
which contradicts the exponential character of the increasing function H(s). The theorem 
is proved. 

The author profoundly thanks E. G. Poznyak for posing the problem and constant interest 
in the work. 
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CURVATURE OF A DISTRIBUTION 

A. F. Solov'ev 

We introduce the concept of curvature of a distribution on a Riemannian manifold.* 
Some special properties of the curvature of the horizontal distribution of a Riemannian sub- 
mersion, a horizontal distribution on the tangent bundle, provided with a Sasaki metric, 

and left-invariant distributions on a Lie group with invariant Riemannian metric are ob- 
tained. 

i. Curvature of a Distribution 

We consider a Riemannian manifold M with metric tensor <,> and Levi--Civita connection 
V. For any differentiable distribution d without singularities on M, we denote by A • its 

orthogonal complement, and by H and Hi the orthogonal projectors onto A and A• respectively. 
Let ~ (i~/) be the set of differentiable vector fields on M. All differentiable objects con- 
sidered are assumed to be of class C ~. 

By the induced connection of the distribution A is meant the linear connection V yy : 
HVxH]r@H•177 and its second fundamental form [i, 2] is the tensor field h : V- V. 
Let h + and h- be the symmetric and skew-symmetric parts of the field h, respectively. 

Proposition i.i [2]. The distribution A on the Riemannian manifold M is completely geo- 
desic (respectively involutive) , if and only if h + (HX, flY) = 0 (respectively, h- (HX, HY) = 
0) for any X,Y~ ~ (]~[). 

A diffeomorphism f: M-+. M* of Riemannian manifolds is called a A-isometry [i, 2], 
where A is some distribution on M, if <f,X,/,Y>* o f = <X, Y> for any vector fields X~ Y~_~_ A 
and /. (A• (/,A)• We set W, = f,W for any W~ ~ (M). 

LEMMA 1.2 [i]. If /: M-~M* isa A-isometry, T and T* are the torsion tensors of the 
induced connections V and V* of the distributions A and f.A respectively, then 

{< x~Y, Z,>* - -  (1/2) <X, ,  T* (Y,,  Z,)>*} o ] = (VxY, Z> - -  (1/2) <X, T (Y, Z)> 

f o r  any v e c t o r  f i e l d s  Y, Z ~  A a n d X  on M. 

Hence on a Riemannian manifold M with a distribution A given on it, we define a new 
linear connection D, by setting 

<DxHY, Z> : (VxHY ,  HZ> -- (t/2) <X, T (HY, HZ)> 

and DxH• arbitrarily for any X, Y, Z ~ ~ (M). If K is a curvature tensor of this connec- 

tion, then K----K (,)o H will be called the curvature tensor of the distribution A. By Lemma 
1.2, for any given A_-isometry f, the curvature tensors of the distributions s and ~.A cor- 
respond. Let T and R be the torsion and curvature tensors of the connection V. Since 

*Its connection with the familiar concept of curvature of nonholonomic manifolds is indi- 
cated at the end of the present paper. 
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T (X, Y) = - - H :  [X, Y] = - -2h -  (X, Y), X, Y ~  A, ( 1 . 1 )  

by definition one has 

<K (X, Y) Z, W> = <P (X, Y) Z, W> --  (1/2) <T (X, Y), 
T (Z, W))  ( 1 . 2 )  

for any X, Y, Z. W ~ A and hence for such vector fields we have 

<K (X, Y) Z, W)  = <B (X, Y) Z, W)  - -  2 <h- (X, r ) ,  

h- (Z, W)> + <h (X, W), h (Y, Z)> -- <h (Y, W), h (X, Z)>, (1.3) 

where R is the curvature tensor of the Riemannian manifold. (1.3) completely determines the 
value of K (HX, HY)HZ, since A is parallel with respect to D, and consequently, K (X, Y)HZ 
A for any X, Y, Z~ ~ (M). It can be considered as an analog of the Gauss equation of a sub- 

manifold. 

