tification of the partition functions. In any case, the identification between two
dual antisymmetric field theories involves identifying formal integrals, which
we shall interpret as Gaussian integrals since they are defined using quadratic
actions. Typically, duality between two theories is exhibed by means of formal
calculations, using properties of finite-dimensional Gaussian integrals, leading
to heuristic identifications. We shall illustrate that kind of manipulations in
the next section, before we give an interpretation of this equivalence in the
language of Fresnel integrals.

Let us begin by giving a very naive interpretation of this duality at the clas-
sical level, which will give us the guise of what we can attempt from the
semiclassical analysis through partition functions. Notice that both theories,
defined by (6.1) and (6.3), can be seen as contained in a (rather trivial) sole
theory of antisymmetric tensor fields. Consider the classical action

So(ωk) = 〈ωk, ωk〉 = ||ωk||2,

on Ωk, which is clearly no degenerate. The Hodge decomposition (1.54) in
terms of which ωk ∈ Ωk splits into ωk = ω′k ⊕ ω′′k where ω′k = dk−1ωk−1 ∈ Ω′k
and ω′′k = d∗kωk+1 ∈ Ω′′k, for some ωk−1 ∈ Ωk−1, ωk+1 ∈ Ωk+1, yields a change
of variable so that So reads

So(ωk) = Sk−1(ωk−1)⊕ S∗k+1(ωk+1), (6.4)

where
Sk−1(ωk−1) = 〈dk−1ωk−1, dk−1ωk−1〉,
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and
S∗k+1(ωk+1) = 〈d∗kωk+1, d

∗
kωk+1〉.

Using (1.60) and setting ηn−k−1 = ∗ωk+1, it follows that

〈d∗kωk+1, d
∗
kωk+1〉 = 〈dn−k−1ηn−k−1, dn−k−1ηn−k−1〉 (6.5)

so,
So(ωk) = Sk−1(ωk−1)⊕ Sn−k−1(ηn−k−1), (6.6)

which puts both classical actions (i.e. both theories) on an equal footing, as
complementary parts, in So. Notice that the functional So is nothing but the
metric on Ωk, and equation (6.6) gives a splitting of this metric in terms of
classical action functionals on Ωk−1 and Ωk+1 ∼= Ωn−k−1. This sort of splitting
in the geometry will also carried out in the quantum approach.

6.1 Duality and Fresnel Integrals

In this section we consider the identification of partition functions on the
basis of some heuristic calculations commonly used in the partition function
description of duality. We shall give a geometric meaning to some of these
formal manipulations in Section 6.2, following the ζ-function approach to
partition functions. But for now we follow a measure theoretical approach
working with generating functions rather than partition functions and using
the language of Fresnel integrals as defined by Albeverio and Høegh-Krohn
[AlH76].

6.1.1 Heuristics of Duality

The functionals Sk−1(ωk−1) and S∗k+1(ωk+1) are degenerate but, by restriction
on the respective domains, the maps

dk : Ω′′k → Ω′k+1 (6.7)

and
d∗k : Ω′k+1 → Ω′′k, (6.8)

are isomorphisms, giving rise to the bijective maps

d∗k−1dk−1 : Ω′′k−1 → Ω′′k−1,

dkd
∗
k : Ω′k+1 → Ω′k+1.

Thus, the functionals

Ŝ(ω′′k−1) = 〈dk−1ω
′′
k−1, dk−1ω

′′
k−1〉 (6.9)

and
Ŝ∗(ω′k+1) = 〈d∗kω′k+1, d

∗
kω

′
k+1〉, (6.10)
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are non-degenerate on Ω′′k−1 and Ω′k+1, respectively. Let us first recall some
formal calculations involved in identifying two dual partition functions. (We
use ” = ” to remark the fact that all the measures involved are ill-defined
Lebesgue measures on the L2 spaces of forms, so these calculations are formal.)
For example, starting from the partition function corresponding to the action
functional So on Ω′k, using Fourier transform and acyclicity we can write∫

Ω′k

exp
{
−a

2
So(η′k)

}
[Dη′k]

” = ”
∫

Ω′k

[Dη′k]
∫

Ωk

[Dαk] exp
{
− 1

2a
So(αk)

}
exp

{
i〈η′k, αk〉

}
” = ”

∫
Ωk

[Dαk] exp
{
− 1

2a
So(αk)

}
δ
[
α′k = 0

]
” = ”

∫
Ω′′k

exp
{
− 1

2a
So(α′′k)

}
[Dα′′k].

Hence doing the change of variables defined by the maps 6.7 and 6.8, η′k =
dk−1ω

′′
k−1 and α′′k = d∗kω

′
k+1, we find∫

Ω′′k−1

exp
{
−a

2
〈dk−1ω

′′
k−1, dk−1ω

′′
k−1〉

}
Jk−1[Dω′′k−1]

“ =′′
∫

Ω′k+1

exp
{
− 1

2a
〈d∗kω′k+1, d

∗
kω

′
k+1〉

}
Jk+1[Dω′k+1], (6.11)

where Jk−1 and Jk+1 denote the associated jacobian determinants Jk−1 :=√
det(d∗k−1dk−1) and Jk+1 :=

√
det(dkd

∗
k).

Let us make a few comments on this computation which, although very formal,
gives the gist of the dualization procedure.

1. Hodge decomposition in the case of an acyclic complex splits the space
of k-antisymmetric tensor fields (1.54) and then, through isomorphisms
previously defined,

Ωk ∼= Ω′′k−1 ⊕ Ω′k+1. (6.12)

The L2 scalar product on Ωk then gives rise to two (non degenerate)
actions Ŝ and Ŝ∗, on Ω′′k−1 and Ω′k+1 respectively, which are related by
a Fourier transform. The non-degeneracy in the actions comes from the
fact that we restrict ourselves to

Ω′′k−1

dk−1−→ Ωk d∗k←− Ω′k+1. (6.13)

Thus, the field ωk ∈ Ωk splits into

ωk = dk−1ω
′′
k−1 ⊕ d∗kω′k+1, (6.14)

giving rise to two new “fields” (gauge potentials) ω′′k−1, ω
′
k+1.
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2. In the process of taking the Fourier Transform, the coefficient of the
quadratic action is inverted (a 7→ a−1), a fact often observed in dual-
ity and typical for Fourier transforms of Gaussian functions. A strong
coupling can thus be turned into a weak coupling [D98].

3. Finally, if we consider Hodge star duality on the complex, through the
relation (6.5), we recover the usual “moral” of duality in antisymmet-
ric fields [Q98]: a (k−1)-rank antisymmetric tensor field (the “gauge
potential” ωk−1) is dual to a (n−k−1)-rank antisymmetric tensor field
(ηn−k−1 = ∗ωk+1) or, in “brane” language, a (k−2)(electric)-brane is
dual to a (n−k−2)(magnetic)-brane.

Acyclicity induces a decomposition (6.12), from which we find two possible
“potentials” associated to each antisymmetric field in Ωk, namely ω′′k−1 and
ω′k+1, the first one for the exterior differential dk−1, the second one for d∗k.
Writing the partition function of the theory with respect to one or the other
give us “dual” formulations of the same theory.

6.1.2 Duality through Fresnel Integrals

The path integrals as Fresnel integrals

Consider the Hilbert space Hk = L2(Ωk), the closure (with respect to the L2

inner product) of sections of the bundle Ωk. The decomposition Ωk = Ω′k⊕Ω′′k
induces two Hilbert spaces, namely H′k = L2(Ω′k) and H′′k = L2(Ω′′k), L

2

closures of sections of Ω′k and Ω′′k, respectively. As metric spaces Hk and
H̄k := H′k ×H′′k are equivalent, i.e. there exists an isometry

φ : Hk → H̄k,

which is measurable and with measurable inverse as well. Moreover, this
isometry is such that if µ′k and µ′′k are measures on H′k and H′′k, respectively,
then νk = φ−1(µ′k ⊗ µ′′k) is a well-defined measure on Hk. Applying Fubini’s
theorem for Fresnel integrals (see Theorem 6) it follows that∫

Hk

g(ωk)dν(ωk) =
∫
H̄k

g(η′k ⊕ η′′k)d(µ′k ⊗ µ′′k)(η′k ⊕ η′′k)

=
∫
H′k
g(η′k)dµ

′
k(η

′
k)
∫
H′′k

g(η′′k)dµ′′k(η
′′
k).

