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1. Pseudogroups. Sheaves

1.1. Pseudogroups. Recall that a transformation group G is a subgroup in a group

Diff(M), so each g ∈ G is a diffeomorphism of M .

A local diffeomorphism is a diffeomorphism f : U → V , where U and V are open

subsets in M . We set D(f) = U , E(f) = V . Certainly, the set of local diffeomorphisms

is not a group of transformations because the composition is not well-defined.

A generalization of the notion of transformation group is a pseudogroup.

Definition 1. A pseudogroup Γ of transformations of a smooth manifold M is a collection

of local diffeomorphisms such that

• For any f ∈ Γ and open U ′ ⊂ D(f), we have f |U ′ ∈ Γ;

• Let U = ∪Ui, where Ui are open. Let local diffeomorphism f : U → V be such

that f |Ui
∈ Γ, then f ∈ Γ.

• For any f ∈ Γ, we have f−1 ∈ Γ.

• For f, g ∈ Γ such that E(f) ⊂ D(g) we have g ◦ f ∈ Γ;

Example 1.1. All local diffeomorphisms of a manifold.

Example 1.2. Pseudogroup of automorphisms of a tensor field: a) pseudogroup of analyt-

ical diffeomorphisms b) pseudogroup of symplectic diffeomorphisms.

Example 1.3. The pseudogroup Γ(G) generated by a group G of transformations of a

manifold M . The elements of Γ(G) are the restrictions of elements of G to open sets in

M .

This is a preliminary version of lectures the author gave in the University “Los Andes” in September-

October, 2006.
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We can say informally that a subset Γ of local diffeomorphism of M is a pseudogroup

if and only if (i) the composition and inverse elements are well-defined, (ii) the elements

of Γ are defined by a local condition (in fact, by a condition on germs).

1.2. Sheaves. Here we give only main definitions and results of the sheaf theory. For a

detailed exposition see [11], [12].

Definition 2. Let M be a topological space. Suppose that to each open U we assign a

group F(U) and if V ⊂ U we have group homomorphism rUV : F(U) → F(V ) such that

rUV r
V
W = rUW(1)

rUU = Id(2)

Then we get a presheaf F of groups.

In the same way we can define presheaves of rings, vector spaces, etc.

We will call the elements of A(U) the sections of A over U .

Example 1.4.

• The presheaf of smooth sections of a smooth bundle ξ: to each open set U we put

in correspondence the set of sections of ξ over U , and the map rUV is the restriction

map.

• The presheaf of constant functions on a manifold: to each open set U we put in

correspondence the set of constant functions on U , and the map rUV is again the

restriction map.

Let A, B be preasheaves. A presheaf morphism φ : A → B is the collection of homo-

morphisms φU : A(U) → B(U) given for each open U such that, for every V ⊂ U , we

have rUV φU = φV r
U
V .

If A, B are preasheaves of abelian groups, then we can define the kernel and the image

of φ: the kernel of φ is the presheaf given by

U → Ker(φ : A(U) → B(U)),

and the image of φ is the presheaf given by

U → Im(φ : A(U) → B(U)).

Definition 3. A presheaf A is called a sheaf if

(1) If U = ∪Ui and s, t ∈ A(U) and rUUi
(s) = rUUi

(t), then s = t;
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(2) Let U = ∪Ui. Then for any collection si ∈ A(Ui) such that rUi

Ui∩Uj
(si) = r

Uj

Ui∩Uj
(sj),

there exists a (unique) s ∈ A(U) such that rUUi
(s) = si.

Example 1.5.

(1) The presheaf of local sections of a bundle is a sheaf.

(2) The presheaf of constant functions on a manifold is not a sheaf.

1.2.1. Passing from a presheaf to a sheaf. Let A be a presheaf on a manifold M . Then,

for each x ∈M , we can define a germ of a section s ∈ A(U) in the standard way. Namely,

we consider the set of pairs (W, s ∈ A(W )) such that x ∈ W and take the equivalence

relation on this set defined as follows: (U, s ∈ A(U)) ∼ (V, t ∈ A(V )) if and only if there

exists x 3 W ⊂ U ∩V such that rUW (s) = rVW (t). Denote by Ax the set of germs of sections

of A at x.

Now we consider the set E(A) = ∪x∈MAx and introduce a topology on E(A) in the

following way. The idea is to set up a minimal topology such that the sections of the

presheaf are continuous maps. The prebase of the topology on E(A) consists of sets

(3) Ω = {< s >x| s ∈ A(U)}

Note that this topology has a lot of open sets, and, in general, is not Hausdorff.

We have the natural projection π : E(A) →M , < s >x→ x and thus we obtain a cov-

ering (E(A), π,M), in the sense that for each point y ∈ E(A) there exists a neighborhood

in E(A) homeomorphic to a neighborhood of x = π(y). Then the sheaf Â associated with

A is the sheaf of continuous sections of π : E(A) → M . We can describe the sections of

this sheaf in the following way: a section s : U → E(A), x→< σx >x is continuous if for

each x ∈ U there exist a neighborhood x 3 W ⊂ U and a section σ ∈ A(U) such that

< sx >x=< σ >x.

Example 1.6. The sheaf associated with the presheaf of constant functions is the sheaf of

locally constant functions.

Let A and B be sheaves of abelian groups. If φ : A → B is a sheaf morphism, then

we have the image presheaf U → φ(A(U)) which is not a sheaf in general. However we

denote by Imφ the sheaf associated with the image sheaf.

Also, for sheaves B ⊂ A we define the presheaf U → A(U)/B(U), and we denote by

A/B the sheaf associated to this presheaf.

1.2.2. Sheaf cohomology. Let G be a sheaf of abelian groups on a manifold M . Take at

most countable open covering U = {Ui} of M . Define the nerve of U be N(U) = tNm(U),
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where

(4) Nm(U) = {{i0 . . . im} | Ui0 ∩ Ui2 ∩ . . . Uim 6= ∅}

Now an m-cochain on M is a family of sections {ci0...im ∈ G(Ui0 ∩ Ui2 ∩ . . . Uim) |

{i0 . . . im} ∈ Nm(U)}. The order of indices is unessential, so we assume that ci0i1...im is

skew-symmetric with respect to i0, i1, . . . , im.

