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A DYNAMICAL EXPLANATION OF THE FALLING 
CAT PHENOMENON* 

T. R. KANE and M. P. SCHER 

Department of Applied Mechanics, Stanford University, California 

IT is well known that falling cats usually land on their feet and, moreover, that they can 
manage to do so even if released from complete rest while upside-down. This phenomenon 
has given rise to questions of Dynamics as well as Physiology, and these have received 
attention in the literature of both fields [l-7]. In particular, numerous attempts have been 
made to discover a relatively simple mechanical system whose motion, when proceeding 
in accordance with the laws of Dynamics, possesses the salient features of the motion of 
the falling cat. The present paper constitutes such an attempt. 

The phrase “salient features of the motion” requires elaboration, for its meaning is 
crucial to the dete~ination of the extent to which a given theory can be regarded as 
successful. In order to be explicit on this point, we propose the following list of features 
(see Fig. 1): 

(I) The torso of the cat bends, but does not twist. 
(II) At the instant of release, the spine is bent forward. Subsequent to this instant, the 

spine is bent first to one side, then backward, then to the other side, and finally forward 
again, at which point the cat has turned over and the spine has the same shape as at the 
initial instant. 

(III) The backward bend that occurs during the maneuver is far less pronounced than 
the initial and terminal forward bend. 

Rademaker and Ter Braak 143 proposed a model capable of performing motions 
compatible with (I) and (II), but requiring equal backward and forward bending, and thus 
necessarily in conflict with (III). The present model accommodates all three requirements. 
Not surprisingly, this improvement can be obtained only at the expense of simplicity. 

The system to be analyzed comprises two rigid bodies, A and B, which have one com- 
mon point, 0. To discuss the manner in which .4 and B move relative to each other, we 
introduce the following (see Fig. 2) : 

A,, A,, A, mutually perpendicular rays fixed in A and emanating from point 0 
K a ray lying in the plane determined by A, and A, 

B, a ray fixed in body B 
B2 a ray ~r~nd~cular to B, and lying in the plane determined by B, and K (and not fixed in body B) 
B3 a ray perpendicular to both B, and 8, 
N a ray perpendicular to both A, and Br 

; 
the angle between Al and K 
the angle between B, and K 

I. 

k 
the angle between A, and B, 
the angle between A, and B, 

* This investigation was supported, in part, by NASA Research Grant NGR-i%020-209. 

663 



664 T. R KANE and M. P. SCXFR 

FIG. 2. Rays and angles. 

; 

i 
n 

a unit vector parallel to A, 
a unit vector parallel to Bi 
a unit vector parallel to K 
a unit vector parallel to N 

A and B represent the front and rear halves of the cat, and A, and B, reflect the 
orientation of the spine. If A, is regarded as defining the ventral direction, forward or 
backward bending then takes place whenever B, lies in the AI-A2 plane, forward bending 
occurring when the angle between B1 and A, is smaller than 90”, and backward bending 
when this angle is larger than 90”. 

We now impose a requirement intended to reflect (I), that is, to eliminate twisting. 
To this end, we introduce a reference frame Q (see Fig. 3) in which N and the bisector of 
the angle between p1 and B, are fixed, and note that %” and Q~B, the angular velocities 
of A and B in Q, can be expressed as 

and 

where u and u are scalars that can 

e~a = ual -(l;iZ)n (1) 

QwB = ub, +(?/2)n (2) 

be interpreted as “turning rates” of A and B in Q. 
Twisting is then prevented by setting 

t‘=U (3) 

Next, with (II) in mind, we stipulate that c1 and p remain constant. This means that B, 
is constrained to move on the surface of a right-circular cone of semi-vertex angle p, 
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FiG. 3. Reference frame Q. 

whose axis, K, is fixed in body A; and motions i~voiving precisely the sequence of bending 
defo~ations of the spine described in (II) can now be generated in the following simple 
way : Taking p > a, let B, revolve once in A about K or, equivalently, vary 6 monotonically 
from zero to 21~ radians. 