From this it is easy to show that φ gives us canonical embeddings of F(H′k) and
F(H′′k) into F(H). In fact, given f ∈ F(H′k) then there exists µf ∈ M(H′k)
verifying

f(ω′k) =
∫
H′k
ei〈ω

′
k,η′k〉dµf (η′k).
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Let us take µ′′k to be δ′′o , the Dirac measure centered in zero on H′′k, and
µ′k = µf , then νf = φ−1(µf ⊗ δ′′o ) ∈M(Hk) and the last computation reduces
to ∫

Hk

g(ωk)dνf (ωk) =
∫
H′k
g(η′k)dµf (η′k), (6.15)

where g ∈ F(Hk). Taking g(ωk) = exp{− i
2〈ωk, ωk〉}, leads to∫

Hk

exp{− i
2
〈ωk, ωk〉}dνf (ωk) =

∫
H′k

exp{− i
2
〈η′k, η′k〉}dµf (η′k) = F(f),

so f ∈ M(Hk) (a similar argument, taking µ′k = δ′o and µ′′k = µf for f ∈
F(H′′k), shows that F(H′′k) can be imbedded into F(Hk)). Now, if we take in
(6.15) g(ωk) to be

ga(ωk) = exp{− ia
2
〈ωk, ωk〉},

where a denotes a real constant, this last Fresnel integral can be written as

Fa(f) =
∫
H′k

exp{− ia
2
〈η′k, η′k〉}dµf (η′k) =

∫ ∼

H′k
exp

{
i

2a
〈η′k, η′k〉

}
f(η′k) dη

′
k,

(6.16)
where the last expression on the right has no meaning as an integral (is the
notation of [AlH76]). After the change of variables defined by isomorphism
(6.7) this Fresnel integral provides a rigorous realization of the heuristic Feyn-
man integral corresponding to the functional Ŝ. The same argument applied
to the function ga−1(ωk) = exp{− i

2a〈ωk, ωk〉} (and considering the embedding
of F(H′′k) into F(Hk))), after the change of variables given by (6.8) yields a
realization of the “dual” path integral defined by Ŝ∗.

Duality in terms of Fresnel integrals

In this section we shall write down the rigorous expression giving rise to the
heuristic interpretation of duality in the literature [Q98]. Let us consider as
before a Hilbert space which splits as H̄k := H′k × H′′k, then duality in this
context will be a consequence of the following result.

Proposition 16 Let f ∈M(H′k) and g ∈M(Hk), then∫
Hk

g(ωk)dνf (ωk) =
∫
H′k
f(η′k)dµg(η′k),

where νf = φ−1(µf ⊗ δ′′o ) ∈M(Hk) as in the preceding discussion.

Proof. It is a consequence of (6.15) and the obvious equality∫
H
g(ω)dµf (ω) =

∫
H
f(η)dµg(η), (6.17)
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which follows from the definition. ut

Let us now verify that the heuristic argument implying duality can be de-
rived from this fact. We take Hk = L2(Ωk), where the closure is taken with
respect to the L2 hermitian product defined on Ωk, and we consider as be-
fore the induced decomposition Hk

∼= H′k ⊕ H′′k. Consider f ∈ M(Hk), and
g ∈M(H′k) such that in some convenient limit∫

H′k
exp{i〈ω′k, ηk〉}dµg(ω′k)→ δ[η′k = 0].

Then, applying Fubini’s theorem we have∫
H′k
f(ω′k)dµg(ω′k) =

∫
Hk

[∫
H′k

exp{i〈ω′k, ηk〉}dµg(ω′k)

]
dµf (ηk),

which, taking limits in both sides, leads to∫
H′k
f(ω′k)[dω

′
k]“ = “

∫
H′′k

dµf (η′′k),

where [dω′k] denotes a formal Lebesgue measure on H′k. If for a constant we
take f(ωk) = exp

{
− ia

2 〈ωk, ωk〉
}
, the left side of the previous heuristic identity

is Fa(g), which corresponds to the path integral defined by Ŝ, and on the right
side we have its dual (recall the finite-dimensional equalities (B.3) to (B.4)),
all this after applying the change of variables defined by the maps (6.7) and
(6.8) as before.

6.2 Analytic Torsion on Riemannian Manifolds and
Duality

After this incursion in measure theory, which provides an interpretation for
formal path integral computations involved in establishing duality between
two antisymmetric field theories, we turn back to the ζ-function approach
to partition functions, which provides a geometric interpretation of some of
the steps leading to duality relations. Going back to Schwarz’s Ansatz (2.14)
naturally leads us to consider the analytic torsion of an elliptic complex. From
this point of view, a first step in establishing the duality relation is a splitting
procedure, briefly mentioned in (6.4), and which we investigate further here.

Ray-Singer Torsion and Duality

The relation between the analytic torsion of the manifold M and the parti-
tion function of an antisymmetric field theory defined on it was pointed out
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by Schwarz ([S79], see also [ST84]), when studying quantization of antisym-
metric tensor field theories defined by the degenerate action (6.1) on Ωk−1.
It has also been used in the context of Topological Quantum Field Theories
[W89][BT91][BBRT91][AS95]. Schwarz shows that the Hodge star duality
map and Hodge decomposition on each space Ωk imply a factorization of the
analytic torsion T (M) in terms of the two partition functions, corresponding
to the actions S(ωk−1) and Sn−k−1(ωn−k−1).

The relation between the two antisymmetric quantum field theories defined
by the action functionals S(ωk−1) and S(ωn−k+1), and the Ray-Singer tor-
sion of the manifold M , follows from the splitting in the de Rham complex
(1.53) induced by Hodge star duality and the two resolvents associated to their
corresponding partition functions. Indeed, as follows from (6.5), Hodge star
duality implies the equivalence between the action functionals S(ωn−k+1) =
〈dn−k+1ωn−k+1, dn−k+1ωn−k+1〉 and S∗(ωk+1) = 〈d∗kωk+1, d

∗
kωk+1〉, and the

two associated partition functions Zk(M) and Z∗k(M) (for the actions S(ωk−1)
and S∗(ωk+1), respectively) have resolvents that split the complex at the kth

level, namely

0→ Ω0 d0−→ · · ·
dk−2−→ Ωk−1 dk−1−→Ωk

d∗k←− Ωk+1
d∗k+1←− · · ·

d∗n−1←− Ωn← 0 (6.18)

(compare with (6.13)). Let us stress this more precisely in the following

Proposition 17 [S79]

Zk(M) · Z∗k(M)−1 = TRS(M)(−1)k
. (6.19)

Proof. The elliptic resolvent associated to S(ωk−1) is (see (2.14))

0 −→ Ω0 d0−→ · · · dk−3−→ Ωk−2 dk−2−→ Ω′k−1

∆′′
k−1−→ 0, (6.20)

and hence we define the partition function associated to that action (and
resolvent) as

Zk(M) =
k−1∏
j=0

(
detζ ∆′′

j

) (−1)k−j

2 (6.21)

In the same way, taking the resolvent associated to S∗(ωk+1),

0 −→ Ωn
d∗n−1−→ · · ·

d∗k+2−→ Ωk+2
d∗k+1−→ Ω′′k+1

∆′
k+1−→ 0, (6.22)

we define the associated “dual” partition function by

Z∗k(M) =
n−k−1∏

j=0

(
detζ ∆′

k+j+1

) (−1)j+1

2 . (6.23)
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Thus, from Proposition 7 it follows that

Zk(M) · Z∗k(M)−1 =
k−1∏
j=0

(
detζ ∆′′

j

) (−1)k−j

2 ·
n−k−1∏

j=0

(
detζ ∆′

k+j+1

) (−1)j

2

=
k−1∏
j=0

(
detζ ∆′′

j

) (−1)k−j

2 ·
n∏

j=k+1

(
detζ ∆′

j

) (−1)k+j−1

2

=

k−1∏
j=0

(
detζ ∆′′

j

) (−1)j

2 ·
n∏

j=k+1

(
detζ ∆′

j+

) (−1)j−1

2

(−1)k

= TRS(M)(−1)k
,

where we used he equality detζ ∆′
k = detζ ∆′′

k−1. tu

Thus, we can say that duality leads to a “factorization” of the Ray-Singer
torsion of the space-time manifold in terms of their corresponding partition
functions. Hence in even dimensions, since TRS(M) = 1, we get the expected
identification of the partition function with its dual Zk(M) = Z∗k(M). Note
that the analytic torsion is a topological invariant of M , but there is no reason
for Zk(M) and Z∗k(M) to have this property.

Remark. It follows from (5.2) that, if n = 2k+ 1, the square of the modulus
of the Chern-Simons partition function is

|ZCS
k (∗dk)|2 = TRS(M)(−1)k+1

,

and Proposition 17 implies that for any k

Zk(M) · Z∗k(M)−1 = TRS(M)(−1)k
,

so that, if n = 2k + 1,

|ZCS
k (∗dk)|2 = Zk(M)−1 · Z∗k(M).

(Compare with (5.3)).