The set Čm(U ;G) of m-cochains is evidently an abelian group. We have the group

homomorphism:

d : Čm(U ;G) → Čm+1(U ;G)(5)

(dc)i0...im+1
=

m+1∑

k=0

(−1)kr
U

i0...cik...im+1

Ui0...im+1

(ci0...bik...im+1
)

For example,

d : C0(U ;G) → C1(U ;G), dcβα = cβ − cα(6)

d : C1(U ;G) → C2(U ;G), dcαβγ = cβγ − cαγ + cαβ(7)

One can prove that d ◦ d = 0 by direct calculations, hence we obtain a complex

(Č∗(U ;G), d) called the Cech complex of the covering U with coefficients in the sheaf

G. Certainly, the cohomology of this complex depends on the covering.

Example 1.7. Ȟ0(U ;G) = G(M).

Now the set of open coverings is a partially ordered set with respect to the inscribing

relation ≤, and, if V ≤ U , we have the natural map Ȟ(U ;G) → Ȟ(V;G). Thus we can

define the Cech cohomology of M with coefficients in G:

(8) Ȟ(M ;G) = lim
−→

Ȟ(U ;G)

The following theorems make it possible to calculate the Cech cohomology without

taking the direct limit.

Let G be a sheaf of abelian groups on M . An open covering is said to be ‘fine’ if

Ȟq(UI ;G) ∼= 0, q > 0, for each I ∈ N(U).

Theorem 1 (Leray). If U is a fine covering on M , then Ȟ(M ;G) ∼= Ȟ(U ;G).

An exact sequence of sheaves

(9) 0 → G
i
−→ F0

d
−→ F1

d
−→ . . .

is called a resolution of G. If all the sheaves F are fine, then we say that (9) is a fine

resolution of G. From the fine resolution 9 we get the complex (Fk(M), d).
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Theorem 2 (Abstract de Rham Theorem). Given a fine resolution Fk of a sheaf G, we

have Ȟ(M ;G) ∼= H(F∗(M), d).

Example 1.8. The sheaf RM of locally constant functions on a manifold M admits the

fine resolution

0 → RM → Ω0
M

d
−→ Ω1

M

d
−→ . . .

d
−→ Ωn

M → 0,

where Ωq
M is the sheaf of differential q-forms on M , therefore the cohomology ofH(M ; RM)

with coefficients in the sheaf of locally constant functions is isomorphic to the de Rham

cohomology.

Theorem 3. If 0 → A
i
−→ B

p
−→ C → 0 is a exact sequence of sheaves, we have a long

exact cohomology sequence

(10)

· · · → Ȟm−1(M ; C)
δ
−→ Ȟm(M ;A)

i∗−→ Ȟm(M ;B)
p∗
−→ Ȟm(M ; C)

δ
−→ Ȟm+1(M ;A) → . . .

2. Deformations of pseudogroup structures associated with integrable

first order G-structures

We will apply deformation theory to the integrable first order G-structures (for the

general theory of G-structures we refer the reader to e. g. [14], [15], [13]).

2.1. Integrable G-structures. LetM be a smooth n-dimensional manifold, L(M) →M

the frame bundle ofM , and X(M) the Lie algebra of vector fields onM . For a Lie subgroup

G ⊂ GL(n), consider the bundle EG(M) = L(M)/G→M .

Remark 2.1. EG is a natural bundle: this means that EG is the functor Man→ Bundles,

where Man is the category of smooth manifolds whose morphisms are diffeomorphisms,

and Bundles is the category of fiber bundles. This functor sends a manifold M to the

fiber bundle EG(M), and a diffeomorphism f : M →M ′ to the natural bundle morphism

f c : EG(M) → EG(M ′).

Definition 4. A first order G-structure is a section s : M → EG(M).

Example 2.1 (C). An almost complex structure is a section s : M → EG(M), where G =

GL(n,C) ⊂ GL(2n,R). One can easily prove that the sections of EG(M) are in 1-1-

correspondence with the linear operator fields J such that J 2 = −I.

Example 2.2 (F). A distribution of codimension q can be identified with a section s : M →

EG(M), where G = {

(
A 0

B C

)
} ⊂ GL(n,R), where A ∈ GL(q, q), B ∈ Mat(n − q, q),

C ∈ GL(n− q, n− q).
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Example 2.3 (S). An almost symplectic structure is a section of s : M → EG(M), where

G = Sp(n) ⊂ GL(2n,R). One can easily prove that the sections of EG(M) are in 1-1-

correspondence with non-degenerate differential 2-forms on M .

Definition 5. We say that a first order G-structure s is integrable iff s is locally equivalent

to a given first order G-structure s0 on Rn.

Example 2.4 (C). A complex structure is a section s : M → EG(M) locally equivalent to

J ∈ T 1
1 (Rn) such that J∂k = ∂n+k, J∂n+k = −∂k, k = 1, n.

Example 2.5 (F). A foliation of codimension q is a section s : M → EG(M) locally equiv-

alent to the distribution ∆ given by equations dx1 = 0, dx2 = 0, . . . , dxq = 0.

Example 2.6 (S). A symplectic structure is a section s : M → EG(M) which is locally

equivalent to ω0 = dx1 ∧ dx2 + · · ·+ dx2n−1 ∧ dx2n.

Remark 2.2. For all the classical structures, like the complex structure, the foliation

structure, etc., the section s0 is invariant under the translation group, so s0 is determined

by its value at a point 0 ∈ Rn.

2.2. Γ-structure associated with integrable G-structure. Let Γ0 be a pseudogroup

of transformations of Rn. A Γ0-structure on a manifold M is a maximal atlas {(Uα, φα)}

on M whose transition functions φβφ
−1
α lie in Γ0.

Given an integrable G-structure s : M → L(M)/G, and so the model section s0 : R
n →

L(Rn)/G, we obtain the pseudogroup Γ0 = Γ(s0) of automorphisms of s0. For classical

G-structures, this pseudogroup is transitive (see the remark above).

It is clear that a manifold M is endowed with an integrable G-structure if and only if

M is endowed with Γ(s0)-structure.

For a manifold M endowed with a Γ0-structure {(Uα, φα)}, we have the pseudogroup

Γ of diffeomorphisms of f : M →M such that the local representations φβfφ
−1
α lie in Γ0.

In case the Γ0-structure corresponds to an integrable G-structure s : M → L(M)/G, the

pseudogroup Γ consists of local automorphims of s: f ∈ Γ if and only if f ∗(s) = s.