We consider at a point p ~ ]~f the two-dimensional plane x ~ g CAp. The quantity 
K~v (K (x, g) g,x'~ l]x/~ g1172, where llx~ g][2 _ []x]12][y][2- <x, g)~, is independent of the 
choice of basis {x, y} of this area element. We call it the sectional curvature of the dis- 
tribution A at the point p. The sectional curvature of a two-dimensional distribution will 

be called its Gaussian curvature. The sum kx---~,Kx% is independent of the choice of tangent 

vectors e a, which together with x form an orthogonal basis of the subspace Ap~ Mp. We call 

k x the Ricci curvature of the distribution 5 at the point p. Analogously, the number S = 

~ikei is independent of the choice of orthogonal basis {e i} of the subspace &p; we call S 

the scalar curvature of the distribution A at the point p. By definition the sectional, 
Ricci, and scalar curvatures of the distribution A are invariant with respect to any 5- 
isome try. 

For the geometric interpretation of the curvature of a distribution, we consider its 
sectional torsion, defined in [i] by txv --II T (x, y)[[211x/~ g[[-2, x,~ g ~_ A~, whereT is the 
torsion tensor of the connection V. Let U be the domain of definition of the exponential 
map exp Ip of this connection. The submanifold 6 (p) ~ exp (U ~ Ap) is called the osculating 
geodesic surface [I] of the distribution A at the point p (in [I] the formulation of the 
definition of this surface contains a misprint). One should note that DxY- VxY for any 
X, Y ~-A. Hence in the definitions of sectional torsion and osculating geodesic surface 
of the distribution A one can replace the connection V by D. 

THEOREM 1.3. Let K and t be the sectional curvature and torsion of the distribution h 
on a Riemannian manifold, and K0) be the sectional curvature of the osculating geodesic sur- 

face 6 (p) of this distribution. Then for any element of area x ~ y ~ Ap 

FO) K ~  = ~.~y + (3 /4) t~  U. 

Considering the torsion in a one-dimensional direction and the scalar torsion of the 
distribution, one can give the analogous interpretation as the Ricci curvature and scalar 

curvature. 

Proof. Let h and h be the second fundamental forms of the surface ~(p) and the dis- 

tribution ~. It is shown in [I] that h (x, g) = h + (x, g) for any x, g ~ Ap. Hence, as follows 

from the Gauss equation of the submanifold 6(p) (see, e.g., [3]), 

K (~)~v = R~u + {<h + (x, x), h + (V, V)> - -  tl h § (x, y)Iff}ll x / \  V iI-L 

where x/~ y C~ Ap and Rxy is the sectional curvature of the Riemannian manifold. On the 

other hand, by (1.3), 

K~y:B~v+{21th-(x,g)il~:-<h(x, x), h(g,g)>--<h(x,v), h(g,x)>} I I x / ~ , g l ] - L  ( 1 . 4 )  

1((') , K ~ (3/4) t~.:j. The theorem x / \  g C Ap. Consequently, Kxy --~ ~xy t 3 ][ h- (x, g,) [I S I[ x / \  y ]]-~ : x,j 
is proved. 

If A is completely geodesic, then K O)xy -R~ and hence 

K:,y = B~y -I (3/4) t~y, x / ~ g C  A v. ( 1 . 5 )  
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Let .~y~(~) be the sectional curvature of the distribution A, defined in the usual way in 

terms of the curvature tensor R of the induced connection V. Then K (2) K 0) ~ (I/~)t~, x A ~ y  x y  , 

ffC A. (see [i]), and consequently, the sectional curvature K of the distribution 5 is con- 

nected with its sectional curvatures of the first and second kinds K(D and If (2) [i] by the 

relation 

2K(2) ~z(1) 