6.3 Splitting of the Geometry of Determinant Line
Bundles in Finite Dimensions

In this section we consider the splitting of the geometry of the determinant
line bundle associated to a complex of finite-rank vector bundles over a closed
manifold.
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6.3.1 Milnor’s Duality and Splitting of the Torsion

Let (E•, T•) be the chain complex of vector spaces

0→ E0
T0−→ · · · → Ej−1

Tj−1−→ Ej
Tj−→ Ej+1→ · · ·

Tn−1−→ En→ 0,

and consider the “adjoint” chain complex (E•, T ∗• ) to (E•, T•), i.e. the chain
complex formed by the same collection of vector spaces, but taking as chain
maps the formal adjoints to the collection (T•),

0→ En

T ∗n−1−→ · · · → Ej+1

T ∗j−→ Ej

T ∗j−1−→ Ej−1→ · · ·
T ∗0−→ E0→ 0. (6.24)

It follows from the definition of the torsion (Definition 6) that the element
τ∗(E•) = τ(E•, T ∗• ), canonically associated to this “adjoint” complex, belongs
to the vector space

⊗n
k=0(detEk)(−1)n−k−1

. Then, τ(E•) = (τ∗(E•))
(−1)n+1

,
or

τ(E•) (τ∗(E•))
(−1)n

= 1, (6.25)

which, in particular, implies Milnor’s Duality Theorem for the Reidemeister
torsion [M62]:

τR(E•, e) τR(E′•, e
′)(−1)n

= ±1. (6.26)

We interpret this result saying that the torsion, the analytic torsion and the
Reidemeister torsion of the complex (E•, T•) can be “factorized” in terms of
the torsion, the analytic torsion and the Reidemeister torsion of a (conve-
niently defined) part of the complex and a part of the torsion, the analytic
torsion and the Reidemeister torsion of its “adjoint” complex. This factoriza-
tion goes as follows. Let us consider the complexes (E(j)

• , T•), obtained from
the complex (E•, T•) by cutting at the j-th level, i.e.

0→ E0
T0−→ · · ·

Tj−2−→ Ej−1
Tj−1−→ Tj−1Ej−1

Tj−→ 0. (6.27)

It is clear that the acyclicity of (E•, T•) implies that of (E(j)
• , T•), so the

torsion τj = τ(E(j)
• ) is well-defined. Considering the torsions of the truncated

complex and its “adjoint” complement, we can recover the torsion of the whole
original complex as shown by the following result.

Proposition 18 Let (E•, T•) be an acyclic chain complex of n + 1 vector
spaces and (E•, T ∗• ) the complex defined by the adjoint maps as before, then

τk(E•)⊗ τ∗k (E•)
(−1)n+1

= τ(E•), (6.28)

where τk(E•) and τ∗k (E•) denote, respectively, the torsion of the complexes
(E(k)

• , T•) and (E(n−k)
• , T ∗• ).
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Proof. From the acyclicity of the complex we have the decomposition
Ek = E′k ⊕ E′′k , where E′k = Tk−1Ek−1 and E′′k = T ∗kEk+1. We can consider
the whole complex (E•, T•) as the pasting of the complexes (E(k)

• , T•) and
(E(n−k)

• , T ∗• ), i.e.

0 → E0
T0→ · · · Tk−2−→ Ek−1

Tk−1−→ Tk−1Ek−1 −→ 0
⊕

0 ←− T ∗kEk+1
T ∗k←− Ek+1

T ∗k+1←− · · · ← En← 0.
(6.29)

Observe that

τk(E•) ∈
k−1⊗
i=0

(detEi)(−1)i+1 ⊗ (detE′k)
(−1)k+1

,

and

τ∗k (E•) ∈
n−k−1⊗

j=0

(detEn−j)(−1)j+1 ⊗ (detE′′k )(−1)n−k−1
.

By (6.25)
τ̄n−k(E•) = τ∗k (E•)

(−1)n−k−1

where τ̄n−k(E•) denotes the torsion of the complex

0→ E′′k
Tk→ Ek+1

Tk+1−→ · · · −→ En−1
Tn−1−→En → 0,

hence the result follows from the equality

τk(E•)⊗ τ̄n−k(E•)(−1)k
= τ(E•).

tu

Corollary 2 The factorization of the torsion goes through to a factorization
of the Reidemeister torsion, i.e.

τk
R(E•, [e]) · τk

R
∗
(E•, [e])(−1)n+1

= τR(E•, [e]),

where τR(E•, [e]), τk
R(E•, [e]) and τk

R
∗(E•, [e]) denote the Reidemeister torsion

of the complexes (E•, T•), (E(k)
• , T•) and (E(n−k)

• , T ∗• ), respectively.

Proof. Follows from Proposition 4. tu

Corollary 3 The factorization of the torsion goes through to a factorization
of the analytic torsion

Tk(E•) · Tk∗(E•)(−1)n+1
= T (E•),

where T (E•), Tk(E•) and Tk∗(E•) denote the analytic torsion of the complexes
(E•, T•), (E(k)

• , T•) and (E(n−k)
• , T ∗• ), respectively.
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Proof. Follows from Proposition 5. It can be also seen directly from the de-
finition of analytic torsion, Proposition 6 and the equality det ∆′

k = det∆′′
k−1.

tu

A particular example of this, relevant for our next applications, is the case
for which the duality operators are given by a Hodge-type operator.

Example 9 Let V be a vector space of dimension n and let us consider a basis
v = {v1, v2, ..., vn} of V such that the volume element volV = v1∧v2∧· · ·∧vn ∈
detV has norm one w.r.t a given inner product on V . Let ΛkV be the vector
space of alternating k-forms on V , and let v be an element in v. Define the
map

fv : ΛkV → Λk+1V
ωk 7→ ωk ∧ v,

(6.30)

whose adjoint (w.r.t the inner product in ΛkV given by 〈α1∧α2∧· · ·∧αk, β1∧
β2 ∧ · · · ∧ βk〉 = det(〈αi, βj〉i,j) ) is the map

f?
v = (−1)nk ? fv? : Λk+1V → ΛkV, (6.31)

being ? the Hodge star operator

? : ΛkV → Λn−kV, (6.32)

defined by the equation 〈?ω, η〉volV = ω ∧ η. It is clear that f2
v = f?2

v = 0, so
the sequences

0→ Λ0V
fv−→ · · · → Λj−1V

fv−→ ΛjV
fv−→ Λj+1V → · · · fv−→ ΛnV → 0,

(6.33)
and

0→ ΛnV
f?

v−→ · · · → Λj+1V
f?

v−→ ΛjV
f?

v−→ Λj−1V → · · · f?
v−→ Λ0V → 0,

(6.34)
define acyclic chain complexes (ΛV•, fv) and (ΛV ?

• , f
?
v ), respectively. Propo-

sition 17 and Corollaries 2 and 3 imply that

τk ⊗ (τ?
k )(−1)n+1

= τ, (6.35)

τk
R ·
(
τk
R

?
)(−1)n+1

= τR, (6.36)

Tk · (Tk?)(−1)n+1

= T , (6.37)

where τk, τk
R and Tk denote the torsion, Reidemeister torsion and analytic tor-

sion of the complex (ΛV•, fv) cut at the k-th level, and τ?
k , τk

R
? and Tk? denote

the torsion of the complex (ΛV ?
• , f

?
v ) cut at the (n− k)-th level, respectively.
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Remark. Example 9 gives a “finite-dimensional” model of antisymmetric
tensor fields (the case in which the manifold M reduces to a point in the de
Rham complex (1.53)). Notice that there is a relative sign difference between
the alternating product of determinants in (2.14) and (1.57) (see Proposition
7), which comes from the order in which the alternating product is taken.
Therefore, the finite-dimensional analytic torsion Tk of Example 9 coincides
only up to a sign (given by the size of the chain complex) with the finite-
dimensional “partition function” Zk({point}) = Ẑk given by (6.21). In fact,
the exact relation between Tk and Ẑk is

Ẑk = (Tk)(−1)k+1
,

and for the “duals”
Ẑ∗k = (T ∗k )(−1)n−k−1

.

Then,

Ẑk(Ẑ∗k)−1 =
(
Tk(T ∗k )(−1)n

)(−1)k

= T (−1)k
,

which yields back the finite-dimensional analog of Proposition 17.

In the next sections we generalize the previous elementary facts to cover, first
the case in which there is not only one complex but a family of complexes
(parametrized by a manifold), and then the case when the spaces arising in
the complexes are no longer finite-dimensional. We study in particular the
geometry induced by the factorization of the torsion –seen as a metric– in
those cases.