A vector field X is called a Γ-vector field if the flow φt consists of elements of Γ. On

each manifold M endowed with a Γ0-structure we have the sheaf XΓ of Γ-vector fields.

In case the Γ0-structure corresponds to an integrable G-structure s : M → L(M)/G, a

vector field X lies in XΓ(U) if and only if LXs = 0.

Now we continue considering the above examples and present the corresponding pseu-

dogroups Γ0, as well as the sheaves of Γ0-vector fields.
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Example 2.7 (C). A complex structure. Γ0 consists of local diffeomorphisms f : R2n → R2n

which satisfy the Cauchy-Riemann equations, i.e. df commutes with J0, where

J0 =

(
0 −I

I 0

)
.

The sheaf XΓ of Γ-vector fields on M consists of holomorphic vectors fields of (M,J).

Example 2.8 (F). A foliation of codimension q. Let (xa, xα), a = 1, q, α = q + 1, n, be

coordinates on Rn. The pseudogroup Γ0 consists of local diffeomorphisms f : Rn → Rn

whose germs are of the form ya = f a(xb), yα = fα(xb, xβ). In fact, a local diffeomorphism

lies in Γ if and only if ∂fa

∂xα = 0. And the sheaf XΓ consists of vector fields V with local

expression

V = V a(xb)∂a + V α(xb, xβ)∂α

Example 2.9 (S). A symplectic structure. A local diffeomorphism lies in Γ0 if and only if

f ∗ω0 = ω0. The sheaf XΓ consists of vector fields V which are locally Hamiltonian vector

fields: V ∈ X(U) if and only if LV ω = 0 if and only if diV ω = 0 if and only if V has local

expression V k = ωks∂kf .

2.3. Deformations of pseudogroup structure. Let us recall definitions and results of

the theory of deformations of pseudogroup structures (see [5]–[7] and also [8], [9]).

Let Γ be a pseudogroup of local diffeomorphisms of a manifold M .

Definition 6. A one-parameter family φs of elements of Γ is said to be smooth if U =

{(x, s) ∈ M × R | x ∈ D(φs)}, where D(g) is the domain of g ∈ Γ, is open in M × R and

Φ : U → Rn, Φ(x, s) = φs(x), is smooth. A smooth one-parameter family of elements of

Γ will be called a curve in Γ.

Let φs, |s| < ε, be a curve in Γ such that φ0 is the identity map of an open set U ⊂ M .

Then, on U we have the vector field V (x) = d
ds

∣∣
s=0

φs(x), which is called the vector field

tangent to φs at s = 0. Let us recall that a vector field V on an open set U ⊂M is called

a Γ-vector field if its flow consists of elements of Γ.

Definition 7. If any vector field tangent to a curve in Γ is a Γ-vector field, then the

pseudogroup is said to have the Lie pseudoalgebra [5]. If a pseudogroup Γ has Lie pseu-

doalgebra, then the set XΓ(U) of Γ-vector fields on U is a Lie subalgebra in the Lie algebra

X(U) of vector fields on U , and the correspondence U → XΓ(U) determines a sheaf XΓ of

Lie algebras on M .
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Remark 2.3. Let Γ be the pseudogroup associated with an integrable first order structure

s : M → L(M)/G. Then Γ has the Lie pseudoalgebra, and this pseudoalgebra coincides

with XΓ. The reason is that in the definition of the Lie derivative: LXs = d
dt
|t=0φ

∗
t (s) one

can take any smooth curve of diffeomorphisms tangent to X.

A deformation of a Γ0-atlas A = {(Uα, φα)} is a family of Γ0-atlases A(s) = {(Uα, φα(s))},

where |s| < ε, such that

1) Uα × (−ε, ε) → Rn, (x, s) → φα(s)(x) is smooth for each α;

2) φβα(s) = φβ(s)φ
−1
α (s) is a curve in Γ0 for every α, β;

3) A(0) = A.

A deformation A(s) of a Γ0-atlas A is said to be nonessential if φα(s)φ
−1
α lie in Γ0, i. e.

for every s, A(s) is compatible with the maximal Γ0-atlas determined by A.

Let A(s) = {(Uα, φα(s))} be a deformation of a Γ0-atlas A = {(Uα, φα)}. Then γβα(s) =

φ−1
β φβα(s)φα is a curve in Γ and γβα(0) = Id.
d
ds

∣∣
s=0

φβαφαβ(s) is a Γ0-vector field on φβα(φα(Uα ∩ Uβ)) ⊂ φβ(Uβ).

We define the vector field Vβα on Uα ∩ Uβ,

(11) Vβα(p) = dφ−1
β

(
d

ds

∣∣∣
s=0

φβα(s)(φα(p))

)
,

and the vector field Wα on Uα,

(12) Wα(p) = dφ−1
α

(
d

ds

∣∣∣
s=0

φα(s)(p)

)
.

Statement 1. 1) Vβα = Wβ|Uα∩Uβ
− Wα|Uα∩Uβ

;

2) {Vβα} is a 1-cocycle on the covering U = {Uα} with coefficients in XΓ;

3) if the deformation A(s) is nonessential, the cohomology class [Vβα] ∈ H1(M ; XΓ) is

trivial.

The cocycle {Vβα} is called an infinitesimal deformation of the Γ0-structure. The class

[Vβα] ∈ H1(M ; XΓ) is called an essential infinitesimal deformation of the Γ0-structure.

In general, not every infinitesimal deformation is generated by a deformation of Γ0-

structure. In [9] it is proved that if an essential infinitesimal deformation represented by

a cocycle {Vβα} is generated by a deformation of Γ0-structure, then the cocycle {Wαβγ =

[Vαβ, Vβγ]} of Γ-vector fields, where [ , ] is the Lie bracket of vector fields, represents the

trivial cohomology class in H2(M ; XΓ). The cohomology class [Wαβγ ] ∈ H2(M,XΓ) is

called the obstruction to integrability of the infinitesimal deformation {Vβα}.
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3. Fine resolution for the sheaf of Γ-vector fields.

We know that the space of infinitesimal essential deformations of a Γ-structure is

H1(M ; XΓ), which is defined in terms of the Čech complex. However, for calculations

and for establishing relations with other geometrical structures we often need to have a

differential complex whose cohomology is isomorphic to H∗(M ; XΓ). Using the Spencer

P -complex, we will construct such a complex for integrable first order G-structures.