2. Horizontal Distribution of a Riemannian Submersion 

Let M and B be Riemannian manifolds. A differentiable surjective map ~: Jgf-+/3 is 

called a Riemannian submersion [4, 5], if ~ has maximal rank and ~, I(kern~)• is a linear 
isometry. The involutive distribution on M, whose maximal integral manifolds are the fibers 
~-i (b), b ~ B, is called the vertical, and its orthogonal complement the horizontal distribu- 
tions [4] of the Riemannian submersion. We denote these distributions by V(M) and H(M), 

and the orthogonal projectors onto V(M) and H(M) by V and H, respectively. Let (,) and <, >* 
be the Riemannian metrics on M and B, and V and V r be their Levi--Civita connections. A vec- 

tor field X on M is called basic [4], if it is horizontal and T-connected with some vector 
field X, on B. 

LEMMA 2.1 [4]. If X and Y are basic vector fields, then 

! )  <X, Y> = ( X , ,  Y , ) *  o ~; 

2) H[X, Y] i s  b a s i c  and a ,  {H [X, Y]} = [X, ,  Y,] ;  

3) H V x Y  i s  b a s i c  and a ,  {HVxY} = Vx~. , .  

Assertion 3) can be formulated as follows: 

3') V-xY is basic and ~r == V~Y., where V is the induced connection of the horizontal 

distr ibut ion. 

It is shown in [4] that for any vector fields X, Y ~ H (7~f) 

VVxY = (t/2) V [X, Y]. ( 2 .1 )  

Hence ,  in  p a r t i c u l a r ,  t h e  h o r i z o n t a l  d i s t r i b u t i o n  H(M) i s  c o m p l e t e l y  g e o d e s i c  ( s ee  [ 2 ] ) .  

THEOREM 2 . 2 .  L e t  K be  t h e  c u r v a t u r e  t e n s o r  of  t h e  h o r i z o n t a l  d i s t r i b u t i o n  o f  t h e  R ieman-  
nian submersion a: M-+ B and R* be the curvature tensor of the Riemannian manifold B. Then 
for any basic vector fields X, Y, Z, the vector field K(X, Y)Z is basic and 

n ,  K (X, Y)  Z = ~* (X , ,  Y , )  Z , .  

Proof. We consider the value ~ (X, Y) Z = VxVyZ -- VyVx Z ---Vtx ' y] Z of the curvature 
tensor of the induced connection V- of the distribution H(M) for basic X, Y, Z. According 

to Lemma 2.1, the vector fields VxVyZ , V~[x,r]%, and consequently, i~ (X, Y)Z-~ Vv[~'.Y]% are 
b a s i c ,  w h i l e  a;, {P, ( X , Y )  Z ~ -  Vv[x, ylZ} -- R* (X , ,  Y , ) Z , .  Hence due t o  ( 1 . 2 )  and ( 1 . 1 ) ,  i t  
r e m a i n s  to  p r o v e  (Vv[x. ylZ, W> = -  (t/2) <V [X, Y], V[Z,  W]) f o r  any b a s i c  X, Y, Z, W. I f  Z 
i s  b a s i c ,  t h e n  a ,  [V[X,  Y], Z] = 0, IiVv~x,~elZ = HVzV [X, YI and c o n s e q u e n t l y ,  <Vv[x, ylZ, W> = 
(VzV IX, Y], W> = --<VzW, g [X, YI> = --~:/2) <V [Z W], V [X, Y])  f o r  such  X, Y, Z, W by  ( 2 . 1 )  . 
The t h e o r e m  i s  p r o v e d .  