Finally, we let the inertial orientation of the bisector of the angle between Al and EI 
remain unaltered throughout the motion. It follows that gQ, the inertial angular velocity 
of Q, can be expressed as 

oQ = &Ma, +b,) (4) 

where 16_ is the time-derivative of an angle $ and M denotes the reciprocal of the magnitude 
of the vector at + bl . Furthermore, the term “overturning” can now be given a precise 
meaning: If J/ is chosen in such a way that $ = 0 initially, then overturning has occurred 
when + = +_n if A and B each have the same orientation in Q at these two instants. A 
motion thus conforms to (II) in all respects if 8 varies monotonically from zero to 2% 
G(/ = 0 when 8 = 0, and $ = +n when 8 = 2x. 

As regards {III), all that can be said for the moment is that the backward bend associated 
with a motion of the kind just described is less pronounced than the forward bend, provided 
CC > 0, for the former is measured by /I-- a and the Iatter by p+a. 

As will be shown later, motions that satisfy all of the above requirements proceed in 
accordance with the laws of Dynamics if A1 and B, are centroidal principal axes of inertia 
of A and E, respectively ; the inertia ellipsoids of A and B are spheroids whose axes of 
symmetry are Al and B 1 ; the two bodies are identical ; and JI satisfies the di~erential 
equation 

W V/W 
d8 = (T- l)[l- T+(f/l)(l+ T)](l -t T)) 
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where f and J denote the transverse and the axial moment of inertia of either body and 
S and Tare given by 

S = - J2(cos a sin fi -t- sin ~1 cos /I cos 0) sin /$ 

T = cos c( cos B-sin a sin [j cos 0. 

(6) 

(71 

To study overturning by reference to equation (51, one may take r,&(O) = 0 and then 
determine ~(2~~ by integrating the equation. This becomes particularly easy if a = 0, 
for one can then obtain a solution in closed form; and if $(2n) is set equal to R, this solution 
yields the relationship 

2J2(J/z)(l+cos~)~ = I-cosp+(J/r)(l+coslj) (8) 

which is, essentially, a result obtained by Rademaker and Ter Braak 141. It implies not 
only equal forward and backward bending, which conflicts with (III), but also a rather 
large amount of such bending, for with J/I = O-25, which is a realistic value,* equation (8) 
leads to a value of nearly 60” for /I_ It would appear, therefore, that zero is an unsatisfactory 
value for a. 

Given J/Z, one can proceed as follows to find pairs of values of a and p that permit 
overturning: Assign small values to a and /I, and integrate equation (5) numerically in 
the interval 0 I 8 II 27~. If tlf(2n) is not equal to rtrr, increase /3 and integrate again, 
repeating this process until either a satisfactory value of /I has been found or /I has become 
so large as to be unacceptable on physical grounds; then increase a and begin a new 
search for /X 

By performing such calculations with J/l = 0.2 and J/I = 03, one finds that over- 
turning cannot occur unless there is some backbending, that is, unless /I < a. Figure 4 
shows the result of our computations in the form of Forward Bend vs. Backbend plots 
for backbends up to 25”, which we regard as an upper limit from a physical point of view. 
These plots prove that the present theory accommodates (III). One may conclude, there- 
fore, that this theory explains the phenomenon under consideration. 

While the mechanical system which we have proposed is a rather simple one, the 
description of its motion, involving, in part, the solution of a nonlinear differential equation, 
is sufficiently complex to render visualization of the motion difficult. This difficulty can 
be overcome by drawing perspective pictures of bodies A and B for a number of instants 
during the motion. Representing A and B each as a right-circular cylinder, and indicating 
by means of two small crosses on each cylinder the points where one may imagine the legs 
of a cat to be attached to the torso, we have employed a computer-driven plotter? to create 
such pictures. For J/Z = 0.25, forward bending of 116”, and backbending of 25”. these 
values being estimates based on Fig. 1, the results appear as shown in Fig. 5. In Fig. 6, the 
same drawings have been superimposed on the photographs shown in Fig. I. 