3.1. Lie derivative of a section of a natural bundle. Let M be a manifold and

E : Man → Bundles be a natural bundle. Let us take a section s : M → E(M) and

a vector field X ∈ X(M). Denote by φt the flow of X, and since the bundle E(M) is

natural, we have the one-parameter group φct : E(M) → E(M), and hence the complete

lift Xc ∈ X(E(M)). Now denote by V E(M) → E(M) the vertical bundle of E(M), then

the pullback bundle s∗(V E(M)) is a vector bundle over M , and for each p ∈ M there is

defined the isomorphism Πp : (V E(M))s(p) → (s∗(V E(M))p. Then

(LXs)p
def
= Π(Xc(s(p)) − dsp(X(p))),

is the Lie derivative of s with respect to X at a point p ∈M .

From the definition it immediately follows that LXs = 0 if and only if X is an infini-

tesimal automorphism of s, i.e., if the flow φct preserves s.

Now let s : M → EG(M) be an integrable first order structure. We consider the Lie

derivative LXs as a first-order differential operator DL : TM → s∗(V E). In [1], for a

differential operator D : Γ(ξ) → ξ ′, where ξ, ξ′ are vector bundles and Γ(ξ) is the sheaf of

sections of ξ, a differential complex was constructed (the Spencer P-complex)

0 → Θ → Γ(ξ)
D

−→ F 0 → F 1 → . . . ,

where Θ is the kernel of D. This construction, applied to a Lie derivative associated

with a general pseudogroup structure, gives the deformation complex of this structure [1].

Then, specializing this complex to the case of the pseudogroup associated to an integrable

G-structure, we obtain the fine resolution for the sheaf XΓ (for details, see [29]). In the

next subsection we present this complex in terms of tensor fields and covariant derivatives.

3.2. P -complex for the Lie derivative. Let s : M → EG(M) = L(M)/G be an

integrable first order G-structure. Let us denote by Eg the subbundle of the bundle T 1
1(M)

consisting of linear operators whose matrices written with respect to the corresponding

Γ0-atlas lie in the Lie algebra g of G, and let Fg = T 1
1(M)/Eg.
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The P -complex of the Lie derivative is isomorphic to the complex (Cq(P ), d), where

Cq(P ) =
Ωk(M) ⊗ TM

Alt(Ωk−1(M) ⊗ Eg)
,

where Alt(tji1...tk−1tk
) = tj[i1...tk−1tk ] and the differential d : Cq(P ) → Cq+1(P ) is induced by

the differential operator D = Alt ◦∇, where Alt is the alternation and ∇ is the covariant

derivative of a torsion-free connection adapted to the G-structure s: ∇s = 0. This means

that, with respect to local coordinates adapted to s (the charts of the Γ0-atlas), we have

(Dω)i1...
j
iq+1

= ∇[i1ωi2...
j

iq+1]
.

The definition of d does not depend on an adapted connection choice because, if ∇(s) =

∇(s) = 0, we have T kij = Γkij−Γ
k

ij in Eg⊗T
∗M , so Alt(∇ω)−Alt(∇ω) lies in Alt(Ωk−1(M)⊗

Eg).

Example 3.1 (C). For a complex structure, the complex (Cq, d) is the Dolbeaut complex

of vector-valued forms (see, e.g., [25]).

Example 3.2 (F). Let a foliation structure on a smooth manifold M be given by the

integrable distribution ∆. Then Eg = {A ∈ T 1
1(M) | A(∆) ⊂ ∆}. Therefore Cp =

Ωp(∆) ⊗ (TM/∆). If (xi, xα) are adapted local coordinates, i.e., if ∆ is given by the

equations dxi = 0, then d can be written locally as (dω)α1...
i
αq+1

= ∂[α1
ωα2...

j

αq+1]. Thus we

arrive at Vaisman’s foliated cohomology [2].

Example 3.3 (S). Let us consider a symplectic manifold (M, θ). Then the subbundle Eg

consists of those linear operators that are skew-symmetric with respect to θ: θ(AX, Y ) +

θ(X,AY ) = 0, and using the isomorphism T 1
1(M) → T 2(M) determined by θ, we obtain

that Cq ∼= Ωq+1(M) and . The adapted connection ∇ satisfies ∇ω = 0 (a symplectic

connection), and the differential d : Cq → Cq+1 is the exterior differential. Thus we find

that the kernel of d is the Lie algebra of (locally) Hamiltonian vector fields.

3.3. Fine resolution for XΓ. It is clear that the construction of (C∗, d) transforms to

the sheaf level. So we have the sequence of sheaves

(13) 0 → XΓ
i
−→ X

L(s)
−−→ C0 d

−→ C1 d
−→ C2 d

−→ . . .

From the construction, it follows that these sheaves are fine, since these ones are sheaves

of modules over the fine sheaf C∞.

So we arrive at

Theorem 4. If the sheaf sequence (13) is exact (the “Poincare lemma” holds), then the

space of essential deformations H1(M ; XΓ) is isomorphic to H1(C∗(M), d).
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4. Deformation of symplectic structure with Martinet singularities

4.1. Symplectic structure with singularities. Let ω0 be a closed differential 2-form

on R2n such that Σ0 = {x ∈ R2n | detω0(x) = 0} is an embedded manifold, and Γ0 be the

pseudogroup consisting of local diffeomorphisms f of R
2n such that f ∗ω0 = ω0.

A symplectic structure with singularities of type ω0 on a 2n-dimensional manifold M

can be defined in two equivalent ways.

Definition 8. A symplectic structure with singularities of type ω0 on a 2n-dimensional

manifold M is a Γ0-structure on M , i. e. a maximal atlas whose transition functions lie

in Γ0.

Definition 9. A 2-form ω on a 2n-dimensional smooth manifold M is called a symplectic

structure with singularities of type ω0 if for any point p ∈M there exist a neighborhood

U(p) and a diffeomorphism φp : U(p) → O ⊂ R2n, where O is an open subset in R2n, such

that ω|U(p) = φ∗
p(ω0).

The singular submanifold of a symplectic structure with singularities. Let a 2-form ω

be a symplectic structure with singularities of type ω0 on a 2n-dimensional manifold M .

Lemma 1. The set Σ = {p ∈ M | detω(p) = 0} is an embedded closed submanifold in

M , and dim Σ = dim Σ0.

The submanifold Σ will be called the singular submanifold of a symplectic structure

with singularities.