COROLLARY 2 . 3 .  L e t  T be  t h e  t o r s i o n  t e n s o r  of  t he  i n d u c e d  c o n n e c t i o n  o f  t h e  h o r i z o n t a l  
distribution of the Riemannian submersion ~: M - - ~ B ,  R andR* be the curvature tensors of the 
Riemannian manifolds M and B respectively. Then for any basic X, Y, Z, and W, 

<R* (x . ,  y . )  z . ,  w.>*o~ = <R (x, Y) z, w> - (i/2) (T (X, Y), T (Z, W)> + 0/4) <1' (X, W), 
T(Y ,  Z)) t- (1/4) (it' (y ,  W), T(Z, X)). ( 2 . 2 )  

Proof. Since h(X, Y) =h- (X, Y) for any X,Y~H(M), from (1.3) and (i.I) we have 

( K  (X, Y) Z, W> -- <R (X, ~)  Z, W> - -  (t/2) <T (X, Y), 

T (Z, W)> + (t/4) <T (X, W), :r (y ,  Z)> + (1/4) x 
•  W), T (Z , X)>  for any X, Y, Z, W ~ H ( M ) .  

Now one should apply Theorem 2.2 and Lemma 2.1. The corollary is proved. 
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THEOREM 2.4. Let K be the sectional curvature of the horizontal distribution of the 

Riemannian submersion ~: .~f--~ B and R* be the sectional curvature of the Riemannian manifold 
B. Then for any basic X and Y, II X/\Y[I ~= 0, we have 

The proof follows from Theorem 2.2 and Lemma 2.1. 

By virtue of Theorem 2.4, under the map ~: M--~B theRicci curvatures (and scalar 

curvatures) of the horizontal distribution on M and of the Riemannian manifold B also corre- 
spond. According to the same theorem and (1.5), one has 

COROLLARY 2.5. If t is the sectional torsion of the horizontal distribution of the Rie- 
mannian submersion ~: M-+B, R and R* are the sectional curvatures of the Riemannian mani- 

folds M and B, respectively, then for any basic X and Y, I] X /\ Yl[~= 0, 

R* o~ q- (2.3) x.Y. = / / x Y  (3/4) txy. 

E q u a t i o n s  o f  t h e  form (2 .2 )  and (2 .3 )  were p r e v i o u s l y  o b t a i n e d  in  [4] and [ 5 ] .  

3. Horizontal Distribution on the Tangent Bundle 

Let M be a Riemannian manifold, TM be its Tangent bundle, and ~: Ti~--~ 7P! be the canoni- 
cal projection. We consider on M the Levi--Civita connection V* and the corresponding connec- 

tion map Jr: TTM-+TI~[ in the sense of [6]. It is linear on each fiber (T35)~ of the bundle 
TTM. The kernel of the map :7~' I(T~)~ is called the horizontal subspace* [6] of the space (TM)~. 
We denote the horizontal* distribution on TM by H(TM). Let X V and X H respectively denote 
the vertical and horizontal lifts of the field % ~,~ (M) on TM (see [6]). For a given 

Riemannian metric <, >* on M we consider on TM the Sasaki metric defined by 

<A, B> = <~,A, ~,B>*o~ + <J~A, J~'B>*o~, 

A, B ~ (TM)g, ~ ~ TM. Le t  V be i t s  L e v i - - C i v i t a  c o n n e c t i o n .  Then 

(VxvYH)~ = (t /2)(n* (~, G )  Yp)~' 

(VxHYH)~ - -  (V~ y)H (t/2) (R* ~ v - (x~, Y~) ~)~, ( 3 . 1 )  

where ~ TM, p = ~ (~) andR* is the curvature tensor for V* (see [7]). 

THEOREM 3.1. Let M be a Riemannian manifold and H(TM) be the horizontal distribution 
on the tangent bundle TM with the Sasaki metric. Then the following assertions are equiva- 
lent: i) H(TM) is parallel with respect to the Levi--Civita connection of this metric; 2) 
the induced connection of the distribution H(TM) is symmetric; 3) H(TM) is involutive; 4) M 
is locally Euclidean; 5) the distribution H(TM) has curvature tensor zero; and 6) H(TM) has 
sectional curvature zero. 