We now return to the task deferred earlier, that of deriving equations (5)--(7) from a 
dynamical principle. To this end, we first define 0): and wf as 

Wf = iOA.aj, a; = d . b. t (9) 

* To determine .?/I, measurements were performed. with the assistance of Dr. James Robinson of the NASA 
Ames Research Center, on fourteen segments of a dead cat. 

7 We gratefully acknowledge the aid of Mr. Mark Nelson and of the Computation Center of Stanford 
University in writing the plotting program. 



FIG. 1. Falling cat (Ralph Crane-Life magazine). 
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where r.& and wft denote the inertial angular v&cities of A and B. The fact that the angular 
momentum of the system relative to the mass center of the system must be equal to zero 
at all times (because it is initially equal to zero by hypothesis) can then be expressed as 

Ju&‘a, + Iw$az + lo:a3 f J(t$b, -I- i&b2 + fotb, = 0 (10) 

and scalar muitip~icatio~ of this equation with a, + b, yields 

(J/l)(w:+o~)(l+T*,)+w:T,,~O:rllJ1+0~11;2+O~T~3 = 0 (11) 

where ~j is defined as 
qj= ai.bj. (12) 

Next, we seek to express CI$ and CO: as functions of 01, (I, 0, 4, and J/. 
Noting that+ 

aA = oQ+%aA = ~~(a~ +b,)+wa, -(l;iZ)n 

and 
(154) 

C# = oQ-t-Qe.? = $M(a, +b,)+ub, +(j/2)n 

(13) 

(14) 

f2,3,4 

we find by substitution into equations (9) and with the aid of (I 2) that 

0: = ~~(1~~~~)~~ 

~0: = ~~~~, -($/Z)n. a2 

co; = $MT,, -($/2)n. a3 

CO’: = ~~(I~T,~)+u 

co; = t+hkfT,, +(y/Z)n . b, 

co; = ANTE 3 + ($y’2)n . b,. 

The unit vector n (see Fig. 2) can be expressed as 

n = a, x b,/sin y 

and it follows that 

(1% 

(16) 

(17) 

(18) 

(19) 

(W 

(21) 

n.a, = -a3.b,/siny = -T3,/siny (22) 

n.a3 = Tzl/sinl: (23) 

n.b, = T,,/siny (24) 

n . b3 = - T&m y. (25) 

Of the nine quantities Tj$ only three are required in the sequel. By reference to 
equation (12) and Fig. 2, these can be expressed as 

T,, = cosacosj3--sinasinpcost? (26) 

T,, = -cosacos~-s~~~cos~~os~ (27) 

T13 = sinasin8. (28) 
* Numbers beneath equal signs are intended to direct attention to corresponding equations. 
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An expression of 9, suitable for later use, can now be constructed by noting that 

cosy = a1 .b, = If’,, 

02) 

so that differentiation with respect to time yields 

or 

_i = - dT, 3 sin /l/sin y (29) 

The quantity u that appears in equations (15) and (18) can be expressed as 

u = 8T,, sin b/(1 - Tf,). (30) 

This is shown as follows : bB, the angular velocity of B in a reference frame rigidly attached 
to A, is given both by 

and by 

‘6P = QOB-QWA = fn+u(bl-al) 

(GL3) 

+-&I = $$ + J’& 

(31) 

(32) 

where P designates a reference frame in which 3, and K are fixed. Furthermore, the 
definition of 8 is such that 

%eP = ok. 

And ‘oB must be parallel to bl , so that 

‘~8 = sbl 

where s is some scalar. Hence 

%eB = dk+sb,. 

(32) 

(33) 

Equating the right-hand members of equations (31) and (33), dot-multiplying the resulting 
equation with b,, and solving for u, one thus finds that 

jn.b2-dk.b, u = ---- ____ 
al .b2 

and use of equations (24), (29) and (12), together with the relationship k . b2 = -sin /S, 
then leads to equation (30). 