Lemma 2. Let ω be a symplectic structure with singularities of type ω0 on a manifold M ,

and U ⊂M be an open set. For V,W ∈ X(U), from iV ω = iWω it follows that V = W .

4.2. Infinitesimal deformations of symplectic structure with singularities. We

have defined the symplectic structure with singularities to be a pseudogroup structure

(Definition 8), and in the equivalent way, to be a closed 2-form (Definition 9). Therefore,

there are defined two spaces of essential infinitesimal deformations of symplectic structure

with singularities. The first one is the space of essential infinitesimal deformations of pseu-

dogroup structure, which is isomorphic to the Čech cohomology group Ȟ1(M ; XΓ) with

coefficients in the sheaf of Γ-vector fields, where Γ is the pseudogroup of automorphims of

symplectic structures with singularities. The second one is the space Dess(ω) of essential

infinitesimal deformations of the closed 2-form ω. In this section, for a compact manifold

M we construct a homomorphism φ : Ȟ1(M ; XΓ) → Dess(ω) and study its properties.

In what follows we assume that M is compact.
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4.2.1. Infinitesimal deformations of a closed differential form. In 2.3 we have defined the

deformations of pseudogroup structure and now we define the deformations of a closed

differential form. Let η be a closed differential form on a manifold M . A deformation of η

is a smooth family of closed forms η(s), |s| < ε, where η(0) = η. Let φ(s) be a flow of local

diffeomorphisms of M . Then the family of forms η(s) = φ(s)∗(η) is called a nonessential

deformation of η. A closed form θ is called a (nonessential) infinitesimal deformation of

η, if there exists a (nonessential) deformation η(s) of η such that θ = d
ds

∣∣
s=0

η(s). Note

that a closed form θ is a nonessential infinitesimal deformation of η if and only if there

exists a vector field V ∈ X(M) such that θ = LV η = d(iV η).

For any closed p-form θ, the family η(s) = η + sθ is a family of closed forms, and

θ = d
ds

∣∣
s=0

η(s), therefore the set of infinitesimal deformations D(η) of η ∈ Ωp(M) coincides

with the space of closed p-forms. The set of nonessential infinitesimal deformations is the

subspace D0(η) ⊂ D(η) consisting of exact p-forms d(iV η), where V ∈ X(M). Then

the quotient space Dess(η) = D(η)/D0(η) is called the space of essential infinitesimal

deformations of the closed form η.

From the definition of the space of essential infinitesimal deformations it follows that

for any closed p-form η we have the surjective homomorphism ψ : Dess(η) → Hp(M)

which maps each essential infinitesimal deformation of η to the corresponding de Rham

cohomology class.

4.3. Infinitesimal deformations of symplectic structure with singularities. Let

us establish relationship between infinitesimal deformations of symplectic structure with

singularities of type ω0 considered as a pseudogroup structure (see 2.3) and infinitesimal

deformations of the corresponding closed 2-form ω (see 4.2.1).

Let a symplectic structure with singularities of type ω0 be given on a manifold M by a

Γ0-atlas A = {(Uα, φα)}. Let ω ∈ Ω2(M) be the corresponding closed 2-form (see Defini-

tions 8 and 9). Let us denote by Γ the pseudogroup consisting of local diffeomorphisms

f of M such that f ∗ω = ω. Hence follows that a vector field V is a section of the sheaf

XΓ of Γ-vector fields if and only if LV ω = 0.

Each deformation A(s) = {(Uα, φα(s))} of the Γ0-atlas determines a deformation ω(s) of

the form ω. Namely, the family of closed 2-forms ω(s) is given by ω(s)|Uα
= φ∗

α(s)ω0. Let

η = d
ds

∣∣
s=0

ω(s) be the corresponding infinitesimal deformation of ω, then η|Uα
= LWα

ω,

where the vector field Wα ∈ X(Uα) is defined by (12). And Vαβ = Wα − Wβ is an

infinitesimal deformation of A determined by the deformation of A(s) (see Statement 1).

Now we define a map φ from the space Ȟ1(M,XΓ) of essential infinitesimal deformations

of the Γ0-atlas to the space Dess(ω) of essential infinitesimal deformations of the closed
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2-form determined by this atlas. We proceed as follows. Let an essential infinitesimal

deformation be given by a cocycle of Γ-vector fields Vβα on the covering U = {Uα} of M .

Since the sheaf X of vector fields on M is fine, there exist vector fields Wα ∈ X(Uα) such

that Vβα = Wβ −Wα. We set ηα = LWα
ω, then, since LVβα

ω = 0, we get ηα|Uαβ
= ηβ|Uαβ

.

Therefore, we get the form η such that η|Uα
= ηα, and dη = 0.

If Vβα = W ′
β −W ′

α, then on Uα ∩ Uβ we have W ′
β −W ′

α = Wβ −Wα. Therefore, we

obtain the vector field W such that W |Uα
= W ′

α −Wα, and

η′ − η = LWω = d(iWω).

Thus, η and η′ determine the same class in the space Dess(ω).

Thus we obtain the map

φ̃ : Ž1(U ; XΓ) → Dess(ω), φ̃(Vβα) = [η].

From our construction follows that, if cocycles V ′
βα and Vβα are cohomologous, they define

the same closed form η, and, therefore, φ̃(V ′
βα) = φ̃(Vβα), i. e. we obtain the linear map

(14) φ : Ȟ1(M ;XΓ) → Dess(ω).

Statement 2. Let us consider a symplectic structure ω with singularities of type ω0 given

by a Γ0-atlas A. Given a deformation A(s) of A, we denote by ω(s) the corresponding de-

formation of ω. If [Vβα] ∈ H1(M,XΓ) is an essential infinitesimal deformation determined

by A(s), and η = d
ds

∣∣
s=0

ω(s), then φ([Vβα]) = [η].

Properties of the map φ.

Statement 3. φ is a monomorphism.

Let us define by Ωp the sheaf of p-forms on M . Let ι : X → Ω1 be the sheaf morphism

given by ιU : X(U) → Ω1(U), ι(V ) = iV ω.

Statement 4. φ is surjective if and only if Ω1 = ι(X) + dΩ0.

4.4. The sheaf of local Hamiltonians and the map φ. The sheaf of local Hamilto-

nians is a subsheaf T of the sheaf Ω0 of smooth functions on M . For any open set U a

smooth function f lies in T (U) if and only if for any point p ∈ U there exist a neighbor-

hood U ′ ⊂ U of p and V ∈ X(U ′) such that df = iV ω. We will denote by i the inclusion

RM → T .