Proof. The equivalence of assertions i) and 2) for an arbitrary distribution on a Rie- 
mannian manifold is proved in [2]. The equivalence of assertions 3) and 4) is well known 
(see, e.g., [7]). Since any distribution which is parallel with respect to a symmetric con- 
nection is involutive, 3) follows from I). The implication 4) § i) is obvious due to (3.1). 
Finally, assertions 4)-6) are equivalent due to Theorems 3.2 and 3.3 below. Theorem 3.1 
is proved. 

In relation to the Riemannian metric on M and the corresponding Sasaki metric on TM, 
the canonical projection ~: TM--~M is a Riemannian submersion. The horizontal distribution 
on TM with respect to the connection V* is at the same time the horizontal distribution of 
this submersion. Hence the following theorem is a specialization of Theorem 2.2. 

THEOREM 3.2. Let R* be the curvature tensor of the Riemannian manifold M and K be the 
curvature tensor of the horizontal distribution on the tangent bundle TM, provided with the 
S a s a k i  m e t r i c .  Then {R* (X, Y) Z} ft = tf (X H, y1f) Z H f o r  any X, Y, Z ~  ~' (3I). 

An obvious consequence of Theorem 3.2 is 

THEOREM 3.3. The sectional curvature K of the horizontal distribution on the tangent 
bundle TM with Sasaki metric is the vertical lift of the sectional curvature R* of the 

*Relative to the Levi--Civita connection ~ on M. 
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Riemannian manifold M, i.e., /{\~.ox = KxIfyH for any X, Y ~.~ (M), !I X /\ YII* @ 0. 

Let T be the torsion tensor of the induced connection V of the distribution H(TM). 
Then from (3.1) we get 

V 
T (X H, v~>  ~ - (~*  (X~,, Y~) ~)~, 

~ TM, p = a (~). S i n c e  g~' (W~') : W~@), vc., ( W  v) : 0 ( s e e  [6 ] )  , and c o n s e q u e n t l y ,  <W v, WV>~ -: 
<W, W>*(~) for any W~ ~ (M), the sectional torsion of this distribution is e~ual to 

t x H g H ~  --" !l R*  (X, Y )  Z II *e II X/" \  r I[ *-~ 

f o r  any  X, Y, Z ~ ~ (M), I[ X /~ Y I[* ~= 0, w h e r e  on t h e  l e f t  s i d e  o f  t h e  e q u a t i o n  Z i s  c o n s i d e r e d  
a s  a s e c t i o n  o f  t h e  b u n d l e  TM. Hence  f r o m  ( 2 . 3 )  we h a v e  

l~*y = R ~ n r H o Z  F (3/4) 11 tl* (X, Y) Z H *~- II X A Y tl *-z 

f o r  any  X ,  Y ,  Z ~ ~ (M),  It X / \  Y II*=/= O, w h e r e  R i s  t h e  s e c t i o n a l  c u r v a t u r e  o f  t h e  S a s a k i  m e t r i c .  
T h i s  e q u a t i o n  was o b t a i n e d  p r e v i o u s l y  i n  [ 5 ] .  

4. Lef t-Invar iant Distributions 

Let G be a Lie group and 9 be its Lie algebra. To each subspace A ~ g there corre- 
sponds uniquely a left-invariant distribution on G, whose value at the identity e (~ G coin- 

cides with A. In what follows we shall identify the subspace A C g with the left-invariant 
distribution on G corresponding to it. As usual, by ad (~) we mean the linear transforma- 
tion X-+[~, X] of the Lie algebra 

LEMKA 4. I. Let G be a Lie group with left-invariant Riemannian metric <, >, A be a 

subspace of its Lie algebra 9 and {e i} be some orthonormal basis of this algebra, adapted to 
A. The sectional curvature of the left-invariant distribution A can be calculated in terms 
of the structural constants Cij~. = <[e,:, e]], e~> of the Lie algebra ~ as follows: 

: ( 1 / 2 )  '" ' - b -~=~ C,~b~ ( C ~  + C~b) + ~=~ {(t/4) (Co~ ~ C ~ )  ~ - -  (:3I~) (C,a,~)" <:,...C~,,~}, 

where n = dim g and m = dim A. 