6.3.2 Factorization of the Torsion of a Chain Complex of Vec-
tor Bundles

Let us consider a chain complex (IE•, IT•) of vector bundles over X, i.e. a
collection {Ek

πk→ X, 0 ≤ k ≤ n} of finite rank vector bundles over the
smooth manifold X, and the maps {Tk}k=0,...,n such that

0→ E0
T0−→ · · · → Ek−1

Tk−1−→ Ek
Tk−→ Ek+1→ · · ·

Tn−1−→ En→ 0, (6.38)

is a chain complex fibrewise, where each Tk must be understood as a bundle
map. As in Section 1.2.1 we define the determinant line bundle associated to
(IE•, IT•) by det IE =

⊗n
k=0 (detEk)

(−1)k+1

, where detEk is the determinant
bundle on X associated to the vector bundle Ek. If the fibration of complexes
is acyclic, which means that for all x ∈ X the chain complex (E•,x, T•,x) given
by

0→ E0,x
T0,x−→ · · · → Ek−1,x

Tk−1,x−→ Ek,x
Tk,x−→ Ek+1,x→ · · ·

Tn−1,x−→ En,x→ 0,
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is acyclic, we can associate to each x ∈ X a canonical element in the fibre
det IEx, namely the torsion τx(E•) of the acyclic chain complex (E•,x, T•,x)
defined in (see Definition 6). We call the torsion of the fibration of chain
complexes the section defined canonically in this way, and we denote it by
τ(IE•).

Consider the bundles

IE+ =
⊕
keven

Ek, IE− =
⊕
kodd

Ek,

and the family of isomorphisms

D+
x =

n∑
k=0

(
Tk,x + T ∗k,x

)
: E+

x → E−x ,

which induces a section det ID+ on the line bundle (det IE+
x )∗⊗ (det IE−x ). Re-

call that for each x ∈ X there is an isomorphism of vector spaces det IEx =⊗n
k=0(detEx

k )(−1)k+1 ∼= (det IE+
x )∗⊗(det IE−x ) defining a vector bundle isomor-

phism
det IE ∼= (det IE+)∗ ⊗ (det IE−).

However, the sections τ(IE•) and det( ID+) of such determinant bundles, do
not correspond under this isomorphism as shown by (1.46). The analytic tor-
sion –the modulus of the torsion– yields a natural metric on this bundle, and
Proposition 17 yields a factorization of this metric in terms of the metrics
defined on certain “subbundles” of it. We now describe the geometry of such
a determinant bundle, and extend the factorization of the metric to a factor-
ization of the curvature.

Let us assume that each vector bundle Ek
πk→ X is equipped with a her-

mitian structure and a connection, which we denote hk and ∇k, respectively.
We consider the associated determinant bundle det IE =

⊗
k(detEk)(−1)k+1

,
where detEk is the determinant line bundle defined by Ek, 0 ≤ k ≤ n, with
induced hermitian structure ĥk and connection ∇det Ek from those of Ek. The
connections {∇det Ek}0≤k≤n induce a connection ∇det IE on the bundle det IE
defined by

∇det IE =
n⊕

k=0

(
1⊗ · · · ⊗

(
∇det Ek

)(−1)k+1

⊗ · · · 1
)
,

and the curvature of ∇det IE reads

Ωdet IE =
n⊕

k=0

(−1)k+1Ωk.
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Setting
ΩΩ− =

⊕
k odd

Ωk and ΩΩ+ =
⊕

k even

Ωk,

being Ωk the curvature on the bundle detEk, 0 ≤ k ≤ n, it follows that
Ωdet IE = −ΩΩ+ ⊕ ΩΩ−.

Considering now the formal adjoints T ∗k : Ek+1 → Ek, defined by the her-
mitian structures hk on each bundle, and the induced complex of bundles
(IE•, IT∗•), as in (6.24) we have

0→ En

T ∗n−1−→ · · · → Ek+1
T ∗k−→ Ek

T ∗k−1−→ Ek−1→ · · ·
T ∗0−→ E0→ 0. (6.39)

Above each point x ∈ X we have a factorization of the torsion in terms of the
torsion of the “subcomplexes” of (IE•, IT•) and (IE•, IT∗•) given by

(IEk, IT•) 0→ E0
T0−→ · · · −→ Ek−1

Tk−1−→ Tk−1Ek−1 → 0, (6.40)

and

(IE∗k, IT∗•) 0← T ∗kEk+1
T ∗k←− Ek+1←− · · ·

T ∗n−1←− En← 0, (6.41)

respectively. Let us define the complex line bundles over X

det IEk =
k−1⊗
i=0

(detEi)(−1)i+1 ⊗ (detE′k)
(−1)k

and

det IE∗k =
n−k−1⊗

j=0

(detEn−j)(−1)j+1 ⊗ (detE′′k )(−1)n−k−1
,

where E′k and E′′k are point-wise defined by E′k = Tk−1Ek−1 and E′′k = T ∗kEk+1,
respectively. Then

det IE ∼= det IEk ⊗ (det IE∗k)
(−1)n+1

. (6.42)

Proposition 17 (and its corollaries) on the factorization of the torsion and the
metric on these bundles (induced by the torsion) implies the following

Proposition 19 Let (IE•, IT•) be an acyclic chain complex of n + 1 vector
bundles over a smooth manifold X, and let τ(IE•) be the torsion of the associ-
ated determinant line bundle det IE, then the splitting (6.42) of det IE induce
a splitting on the torsion

τk(IE•)⊗ τ∗k (IE•)
(−1)n+1

= τ(IE•), (6.43)

where τk(IE•) and τ∗k (IE•) denote the torsion of the determinant bundles det IEk

and det IE∗k, respectively.
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As a matter of fact, this decomposition of the bundle det IE induces a decom-
position in the metric, connections and curvature. Notice that the modulus
of these torsions gives, via Corollary 3, a factorization of the metric (Propo-
sition 5) on det IE defined by the analytic torsion T (IE•) . The corresponding
splitting of the connection is given by

∇det IE = ∇det IEk ⊗ 1ln−k ⊕ 1lk ⊗∇det IE∗k
(−1)n+1

,

where 1li denote a product 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i factors

, and yields a splitting of the curvature

Ωdet IE = Ωdet IEk ⊕ (−1)n+1Ωdet IE∗k ,

where the connections and curvatures on the determinant bundles are all the
induced from the original ones on the bundles Ek (and on E′k and E′′k by re-
striction).

Let us stress the importance of Hodge decomposition

Ek = Tk−1Ek−1 ⊕ T ∗kEk+1, (6.44)

that lies behind the above constructions. Using this decomposition we can
“glue” the two above subcomplexes into a single piece exactly like in (6.18),
namely

0→ E0
T0−→ · · ·

Tk−2−→ Ek−1
Tk−1−→Ek

T ∗k←− Ek+1

T ∗k+1←− · · ·
T ∗n−1←− En← 0. (6.45)

The splitting of the geometry result follows from this.

6.4 Splitting of the Geometry of Determinant Line
Bundles in Infinite Dimensions

In this section we generalize the results of the previous section to families
of elliptic complexes parametrized by a smooth manifold, which give rise to
complexes of infinite-rank vector bundles.

Let IM
πM→ X be a smooth locally trivial fibration of manifolds, where X

is a smooth manifold of finite dimension and the fibre Mx = π−1
M (x) a closed

Riemannian manifold, for every x ∈ X. Consider an acyclic elliptic complex
(IE•, T•) of positive-order differential operators acting on sections of Hermitian
vector bundles over the manifold IM ,

0→ E0
T0−→ · · · → Ek−1

Tk−1−→ Ek
Tk−→ Ek+1→ · · ·

Tn−1−→ En→ 0. (6.46)
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For 0 ≤ k ≤ n, let Ek → X be the infinite-rank vector bundle whose fibre above
x ∈ X is the space of smooth sections Ek,x = Γ(Mx, Ek,x), where Ek,x → Mx

denotes the restriction to Mx of the Hermitian vector bundle Ek
πk→ IM (we

are doing here the same assumptions about Ek, IM and X, for 0 ≤ k ≤ n,
that we do about E, IM and X in section 4.2.1). Associated to the family
{Ek,x}x∈X there is a family of positive-order differential elliptic operators

Tk,x : Γ(Mx, Ek,x)→ Γ(Mx, E
x
k+1),

or, equivalently, a positive-order differential elliptic bundle map ITk : Ek →
Ek+1 in the sense of Section 4.2. Thus, the acyclic elliptic complex (IE•, T•)
gives rise to an acyclic elliptic complex (E•, IT•) of positive-order differential
elliptic bundle maps on infinite-rank vector bundles over X, namely

0→ E0
IT0−→ · · · → Ek−1

ITk−1−→ Ek
ITk−→ Ek+1→ · · ·

ITn−1−→ En→ 0, (6.47)

where each map ITk corresponds to a family {Tk,x}x∈X of elliptic positive-
order differential operators, parametrized by the manifold X.