Let us construct a sheaf morphism π : T → XΓ. For f ∈ T (U) there exists a covering

U = {Uα} of U such that on each Uα there exists a vector field Vα with the property

that df = iVα
ω, which is uniquely defined by virtue of Lemma 2. Then, on Uα ∩ Uβ we
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have Vα = Vβ. Thus, on U we obtain the vector field V such that df = iV ω, which is

uniquely defined. Furthermore, LV ω = d(iV ω) = d(df) = 0, therefore V ∈ XΓ(U). Thus

we have obtained the map πU : T (U) → XΓ(U), which is evidently linear. All the maps

πU determine a sheaf morphism π : T → XΓ.

In fact T is the sheaf of algebras. The Poisson bracket { , } of sections of T is defined

in the following way. Let f, g ∈ T (U), df = iV ω, and dg = iWω, where V,W ∈ XΓ(U) are

uniquely defined. Set

(15) {f, g} = dg(V ) − df(W ) = 2ω(W,V ).

Statement 5.

0 → RM
i

−→ T
π

−→ XΓ → 0

is an exact sequence of sheaves.

Corollary 1. 1. The sequence

(16) · · · → Ȟ0(M ; XΓ)
δ
→ Ȟ1(M ; RM )

i∗→ Ȟ1(M ; T )
π∗→

π∗→ Ȟ1(M ; XΓ)
δ
→ Ȟ2(M ; RM)

i∗→ . . .

is exact.

2) The diagram

(17)

Ȟ1(M ; XΓ)
φ

−→ Dess(ω)

δ

y
yψ

Ȟ2(M ; RM)
η

−→
∼=

H2(M),

is commutative. Here ψ is defined in 4.2.1, δ is the connecting homomorphism of exact

sequence (16), and η is the standard isomorphism between the Čech cohomology with

coefficients in RM and the de Rham cohomology.

4.4.1. Obstructions to integrability of infinitesimal deformations.

Statement 6. Let [v = {Vβα}] ∈ H1(M ; XΓ) be an essential infinitesimal deformation of

a symplectic structure with singularities of type ω0, and [w = {Wαβγ}] ∈ H2(M,XΓ) be

the obstruction to integrability of this infinitesimal deformation (see 1.1). Then [w] lies in

the image of the map π∗ : H2(M ; T ) → H2(M ; XΓ) (see (16)).

Let a 1-cocycle v ∈ Z1(U ; XΓ), where U is a covering ofM consisting of contractible open

sets, represent an infinitesimal deformation of a symplectic structure with singularities

of type ω0. Then the 2-cocycle w = {Wαβγ = [Vαβ, Vβγ]} ∈ Z2(U ; XΓ) represents the
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obstruction to integrability of v. Given v, we have the cochain f = {fβα} ∈ C1(U ; T )

such that π(f) = v (see Statement 5). Take the cochain gαβγ = {fαβ, fβγ} ∈ C2(U ; T ),

where { , } is the Poisson bracket (15). Since π is a morphism between sheaves of Lie

algebras, we obtain that π(g) = w.

4.5. Infinitesimal deformations of symplectic structure with Martinet singu-

larities.

4.5.1. Martinet singularities. In [16]–[19] it was proved that on R4 five generic types of

germs of closed 2-forms exist, among them the following four types are stable:

Type 0

ω0 = dx1 ∧ dx2 + dx3 ∧ dx4,

Type I

ω0 = x1dx1 ∧ dx2 + dx3 ∧ dx4,

Type II-e (the elliptic type)

(18) ω0 = dx1 ∧ dx2 + x3dx1 ∧ dx4 + x3dx2 ∧ dx3 + x4dx2 ∧ dx4 + (x1 − (x3)2)dx3 ∧ dx4,

Type II-h (the hyperbolic type)

(19) ω0 = dx1 ∧ dx2 + x3dx1 ∧ dx4 + x3dx2 ∧ dx3 − x4dx2 ∧ dx4 + (x1 − (x3)2)dx3 ∧ dx4.

One can characterize these types in the following way (see [16] for details). Let ω

be a closed 2-form on a four-dimensional manifold M . Let us denote by Σ the set of

points, where ω is degenerate. In what follows we assume that Σ is a three-dimensional

submanifold of M .

If a point p does not lie in Σ, then, by the Darboux theorem, ω has type 0 at p.

Now let p ∈ Σ and ω(p) 6= 0. If the kernel Ep of ω(p) is transversal to Σ, then ω has

type I at p. The set V = U ∩ Σ is open in Σ and consists of points of type I, and U \ V

is everywhere dense in U and consists of points of type 0.

Let Σ′ ⊂ Σ be the set of points p such that Ep ⊂ TpΣ. If Σ′ is a submanifold in a

neighborhood of p, and Ep is transversal to Σ′, then ω has type II-e, or II-h, at p. Let

V = U ∩ Σ, W = U ∩ Σ′. Then U \ Σ is everywhere dense in U and consists of points of

type 0, V \W is everywhere dense in V and consists of points of type I, and W consists

of points of type II.

Let us consider a closed 2-form ω on a four-dimensional manifold M . If all points of

M has type 0, then (M,ω) is a symplectic manifold. If any point of M has type 0 or I,

then (M,ω) will be called a symplectic manifold with Martinet singularities of type I. If
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any point of M has type 0, I, or II, then (M,ω) will be called a symplectic manifold with

Martinet singularities of type II.

Note that a symplectic manifold (M,ω) with Martinet singularities is a symplectic

manifold with singularities of type ω0, where ω0 is given by (18) or (19). Indeed, let

φ(p) = (x1
0, x

2
0, x

3
0, x

4
0). Then p has type 0 if and only if x1

0 6= 0; p has type I if and only

if x1
0 = 0 and (x3

0)
2 + (x4

0)
2 6= 0; and p has type II if and only if x1

0 = 0, x3
0 = 0, and

x4
0 = 0. Thus the symplectic structure is a partial case of the symplectic structure with

Martinet singularities of type I, which in turn is a partial case of the symplectic structure

with Martinet singularities of type II.

Example of compact manifold with symplectic structure having Martinet singularity.

Let us take the four-dimensional torus T4, and let π : R4 → T4 be the standard covering.