P r o o f .  S i n c e  t h e  L e v i - - C i v i t a  c o n n e c t i o n  o f  t h e  l e f t - i n v a r i a n t  m e t r i c  c a n  be  c a l c u l a t e d  
f r o m  t h e  f o r m u l a  

< V x g ,  Z> = (1/2) {<IX, g ] ,  Z> - -  <[Y, Z], X> + <[Z, XI, Y>}, 

X, Y, Z ~  ~, one has 

2 n h (e~, e0) = ( 1 / )  ~,~=,~ !~ (C~bo~ - -  Cb~.~ < C~b) e~. ( 4 . 1 )  

for any e.~, eb.~ A and by (1.4), 

yn 
geae b ~ Reaeb ~ 'a~m+t {CaaaCgbb @ ( 3 / 4 )  (Caba)  2 - -  ( t / 4 )  (Caa b I- Caba)2} �9 

Now i t  r e m a i n s  t o  u s e  t h e  f o l l o w i n g  e x p r e s s i o n  f r o m  [8]  f o r  t h e  s e c t i o n a l  c u r v a t u r e  o f  a 
t e f t - i n v a r i a n t  m e t r i c :  

n 
Reach ~ i = 1  {(I/2) C ~  ( - -  Cab~ !- C~,~ + C~o,) - -  (t/4) (C.~i --  C~,~. + C~.b)(C.~i ~- C<,, - -  Ci~,l,) - -  C~..Cu,~,}. 

The lemma i s  p r o v e d .  

P__roposition 4.2. If X belongs to the center of the Lie algebra ~ of the Lie group G, 
then for any two-dimensional left-invariant distribution A~X on G, in relation to a left- 

inariant metric on G its Gaussian curvature is equal to zero. 

Proof. Let C, ij =:0 for some value a and any values i, j = i, ., n. Then the form- 
ula of Lemma 4.1 reduces to K%% = 0. The proposition is proved. 

It also follows from Lemma 4.1 that any two-dimensional left-invariant involutive dis- 
tribution (e~ /\ e~) has constant nonpositive Gaussian curvature (equal to (C121) 2- (C~22)2). Hence 
any connected two-dimensional Lie subgroup of a Lie group with left-invariant metric has 
zero or constant negative Gaussian curvature, depending on whether this subgroup is commuta- 
tive or not. 
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LEMMA 4.3. Let the linear transformations ad(X) and ad(Y) of the Lie algebra 9 of the 
Lie group G be skew adjoint with respect to some left-invariant metric on G. Then the sec- 

tional curvature of any left-invariant distribution A ~ X /~ Y has the property 

Sxy  = II H•  IX, YI II ~ q- (114)II H [X, Y] II =, 

II X / %  Y tl = t .  ( 4 . 2 )  

P r o o f .  I f  t h e  q u a n t i t i e s  Caij and Cti~ f o r  some v a l u e s  ~ and  b a r e  s k e w - s y m m e t r i c  in  i 
and j, then the formula of Lemma 4.1 assumes the form 

g e a e b  - -  'a=rn~-I (Cabs) 2 4- (t/4) ~. lC_l((~a6c)"  , 

which proves the lemma. 

A left-invariant metric on a connected Lie group G is also right-invariant if and only 
if ad (~) is skew adjoint for any ~ (see [8]). Hence any left-invariant distribution on 

a connected Lie group G is completely geodesic in relation to any bi-invariant metric on G, 

in fact h+(ea, eb)~(I/2)~ ..... ~l(Ce~ab-~-Cc~ba) ea according to (4.1) and Proposition i.I holds. The 

sectional curvature of any left-invariant distribution A on a connected Lie group with bi- 
invariant metric can be calculated from (4.2). Since here Kxy ~ 0 for any linearly inde- 
pendent X, Y~ A, one has 

THEOREM 4.4. A left-invariant distribution on a connected Lie group with bi-invariant 
metric has curvature zero (sectional, Ricci, or scalar) if and only if it is a commutative 
Lie subalgebra of this Lie group. 