Quillen’s construction associates to each positive-order differential elliptic
bundle map ITk (i.e. to the family {Tk,x}x∈X) a determinant line bundle
Det ITk → X with smooth Quillen metric and, assuming the existence of a
unitary connection on Ek, one can equip Det ITk with a Bismut-Freed connec-
tion, which is unitary for the Quillen metric. Moreover, as shown in Theorem
10, the curvature of this connection is “local”, i.e. it can be written as the
integral of a density on the fibre M/X.

From the determinant line bundles Det ITk thus built, for each k, we shall
define the determinant line bundle of the elliptic family of acyclic complexes
(E•, IT•). As in the finite-dimensional case, there are two possible constructions
for the determinant line bundle of the acyclic family. First, the alternating
tensor product of the determinant line bundles Det ITk yields the line bundle
over X given by

L IT =
n⊗

k=0

(Det ITk)(−1)k+1
.

Second, the ZZ2-graded Hilbert bundle E = E+ ⊕ E− over X, where

E+ =
⊕

k even

Ek and E− =
⊕
k odd

Ek,

gives rise to the determinant line bundle L ID = (Det ID+)∗ ⊗Det ID−, associ-
ated to the corresponding family of Dirac operators

ID± : E± → E∓
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where

D+
x =

n∑
k=0

(Tk,x + Tk,x
∗) : E+

x → E−x ,

D−
x = D+

x
∗, and for each x ∈ X, and E+

x and E−x are the fibres over x ∈ X
of the bundles E+ and E−, respectively. Since we work with an acyclic com-
plex, there is a smooth isomorphism between the fibres of L IT and L ID which
induces a smooth isomorphism of the line bundles i : L ID → L IT (see e.g.
[BGS88]).

Let || · ||Q,k denote, for 0 ≤ k ≤ n, the Quillen metric on the line bundle
Det ITk → X, and let det ITk denote the canonical section of Det ITk defined in
Section 4.2.2. Then, the natural metric on L IT

|| · ||L IT
=

n⊗
k=0

|| · ||(−1)k+1

Q,k

is the analytic torsion, as follows from the definition of the Quillen metric
(4.30) and (1.57) (see also Proposition 7). Moreover, if we consider the canon-
ical section of L IT given by

τ(E•, IT•) =
n⊗

k=0

(det ITk)(−1)k+1
,

we have the following infinite-dimensional analog of Proposition 5 in Section
1.2.1

Proposition 20 Let T (E•,x, IT•,x) denote the analytic torsion of the elliptic
complex (E•,x, IT•,x) defined in (1.57), then

||τ(E•, IT•)(x)||L IT
= T (E•,x, IT•,x). (6.48)

Proof. It follows from (4.31) and the definition of T (E•,x, IT•,x).
tu

Remark. If IM = M ×X, i.e. Mx = M ∀x ∈ X, for a closed Riemannian
manifoldM , taking for all x ∈ X, Ek,x = ΛkT ∗M⊗Vρ, Tk,x = dk : Ωk → Ωk+1,
we recover the de Rham complex (Ω•, d•) of Example 2 as a particular case.
The factorization of the Ray-Singer torsion given in Proposition 17 can be then
be interpreted as a splitting in the metric of the determinant line associated
to (Ω•, d•).

Splitting of the Determinant Line Bundle

In the previous section we consider the splitting of the geometry of the de-
terminant line bundle associated to an acyclic complex of Finite-rank vector
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bundles, let us now do the same in the case of the acyclic elliptic complex
(E•, T•), ant its associated determinant line bundle L IT.

Recall that, as in Sections 4.2.1 and 4.2.2, from the family of connections
{∇Ek,x}x∈X , for each 0 ≤ k ≤ n, we construct (by point-wise action) a con-
nection ∇Ek on the bundle Ek → X which induces a connection on Det ITk,
unitary for the Quillen metric || · ||Q,k; namely the Bismut-Freed connection
∇BF

(k) . Theorem 10 shows that, for each 0 ≤ k ≤ n, the curvature ΩBF

(k) of the
Bismut-Freed connection ∇BF

(k) can be written as the integral of a local density
on the fibre M/X. This implies that the curvature of the connection ∇L IT ,
defined as the induced by alternating tensor product from the unitary con-
nections {∇BF

(k)}0≤k≤n (which is clearly unitary for the metric || · ||L IT
previously

defined) also has a local curvature, denoted by ΩL IT .

Let (E(k)
• , IT•) and (E(k)∗

• , IT∗•) be the acyclic elliptic complexes given by

(E(k)
• ) 0→ E0

IT0−→ · · · −→ Ek−1
ITk−1−→ ITk−1Ek−1 → 0, (6.49)

and

(E(k)∗
• ) 0← IT∗kEk+1

IT∗k←− Ek+1←− · · ·
IT∗n−1←− En← 0, (6.50)

respectively. The following theorem shows that, in the infinite-dimensional
case of the complex (E•, T•), the splitting of the geometry occurs like in the
finite-dimensional case, and the locality property of the curvature is conserved.

Theorem 13 Let L IT → X be the determinant line bundle associated to the
family {E•,x, T•,x}x∈X of acyclic elliptic complexes. Then,

1. The Quillen metric factorizes according to (6.19), in terms of the metrics
of the determinant line bundles associated to the complexes E(k)

• and
E(k)∗
• , as

|| · ||Q = || · ||(k)|| · ||
(−1)k+1

(k)∗ ,

where || · ||(k) and || · ||(k)∗ denote the curvature of the determinant line

bundles associated to the complexes E(k)
• and E(k)∗

• , respectively.

2. The curvature splits

ΩLIT = Ω(k) ⊕ (−1)k+1Ω∗(k), (6.51)

where Ω(k) and Ω∗(k) denote the curvature of the determinant line bundles

associated to the complexes E(k)
• and E(k)∗

• , respectively.
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3. This splitting respects the locality properties of the curvature given by
Theorem 10.

Proof. This is again consequence of acyclicity, which induce a Hodge
decomposition like (1.54) of each level of the complex. Then

L IT = DetE(k)
• ⊗

(
DetE(k)∗

•

)(−1)k+1

,

and this decomposition of the bundle L IT induces a decomposition in the
metric, connections and curvature. Thus, for example, there is a splitting of
the connection

∇L IT = ∇E
(k)
• ⊗ 1ln−k ⊕ 1lk ⊗

(
∇E

(k)∗
•
)(−1)n+1

,

where 1li = 1⊗ · · · ⊗ 1︸ ︷︷ ︸
i factors

, and the connections ∇E• (k) and ∇E• (k), on the deter-

minant bundles DetE(k)
• and DetE(k)∗

• , respectively, are the induced from the
original ones on the bundles Ek (and on E ′k and E ′′k by restriction), so 1. and
2. follow. In order to prove 3., i.e. the locality of the curvatures Ω(k) and Ω∗(k)
of the Bismut-Freed connections on the determinant line bundles associated
to the complexes (E(k)

• , IT•) and (E(k)∗
• ), respectively, we have to prove in first

place that the splitting does not affect the ellipticity of the complexes. This is
indeed the case because E(k)∗

• and E(k)
• are defined by point-wise restriction on

the range of the family of maps {Tk,x}x∈X . On the other hand, the construc-
tion of the Bismut-Freed connections on the bundles DetE(k)

• and DetE(k)∗
•

is carried out from the families of connections {∇k,x}x∈X on the finite-rank
vector bundles Ek. Then, Proposition 19 shows that this splitting gives rise
to a honest decomposition of the corresponding connections by restriction,
so that once again the pointwise nature of the definition of the connections
on the infinite-rank vector bundles carries out, as well as the corresponding
Bismut-Freed connections on DetE(k)

• and DetE(k)∗
• defined from it. The two

elliptic complexes (E(k)
• , IT•) and (E(k)∗

• ) are “independent” one of another be-
cause of acyclicity.
tu

Concluding Remarks

1. Let π : IM → X be a holomorphic submersion of complex manifolds,
with compact fibre M/X, W → IM a holomorphic vector bundle with
connection and g IM a Kaehler metric on T IM . Consider the associ-
ated family of Dolbeault complexes (Ω•(Mx,Wx), ∂̄•x), parametrized by
X, where Ωk(Mx,Wx) denotes the space of smooth sections of the bun-
dle Λk(T ∗(0,1)M ⊗W |Mx). In [BGS88] an explicit local expression for
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the curvature of the Bismut-Freed connection on the determinant line
bundle associated to this family is given, namely

Ω∂̄• = 2πi

[∫
M/X

Td(∇T IM )Ch(∇W ),

]
(2)

,

where Td(∇T IM ) and Ch(∇W ) denote the Todd form of T IM and the
Chern form of the exterior bundle W , respectively.