Let us denote by θa, a = 1, 4, the 1-forms on T4 such that π∗(θa) = dxa. Set ω =

fθ1 ∧ θ2 + θ3 ∧ θ4, where π∗f = cos(x1). It is clear that dω = 0. Let us denote by

p1, p2 ∈ S1 the zeroes of f . Then Σ = p1 × T3 ∪ p2 × T3, and the restriction of ω to each

connected component of Σ is θ3 ∧ θ4, i. e. it has rank 2. Then ω determines a symplectic

structure with Martinet singularity on T
4.

Type 0

If ω is a symplectic structure without singularities, then the sheaf T coincides with

the sheaf of smooth functions Ω0, therefore Hk(M ; T ) = 0 for k > 0. Furthermore,

ι : X → Ω1 is a sheaf isomorphism (see 1.4). Hence, Corollary 1 and Statement 4 imply

the well-known fact that for a symplectic structure H1(M ; XΓ) ∼= Dess(ω) ∼= H2(M).

Type I

Statement 7. For a symplectic structure ω with Martinet singularities, φ : H 1(M ; XΓ) →

Dess(ω) is an isomorphism.

Type II

In this case the homomorphism φ is not surjective. Let ω be a symplectic structure

with singularities of type

ω0 = dx1 ∧ dx2 + x3dx1 ∧ dx4 + x3dx2 ∧ dx3 + x4dx2 ∧ dx4 + (x1 − (x3)2)dx3 ∧ dx4

Then the form α = (x3)2dx4 cannot be represented as iV ω + df , therefore, by Statement

4, φ is not surjective.

4.5.2. Calculation of H∗(M ; T ) for Martinet singularities. On the submanifold Σ of sin-

gular points we have the foliation F with singularities whose regular leaves are integral

curves of the one-dimensional distribution on Σ \ Σ′ obtained by the intersection of the
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kernel of ω with the spaces tangent to Σ, and whose singular leaf is Σ′. Let us denote by

Fb the sheaf of basic functions of the foliation F , i. e. the sheaf of functions which are

locally constant along the leaves of F .

Let µ be a volume form on M . Then ω ∧ ω = Pfµ(ω)µ, where Pfµ(ω) is called the

Pfaffian of ω with respect to µ. It is evident that, if µ′ = λµ is another volume form,

where λ is nonvanishing function, then Pfµ(ω) = λPfµ′(ω). Hence, in the ring sheaf C∞

of smooth functions we have the subsheaf I of principal ideals generated by Pfµ(ω):

I(U) = {Pfµ(ω)|
U
· f | f ∈ C∞(U)},

which does not depend on the choice of µ.

Note that I is the ideal sheaf whose sections are the functions vanishing on Σ, i. e.

C∞/I is the sheaf of smooth functions on Σ.

Let X be a topological space, A ⊂ X be a closed subset, and G be a ring sheaf on

A. Then we have the sheaf GX on X generated by the presheaf: U → 0 if U ∩ A = ∅,

otherwise U → G(U ∩ A) (see [24]).

Let r : C∞
M → (C∞

Σ )M be the sheaf morphism determined by the restriction of functions

to Σ. This means that, if U∩Σ = ∅, then (C∞
Σ )M(U) = 0 and rU : C∞

M (U) → (C∞
Σ )M(U) is

the zero homomorphism; if U ∩Σ = U ′ 6= ∅, then rU : C∞
M (U) → C∞

Σ (U ′) is the restriction

of f ∈ C∞(U) to U ′. Now, let us denote by i the inclusion I2 → C∞
M , and set F̃b = FM

b .

Statement 8.

(20) 0 → I2 i
−→ T

r
−→ F̃b → 0.

is the exact sequence of sheaves on M .

Corollary 2. For a symplectic manifold (M,ω) with Martinet singularities,

Hq(M ; T ) ∼= Hq(Σ;Fb), q > 0,

where T is the sheaf of local Hamiltonians on M , and Fb is the sheaf of basic functions

of the foliation with singularities induced by the kernel of ω on the singular submanifold

Σ.

Corollary 3. For a symplectic manifold (M,ω) with Martinet singularities such that

Σ′ = ∅,

Hq(M ; Xh) ∼= Hq+1
DR (M), q > 2,

where Xh is the sheaf of Hamiltonian vector fields on M , Hk
DR(M) is the de Rham coho-

mology of M .
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Corollary 4. If the foliation F is a fiber bundle, then H q(M ; XΓ) ∼= Hq+1
DR (M) for q > 0.

In particular, if H2
DR(M) ∼= 0, then ω is infinitesimally rigid.

Example 4.1. Let (M̂ , ω̂ ) be a symplectic 2n-dimensional manifold, M be a 2n-dimensional

manifold, and π : M → M̂ be a smooth map. Let ω = π∗ω. Then ω is a closed 2-form

on M , and the following diagram

TM
αω−−−→ T ∗M

dπ

y
xdπ∗

TM̂
αω̂−−−→ T ∗M̂ .

is commutative. Then

(21) Ann(ω) = kerαω = dπ−1(α−1
ω̂ ker dπ∗).

Now let M̂ be R4 (with coordinates yα, α = 1, 4) endowed with the standard symplectic

structure

ω̂ = dy1 ∧ dy2 + dy3 ∧ dy4,

M = S4 ⊂ R5 be the standard sphere given by
5∑
i=1

(xi)2 = 1, and π : S4 → R4 be the

restriction of the projection R5 → R4, yα = xα, α = 1, 4.

Let Π be the hyperplane in R5 given by x5 = 0, and S3
0 = S4 ∩ Π be the equator of

S4. It is clear that dπp : TpS
4 → TpR

4 is an isomorphism for any p ∈ S4 \ S3
0, hence ω is

nondegenerate on S4 \ S3
0. Further, by a coordinate calculation with the use of (21), we

get that at points of S3
0 the kernel of ω is spanned by ∂5 and −x2∂1 + x1∂2 − x4∂3 + x3∂4.

Hence Ann(ω) t S3
0, and the one-dimensional foliation F corresponding to the distribution

ker(ω) ∩ TS3
0 on S3

0 is the Hopf bundle. Then ω is a symplectic structure with Martinet

singularities of type I, which satisfies the assumptions of Corollary 4. Hence ω is rigid.

4.5.3. Differential complex associated to symplectic form with Martinet singularities.

Here we expose results of [30].

We start with the following standard algebraic construction. Let K be a ring and

d : K → K be a differentiation such that d2 = 0. Let I be an ideal in K, then

I ′ = {a+ ki dbi | a, bi ∈ I}

also is an ideal in K such that d : I ′ → I ′. Then we have the following exact sequence of

differential rings:

0 → I ′ → K → K/I ′ → 0

The same construction can be done for sheaves of rings over a smooth manifold M .

Then, for a sheaf of rings K over M endowed with a differential d such that d2 = 0, and
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a subsheaf ι : I ↪→ K of ideals, we get the sheaf I ′ of ideals and the exact sequence of

sheaves

0 → I ′ → K → K/I ′ → 0

and the corresponding cohomology exact sequence

· · · → Hk(M ; I ′) → Hk(M ;K) → Hk(M ;K/I ′) → Hk+1(M ; I ′) → . . .

For any vector bundles ξ : Eξ → M and η : Eη → M , each vector bundle morphism

Q : ξ → η determines the morphism Q : Γξ → Γη of sheaves of vector spaces: for each

s ∈ Γξ(U), the section Q(s)(p) = Qp(s(p)), p ∈ U , lies in Γη(U). The kernel of Q is the

sheaf K(U) = {s ∈ Γξ(U) | Q(s) = 0} of modules over the fine sheaf C∞, therefore K is

also fine. Now let us consider the presheaf F(U) = {t ∈ Γη(U) | t = Q(s)}.

Lemma 3. The presheaf F is a sheaf.

Let ξ : Eξ → M be a vector bundle, and A : ξ → ΛqM be a vector bundle morphism.

Denote by A : Γξ → ΩM the sheaf morphism corresponding to A. Then the subsheaf

A(Γξ) generates the subsheaf IM ⊂ ΩM of ideals. Let us denote by FM = ⊕F q
M ⊂ ΩM

the corresponding graded sheaf I ′
M of differential ideals.

We take an open U ⊂ M such that ξ and ΛM are trivial over U . Then, on U we get

q-forms ωa, a = 1, rankξ, which span A(U) over the ring C∞(U) of functions on U . One

can easily see that

(22) Fk(U) = {φa ∧ ωa + ψa ∧ dωa | φ
a ∈ Ωk(U), ψa ∈ Ωk−1(U)}

Thus, to any morphism A : ξ → ΛqM we associate the complex (F ∗, d) of sheaves,

which is a subcomplex of the de Rham complex (ΩM , d) considered also as a complex of

sheaves. Also, we have the exact sequence of sheaves

0 → F → ΩM → G = ΩM/F → 0.

Remark 4.1. Let q = 1, and A : ξ → Ω1 be a morphism. Then the sheaf A(Γξ) is the

sheaf of sections of a subbundle (with singularities) in T ∗M . If rankA is constant, then

A determines a distribution on M , and if, in addition, this distribution is integrable,

(F∗(M), d) is the complex generated by the basic forms of the corresponding foliation,

which is widely used in the foliation theory [26], [2].

Remark 4.2. If A : ξ → Ωq is surjective, then the associated complex (F ∗(M), d) is the

de Rham complex of M .
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Hereafter we assume that A is surjective on an open everywhere dense set M \Σ, where

ι : Σ ↪→M is an embedded submanifold. Then, for each open U such that U ∩ Σ = ∅ we

have Fk(U) = Ωk(U), hence G(U) = 0. From this follows that the sheaf G is supported

on Σ.

For a closed ω ∈ Ωq+1(M), the Lie derivative D(V ) = LV ω = diV ω is a first order

differential operator TM → Λq+1M . The operator D can be included to the complex of

sheaves associated to the vector bundle morphism Iω : TM → Λq, I(V ) = iV ω:

(23) 0 → XΓ → XM
D

−→ F1 d
−→ F2 d

−→ . . . ,

where XΓ is the sheaf of infinitesimal automorphisms of ω. Evidently, all the sheaves in

(23), except for XΓ are fine. Therefore, if (23) is locally exact, it gives a fine resolution

for XΓ. However, in general, (23) fails to be locally exact.

Let ω be a closed 2-form on a smooth manifold M such that detω = 0 on a closed

submanifold i : Σ ↪→M and rankω = 2m is constant on Σ. Then ω determines the vector

bundle morphism Iω : TM → Λ1M , Iω(V ) = iV ω, which is a vector bundle isomorphism

over M \ Σ. The kernel of Iω is a vector bundle over Σ, call it ε : E → Σ. Denote by

Iω the corresponding sheaf morphism XM → Ω1
M . From Lemma proved in [28] it follows

that τ ∈ Iω(XM) if and only if τ |E = 0.

We will consider the symplectic structures with Martinet singularities.

Let ω be a closed 2-form on a 2n-dimensional manifold. Assume that for each point

p ∈M one can take a chart (U, ui) such that

(24) ω = u1du1 ∧ du2 + du3 ∧ du4 · · ·+ du2n−1 ∧ du2n.

Statement 9. Let (F ∗, d) be the complex of sheaves associated to the symplectic form ω

with Martinet singularities locally given by (24). Then F 1 is the subsheaf of Ω1
M consisting

of forms which vanish on the subbundle E ⊂ TM |Σ, and Fk = Ωk
M for k ≥ 2.

Statement 10. For D : XM → Ω2
M , D(V ) = LV ω, the sequence of sheaves (see (23))

(25) 0 → XΓ
i

−→ XM
D

−→ Ω2 d
−→ Ω3 d

−→ . . .

is a fine resolution for the sheaf XΓ.

Corollary 5. For ω with Martinet singularities locally given by (24), H q(M ; XΓ) ∼=

Hq+1
DR (M), q ≥ 1, where HDR(M) is the de Rham cohomology.

Let us consider another type of Martinet singularities. Let ω be a closed 2-form on a

four-dimensional manifold, and assume that for each point p ∈ M one can take a chart
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(U, ui) such that

ω0 =du1 ∧ du2 + u3du1 ∧ du4

+ u3du2 ∧ du3 + u4du2 ∧ du4 + (u1 − (u3)2)du3 ∧ du4,
(26)

Statement 11. Let (F ∗, d) be the complex of sheaves associated to the symplectic form ω

with Martinet singularities locally given by (26). Then F 1 is the subsheaf of Ω1
M consisting

of forms vanishing on the subbundle E ⊂ TM |Σ, and Fk = Ωk
M for k ≥ 2.

Thus, in this case we also get the complex of sheaves (25). However, in this case the

complex (25) is not locally exact.
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