2. The splitting in the geometry of the determinant line bundle stated in
Theorem 13 arises essentially because of the acyclicity assumption of the
complex. In the non acyclic case the situation is rather different, since
no canonical splitting is given from the Hodge decomposition. On the
other hand, there is no canonical metric on the determinant line bundle
associated to a non acyclic family of complexes. As a matter of fact,
there are several metrics on the determinant line bundle, defined from
the induced metric on the spaces of harmonic sections by the Hermitian
structures on the families of bundles, but in all the known cases these
metrics depend on the Riemannian and Hermitian structures used to
define them (recall that in the acyclic case the analytic torsion is a
topological invariant).

3. Holomorphic analogs of topological gauge theories were introduced by
A.D.Popov in [Po1]. There, Chern-Simons and BF topological theories
are considered on complex, kaehler and Calabi-Yau manifolds. Among
the natural holomorphic extensions of the antisymmetric field theories
considered in this work are the given by families of complexes of (p, q)-
forms on complex manifolds, and holomorphic locally Kaehler fibrations
of complex manifolds in the sense of [BGS88]. The existence of an
explicit local expression for the curvature of the Bismut-Freed connection
of the determinant bundle in the latter case rises the question in how far
the factorization results developed here can be relevant for such theories.

109



Appendix A

Pseudodifferential Operators

In this section we give a brief presentation of the basic tools in our frame-
work, namely classical pseudo-differential operators and particularly elliptic
ones, their logarithms and their complex powers, we shall follow [G95] [Sh01].

Classical elliptic pseudo-differential operators. Let U be an open sub-
set of IRn. Given α ∈ IC, let us denote by Sα(U) the set of complex valued
smooth function

σ : U × IRn → IC
(x, ξ) 7→ σ(x, ξ)

satisfiying the following property. Given any compact subset K of U and
any muti-indices γ = (γ1, . . . , γn) and β = (β1, . . . , βn) in INn, there exists a
constant CK

γ,β such that

|Dγ
xD

β
ξ σ(x, ξ)| ≤ CK

γ,β(1 + ||ξ||)<α−|β|,

for all x in K, ξ ∈ IRn, where <α is the real part of α, || · || denotes the norm
in IRn and |β| = β1 + . . . + βk. An element of Sα(U) is called a symbol of
order α. Let S(m)(U) denote, for m ∈ZZ+, the set of symbols of order α with
<α ≤ m. A smoothing symbol is a symbol in

S−∞(U) ≡
⋂

k∈ IN

S(−k)(U)

and the relation
σ ' σ̃ ⇔ σ − σ̃ ∈ S−∞(U)

defines an equivalence relation on S(U).

The principal or leading part of the symbol σ ∈ Sα(U) is defined by

σα(x, ξ) = lim
t→+∞

σ(x, tξ)
tα

.
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A symbol of order α is called a classical symbol if there exist σα−j ∈ Sα−j(U),
j ∈ IN, such that

σ(x, ξ) '
∞∑

j=0

σα−j(x, ξ)

which are positively homogeneous, i.e.

σα−j(x, tξ) = tα−jσα−j(x, ξ) ∀t ∈ IR+.

Following Kontsevich and Vishik [KV], we say that a classical symbol lies in
the odd-class if the positively homogeneous components σα−j are moreover
homogeneous i.e.

σα−j(x, tξ) = tα−jσα−j(x, ξ) ∀t ∈ IR.

To a symbol σ ∈ Sα(U) we associate a pseudo-differential operator A of order
α on U , i.e. a map

A : C∞o (U)→ C∞(U)

defined by

Au(x) =
∫

IRn
exp{i〈ξ, x〉}σ(x, ξ)û(ξ)dξ, (A.1)

where û denote the Fourier transform of the complex valued smooth funcion
u with compact support in U . Thus, Au can also be writen as

Au(x) =
∫

IRn×U
exp{i〈ξ, x− y〉}σ(x, ξ)u(y)dydξ, (A.2)

〈 , 〉 denoting the inner product in IRn.

The various classes of symbols introduced previously induce corresponding
classes of pseudo-differential operators. A classical pseudo-differential oper-
ator is a pseudo-differential operator such that its symbol has components
given by classical symbols, an odd-class classical pseudo-differential operator
is a classical pseudo-differential operator such that its symbol has components
given by symbols in the odd class and a smoothing pseudo-differential opera-
tor is a pseudo-differential operator given by a smoothing symbol. Smoothing
operators are representable by smooth kernels, i.e. A is smoothing iff there
exists kA ∈ C∞(U × U) such that, for any u ∈ C∞o (U),

Au(x) =
∫

U
kA(x, y)u(y)dy ∀x ∈ U. (A.3)

The pseudo-differential operator A with principal symbol σA is said to be el-
liptic if σA(x, ξ) 6= 0 for all (x, ξ) ∈ U × IRn − {0}. Ellipticity is not altered
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when adding a smoothing symbol to the symbol of an elliptic operator.

Let us denote by Ψα(U) the space of all classical pseudo-differential operators
of order α on U , and by Ψ(m)(U) the space of all classical pseudo-differential
operators of order α with <α lower or equal to m. Thus, a smoothing pseudo-
differential operator is an operator in

Ψ−∞(U) ≡
⋂

k∈ IN

Ψ(k)(U),

and there is an exact sequence

0→ Ψ−∞(U)→ Ψ(m)(U)→ S(m)(U)→ 0.

There is a notion of product of two pseudo-differential operators and the space
of classical pseudo-differential operators on U , defined as

Ψ(U) =
⋃

m∈ZZ

Ψ(m)(U),

is an associative algebra [Sh01]. The product of two elliptic pseudo-differential
operators is an elliptic pseudo-differential operator.

An ordinary differential operator of order d ∈ IN is defined by a polynomial
symbol (the polynomial being of order d) in ξ of the form

σ(x, ξ) =
∑
|α|≤d

aα(x)ξα, (A.4)

where the aα are smooth functions on U and ξα = ξα1
1 ·ξ

α2
2 · · · ξαn

n , for ξ ∈ IRn

with components (ξ1, . . . ξn). Then the corresponding differential operator is
given by

Du(x) =
∑
|α|≤d

(−i)|α|aα(x)
∂α1

∂xα1
1

· · · ∂
αn

∂xαn
k

u(x). (A.5)

and its principal symbol is σD(x, ξ) =
∑
|α|=d aα(x)ξα. Hence, ordinary par-

tial differential operators of integer order are examples of classical pseudo-
differential operators in the odd class.

Pseudo-differential operators acting on sections of vector bundles.
The definition of pseudo-differential operators can be locally transfered to
smooth manifolds as follows. Let M be a closed (i.e. compact and without
boundary) oriented smooth Riemannian manifold with dimension n, we say
that A : C∞(M) → C∞(M) is a pseudo-differential operator of order α on
M , if for any local chart (V, φ) of M such that

φ : V → U
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is a diffeomorphism of V with an open set U in IRn, the operator AV defined
by the diagram

C∞o (V ) A→ C∞(V )
φ∗ ↑ ↑φ∗

C∞o (U) AV→ C∞(U)

(A.6)

is a pseudo-differential operator of order α on U .

Considering matrices of pseudo-differential operators on M we can define
pseudo-differential operators acting on sections of vector bundles over M ,
the context in which we shall work in what follows. Consider a manifold M
as before and consider two hermitian vector bundles E and F over M , with
rank k and m, respectively. A pseudo-differential operator of order α acting
from the space of smooth sections of E to the space of smooth sections of F ,

A : Γ(E)→ Γ(F )

is a linear operator A which can locally be expressed as a (m × k)-matrix of
pseudo-differential operators of order α over M , i.e. for any local chart (V, φ)
of M and smooth functions f, g with compact support in V , there are local
trivializations

ΦE : E|V → φ(V )× ICk

and
ΦF : F |V → φ(V )× ICm,

such that the map

C∞o (φ(V ), ICk) → C∞(φ(V ), ICm)
u 7→ πF ◦ ΦF (g A f)Φ−1

E u,
(A.7)

where πF denotes the projection πF : F →M , is a pseudo-differential operator
of order α, and hence its symbol takes values in Sα(φ(V )). A change in
the local trivializations used to define the pseudo-differential operator does
not change its order, it only changes its symbol by a smoothing one. The
symbol is obviously defined locally, only the principal symbol of the operator
transforms under a change of trivialization as a section of the vector bundle
Sym(⊗nT ∗M) ⊗ Hom(E,F ), where Sym(⊗nT ∗M) denotes the symmetrized
nth power of the cotangent bundle to M . When E and F have the same rank,
we say that A is elliptic iff its principal symbol σA, in any local coordinate
representation on M , is a non-singular matrix for all x ∈ U , ξ ∈ T ∗M − {0}.

Example 10 Consider a closed Riemannian n-manifold M , and let Ωk(M)
denote the space of smooth k-forms on M , for k = 0, 1, . . . , n. Let

dk : Ωk(M)→ Ωk+1(M)
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be the de Rham exterior differentiation operator. Then, for all 0 ≤ k ≤ n, dk

is a differential operator of order 1, and its symbol

σdk
(m, ξ) : ΛkT ∗mM → Λk+1T ∗mM

is simply left exterior multiplication by ξ. It is elliptic since σdk
(m, ξ) is an

isomorphism at m ∈M for each non-zero ξ ∈ T ∗mM .

Let us denote by Ψα(E,F ) the space of all classical pseudo-differential oper-
ators of order α taking smooth sections of the vector bundle E to sections of
F , and by Ψ(m)(E,F ) the space of all classical pseudo-differential operators
of order lower or equal to m. The symbol set S(m)(E,F ) is defined by the
exact sequence

0→ Ψ−∞(E,F )→ Ψ(m)(E,F )→ S(m)(E,F )→ 0,

where Ψ−∞(E,F ) =
⋂

k≥0 Ψ(−k)(E,F ). When E = F , we shall denote these
spaces by Ψα(E) and Ψ(m)(E), respectively, and when E is the trivial bundle
M × IC by Ψα(M) and Ψ(m)(M), respectively. When M is compact, there is
a notion of product of two pseudo-differential operators and

Ψ(E) =
⋃

m∈ZZ

Ψ(m)(E)

defines an associative algebra [Sh01]. As before, the product of two elliptic
pseudo-differential operators is an elliptic pseudo-differential operator.

Notation. Let E be a vector bundle above a smooth n-dimensional Rie-
mannian manifold M , and let Cl(E) denote the algebra of classical pseudo-
differential operators acting on smooth sections of E. We shall denote by
Ell(E), Ell∗(E), Ell∗ord>0(E), Ells.aord>0(E) and Ell+ord>0(E) the class of ellip-
tic, invertible elliptic, invertible elliptic with strictly positive order, self-adjoint
elliptic and positive self-adjoint elliptic operators with strictly positive order
acting on sections of E, respectively.

Admissible elliptic pseudo-differential operators. If M is compact, and
we shall asume that in what follows, the spectrum of A ∈ Ell∗ord>0(E), de-
noted spec(A), consists of isolated eigenvalues with finite multiplicity [Sh01].
There is therefore a disc DR of positive radius around the origin which does
not contain any point of spec(A). We shall say that A has a spectral cut Lθ

if there is a ray Lθ = {λ ∈ IC, arg(λ) = θ} in the complex plane which does
not intersect spec(A). Such an operator will be called admissible and we shall
denote by Ad(E) the set of admissible operators acting on sections of E. Any
element of Ell∗ord>0(E) such that the matrix given by its principal symbol
has no eigenvalues in some non empty conical neighborhood Λ of a ray in
the spectral plane is admissible, since in that case at most a finite number
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of eigenvalues of the operator are contained in Λ [Sh01]. We have following
inclusions

Ell∗+ord>0(E) ⊂ Ell∗s.aord>0(E) ⊂ Ad(E),

where the superscript ∗ means that we are restricting to the subset of invert-
ible operators in each one of the considered classes.

Complex powers and logarithms of elliptic operators. Let A ∈ Ad(E)
with spectral cut Lθ. For <z < 0, the complex power Az

θ of A is the bounded
operator on any space Hs(E) of sections of E of Sobolev class Hs, defined by
the contour integral

Az
θ =

i

2π

∫
Γθ

λz(A− λI)−1dλ

where Γθ = Γ1,θ ∪ Γ2,θ ∪ Γ3,θ is the path on the complex plane given by
Γ1,θ = {λ = reiθ, r ≥ R}, Γ2,θ = {λ = Reiφ, θ ≥ φ ≥ −θ}, Γ3,θ = {λ =
rei(θ−2π), r ≥ R}, R being the radius of a disc around the origin which does
not intersect spec(A). Here λz = exp{z log λ} with log λ = log |λ|+ iθ on Γ1,θ,
and log λ = log |λ|+ i(θ − 2π) on Γ3,θ.

The definition of Az
θ is independent of the choice of R but depends on the

choice of the spectral cut Lθ and yields, for any z ∈ IC, an elliptic opera-
tor of order z · ord(A). When z = −k, with k ∈ IN, Az coincides with the
usual operator A−k of order −k · ord(A). The operator Az

θ is independent of
the choice of θ only if A is essentially self-adjoint, in which case it coincides
with the corresponding complex power defined using spectral representations.
However, in the following we shall focus on operators in Ell+ord>0(E) and use
the principal branch of the logarithm, taking θ = π, and dropping the mention
of θ.

For arbitrary k ∈ZZ, the map z → Az
θ defines a holomorphic function from {z ∈

IC,<z < k} to the space of bounded linear maps from Hs(E) to Hs−kord(A)(E)
for any real s. We set the logarithm of A ∈ Ad(E) to be

logθ A =
∂

∂z
Az

θ

∣∣∣∣
z=0

,

which defines a non classical pseudo-differential operator of zero order, and
hence a bounded operator from Hs(E) to Hs−ε(E) for any ε > 0 and any
s ∈ IR. In local coordinates (x, ξ) on T ∗M , the symbol of the operator
logθ A is the sum of ord(A) · log ||ξ|| Id with the symbol of a classical pseudo-
differential operator of order 0. Hence, although the logarithm of an injective
admissible elliptic classical pseudo-differential operator with spectral cut Lθ

is not itself a classical pseudo-differential operator, for two operators A,B ∈
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Ad(E), admitting spectral cuts Lθ1 and Lθ2 ,

logθ1
A

ord(A)
−

logθ2
B

ord(B)
∈ Cl(E).

In the same way, for A,Q ∈ Ad(E), the bracket [logQ,A] is a classical pseudo-
differential operator.
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Appendix B

The Partition Function in
Quantum Field Theory

The Action in Classical and Quantum Field Theory

A field theory, from a physical point of view, is defined by a (finite-dimensional)
space-time manifoldM (with a Riemannian or Minkowskian metric structure),
a target space F (usually a manifold playing the role of fibre in a given vector
fibration E over the space-time manifold), the set of fields Φ = Γ(E) (vector
valued functions or more generally sections of the above mentioned fibration),
and relating M,E,F and Φ, and defining the dynamics of the theory, a func-
tional on the set of fields, S : Φ → IR (or IC), called the Action. Aditional
information cames from the possible symmetries of the theory, that can be
incorporated by means of group actions (on the space-time, the target space
or the total space of the fibration) or by symmetries in the functional form of
the action (see Freed and Deligne Lectures in [Dea99]).

The action is taken in general to be a functional of the form

S =
∫

M
L(φ, ∂φ) dµM ,

where dµM denotes the volume element defined by the metric on M and L
is the lagrangian density of the theory, function of the fields (and its deriv-
atives). Classical dynamics of the fields is determined by the solution to a
variational problem, or “least action principle” [BS80] [IZ88]. This means
that the physical fields φp are those described by the solutions to the extremal

problem δS
δφ

∣∣∣
φp

= 0 or, equivalently, the Euler-Lagrange equations of the field.

A quantum field is a generalized function φ̂ taking values in a space of op-
erators acting on a Hilbert space, satisfying some particular axioms (which
we shall no discuss here, see Kazhdan’s Lectures in [Dea99]). Thus, from an
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empty state |0〉 in the Hilbert space, all the dynamical information of the quan-
tum field theory can be obtained through the quantities 〈0| : φ̂(x1)φ̂(x2) · · ·
φ̂(xn) : |0〉, called correlation functions, which represent probability ampli-
tudes, the : : denoting a decrasing temporal order in x1, x2, . . . , xn ∈ M .
From a path integral point of view, quantum dynamics can be also entirely
defined by the action, this time through the corresponding path integrals. The
basic idea in functional or path integral quantization is to consider that the
probability amplitudes can be expressed in terms of integrals over the space
of all the possible dynamical trajectories of the system, i.e.

〈0| : φ̂(x1)φ̂(x2) · · · φ̂(xn) : |0〉 =
1
Zo

∫
Φ
φ(x1)φ(x2) · · ·φ(xn) exp {−S(φ)} [Dφ],

where [Dφ] denotes a formal measure on the space of all the fields φ and S
the classical action of the theory under consideration. We sall then consider
generating functionals, i.e. formal objects of the form

Z(S, F ) =
1
Zo

∫
Φ
F (φ) exp {−S(φ)} [Dφ], (B.1)

where F a functional on the space of fields. Here Zo denotes the partition
function of the theory, given by equation (B.1) when F (φ) = 1, a normaliza-
tion factor in order to have 〈0|0〉 = 1. Φb eing tipically an infinite-dimentional
manifold , the formal Lebesgue-type measure on Φ, [Dφ], is ill-defined in gen-
eral.

Perturbative Expansion and Stationary Phase Approximation

An action functional generally contains two kinds of terms: kinematical and
interaction terms. Hence, it can be wirtten as S = So + Si, where So denotes
a quadratic (kinematical) functional in the fields and Si, assumed to contain
all the information about the interactions of the fields. Thus, the formal
integral in equation (B.1), through a formal series expansion of the exponential
containing the interaction term, can be written as∫

Φ
F (φ)e−iS [Dφ] =

∫
Φ
F (φ)e−iSo

( ∞∑
k=0

1
k!

(−iSi)
k

)
[Dφ], (B.2)

giving the whole path integral as a sum of (infinite-dimensional) Gaussian
integrals. Even if Zo,

∫
Φ and [Dφ] make no sense as mathematical objects,

physicists make manipulations of the whole object imitating the well-known
techniques and results about Gaussian integrals in finite dimensions (change of
variable formulae, Fourier transforms, ...), obtaining numerical results which
are in extraordinary accordence with experimental measures. This indicates
that, even if the heuristic object has no mathematical meaning, a well defined
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mathematical object must be behind it.

Perturbation theory, through Feynman rules, shows how to associate to each
term in the formal sum (B.2) of heuristic path integrals a well-defined integral,
which sometimes diverges but can be made finite by the use of renormalization.
A great amount of physical information can be so obtained perturbatively.
However, not less relevant (physical and mathematical) information can be
obtained from the theoretical study of the formal object (B.1), through the
constructive point of view or the so-called non-perturbative methods. Con-
structive field theory tries to make sense of path integrals as properly defined
integrals, i.e. through the study of measure theory on functional spaces, con-
sidering each single model and giving a sense to the corresponding measure,
partition function and generating functionals. The idea, following the Wiener
measure approach in stochastic analysis, is to consider the formal measure
thogether with the exponential of the quadratic part of the action as defining
a Gaussian measure dµφ on the corresponding functional space, thus taking of
the fact that Gaussian measures (contrary to Lebesgue measures) on infinite-
dimensional spaces do exists. It has been developed by many physicists and
mathematicians –E. Nelson, A. Jaffe, S. Albeverio and many others– and has
lead to many interesting results in theoretical physics as in stochastic analysis
(see e.g. [AlH76][Al97]).
Non-perturbative methods have lead to not only physically relevant results,
but also –and most at all– mathematical results, in particular about the geom-
etry and the topology of the underlying components of the field theoretical
description (the manifold playing the role of space-time, the fibration,...). In
the last twenty years the study of these methods, initiated by the pionier-
ing works of A.Schwarz and E. Witten, and developed by many others after,
gave rise to a whole branch of mathematical physics called Topological Quan-
tum Field Theories (for a review, containing abundant reference to the orig-
inal bibliography see [BBRT91]). Regularized determinants of differential or
pseudodifferential operators acting on infinite-dimensional vector spaces are a
fundamental component of this point of view, where they model the partition
funtions.

In the following section we shall consider the main facts about finite-dimensional
Gaussian integrals which promped some of the formal manipulations of heuris-
tic path integrals.

Gaussian Measures and Fourier Transforms on Finite-dimensional
Vector Spaces

Let V be a n-dimensional oriented vector space, with inner product 〈 , 〉 and
a basis {v1, v2, . . . , vn} such that

v1 ∧ v2 ∧ · · · ∧ vn = vol(V ),
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where vol(V ) (also denoted dv) denotes the oriented volume element on V , or
“Lebesgue measure”, defined by the metric induced on V by its inner prod-
uct. The Gaussian approach we follow here is based in the finite-dimensional
Gaussian integral ∫

V
e−

1
2
Q(v) dv = (detTQ)−

1
2 , (B.3)

where Q(v) = 〈TQv, v〉 is a symmetric and positive quadratic form defined on
V .

To each inner product on V there is an associated Gaussian Measure given
by

µ(X) =
1

(2π)
n
2

∫
X
e−

1
2
〈v,v〉dv.

Let S(V ) denote the Schwartz space of rapidly decreasing smooth functions
on V . Then the Fourier Transform of a function f ∈ S(V ) is the function
f̂ ∈ S(V ∗) given by

f̂(x) =
1

(2π)
n
2

∫
V
f(v)e−i〈x,v〉dv.

The Fourier inversion formula

f(v) =
1

(2π)
n
2

∫
V ∗
f̂(x)ei〈x,v〉dx

implies that F 2(f)(v) = f(−v), where

F : S(V ) → S(V ∗)
f 7→ f̂ .

For example, the Fourier transform of the function f(v) = e
i
2
〈Av,Av〉 (where

A is a nonsingular and symmetric matrix) is

f̂(x) =
1

(2π)
n
2 detA

e−
i
2
〈Ax,Ax〉.

The Fourier Transform of a (positive) measure µ in V is the function on V ∗

(identified with V through the inner product 〈 , 〉) defined by

µ̂(x) =
∫

V
e−

1
2
〈x,v〉dµ(v). (B.4)

120



The Stationary Phase Method for Finite Dimensional Path Integrals

The stationary phase method studies the asymptotic behavior of integrals of
the form

I(~) =
∫

V
e

i
~ S(x)a(x)dx,

when ~ → 0, where S : V → IR is a C∞ function and a ∈ C∞o (V, IC),
and V is a n-dimensional vector space. The constant ~ is the analog to the
Planck constant in path integrals, and the limit ~ → 0 physically means
taking the classical limit of the theory. The following Proposition shows that
the main (asymptotic) contribution to I(~) come from the non-degenerate
critical points of S.

Proposition 21 [Hor] Let {x1, x2, . . . , xm} ∈ Supp(a) be the only non-degenerate
critical points of S(x) = 〈TSx, x〉, then for each N ∈ZZ+

I(~) = (2π~)
n
2

m∑
i=1

{
e

iπ
4

sign(S)

|detTS |
1
2

N∑
k=0

1
k!

(
Dka

)
(xi)~k

}
+ O(~N+1+n

2 ), (B.5)

where D is the differential operator given by

D =
i

2

∑
i,j

TS
ij
−1 ∂

∂xi

∂

∂xj
.

It follows from this that∫
V
e

i
~ S(x)a(x)dx ∼ (2π~)

n
2

m∑
i=1

e
iπ
4

sign(S)

|detTS |
1
2

a(xi), (B.6)

which, in the case of a positive definite matrix TS give us∫
V
e

i
~ S(x)a(x)dx ∼ (2π~)

n
2

m∑
i=1

(detTS)−
1
2a(xi).

Notice that in classical mechanics the critical values of the action are the
classical trajectories (or fields). Here, if there is only one non-degenerate
critical value at xo∫

V
e

i
~ S(x)a(x)dx ∼ (2π~)

n
2 (detTS)−

1
2a(xo),

so, in the limit ~→ 0, the quntum dynamics can be seen as a perturbation of
the classical dynamics. Moreover, recall that in our finite-dimensional model,
the partition function of the path integral I(~) is (detTS)−

1
2 . Applying this

to the heuristics of the path integrals, the stationary phase method shows that
from the partition function of the theory the “semiclassical” information of
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the field theory can be obtained through perturbative methods [IZ88]. Thus,
the computation of many path integrals in field theory are done from the
partition function of the theory, i.e. generalizating the well-known properties
of purely Gaussian integrals in finite dimensions (change of variables, Fourier
transforms,...), where they can be given a mathematical meaning.

122



Bibliography

[AS95] Adams, D. and Sen, S. Phase and Scaling Properties of Determinants
Arising in Topological Field Theories. Phys. Lett. B353, pp. 495–500
(1995)

[Al97] Albeverio, S. Wiener and Feynman Path Integrals and Their Applica-
tions. Proc.Symp. in Applied Mathematics 52, pp. 163–194 (1997)

[AlH76] Albeverio, S. and Høegh-Krohn, R. Mathematical Theory of Feynman
Path Integrals. Lecture Notes in Mathematics 523, Springer-Verlag, 1976.
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[We80] Wells, R.O. Differential Analysis on Complex Manifolds. Springer Ver-
lag, 1980.

[W89] Witten, E. Quantum Field Theory and the Jones Plynomial. Comm.
Math. Phys. 121, pp. 351–399 (1989)

127



[W99] Witten, E. Dynamics of Quantum Field Theory, in Deligne, P. et
al. Quantum Fields and Strings: A Course for Mathematicians, Vol. 2.
American Mathematical Society, 1999.

[Wo] Wodzicki, M. Non commutative residue, in Lecture Notes in Mathemat-
ics 1289, Springer Verlag, 1987.

[Woj] Wojciechowski, K. P. Heat Equation and Spectral Geometry, in Geo-
metric Methods for Quantum Field Theory. Ocampo, H., Paycha, S. and
Reyes A. Eds., pp. 238–292, World Scientific, 2001.

[Y85] Yamasaki, Y. Measures in Infinite Dimensional Spaces. World Scien-
tific, 1985.

128