THEOREM 4.5. Let G and G* be connected Lie groups with bi-invariant metrics <,> and 

<,>* , respectively, and f: G-+G* be an isomorphism of Lie groups. If there exists on G 
a left-invariant distribution A such that </.X, f.y>*of : <X, Y> for any X, Y ~_ A, [h, A] : A• 

and If.A, i. A] : (I.A) 'A, then f is an isometry. 

Proof. Let 6 and ~* be the Lie algebras of the groups G and G*. Since f is an iso- 

morphism, ],Z~_ ~* for any Z~. By hypothesis f is a s since f,(h~) -- /.[h, Ai = 
[/,A,/.A] -- (].A) • Hence the sectional curvatures K and K* of the distributions A and f.A 

correspond, i.e., Kxr : Ks,xfjo ] for any X,Y~_ A, iiXAYKI=/=0. Then from Lemma 4.3 we have 
ll[X,Y]ll=ll[f.X,f.Y]ll*o/ for any X,Y~ A. Since [A,A] : A• for any Z~ A • one can find 
X,Y~_ A such that [X, Y] : Z. Consequently, the s f is also a AA-isometry, and 
the theorem is proved. 

COROLLARY 4.6, Let A be a left-invariant distribution on the connected Lie group G, 
such that [A,A] : A -L in relation to two certain biinvariant metrics on G. Then these 

metrics coincide if their restrictions to A coincide. 

To prove this it suffices to set G* = G in Theorem 4.5 and to take as f the identity 

transformation of the Lie group. 

Proposition 4.7. The curvature tensor of a left-invariant distribution A on a con- 
nected Lie group with biinvariant metric is equal to 

K (x ,  Y) z = (1/4) H [X, H [r ,  Zl] -I- ({I~) H Ir ,  
H [ Z ,  XII " (I/2) H [ Z , H [ X , Y ] ]  ~ - H [ Z ,  HA [ X , Y ] ] ,  X , Y , Z ~  h.  

Proof. First of all we note that the curvature tensor of a bi-invariant metric is 
equal to /? (X, Y) Z : -- (I/4)[[X, Y], Z] (see [8]). Further, since A is completely geodesic, 
by (I.3) and (i.i), <K(X, Y) Z, W>=--(J/4)<[[X, Y], Z], W> -L (I/4) <Hi[y, Z], HI[X, 
W]> ~ (I/4) <Hi [Z, X], H• [Y, W]> -- (I/2) <HI[X, Y], H i [Z, W]> for any X, Y, Z, W ~_ A. Since 

the 3-form <[X, Y], Z> is antisymmetric in Y and Z, one has <H A[X, Y], H i[Z, W]>=<[H i[~f,Y], 
Z], W>. Moreover, H• (X, Y) HZ = 0. Consequently, for any X, Y, Z ~ A 

K (X, Y) Z = --(1/4)  H [IX, YI, Z] q- (1/4) H [If  A [Y, Zl, X] + 
(]/4) H [H• [Z, X], Y] - -  (t/2) H [HA IX, Y], Zl. 

To complete the proof one should apply the Jacobi identity. 

5. Remarks 

(I) Suppose that on the manifold M with Riemannian metric i, > there is given a dis- 
tribution A. With respect to the trivial A-isometry id: (Jl/, <,>)--~ (.4~/, <,>*)the curvature of 
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A is invariant. Correspondingly, the curvature of the horizontal distribution of the Rie- 

mannian submersion ~:M-+B is unchanged if the given projected metric on M is deformed on 
the fibers of this submersion. In particular, the properties of the curvature noted in Sec. 

3 holds not only for the Sasaki metric but also for any Riemannian metric on the tangent 
bundle obtained by altering the first on its fibers. 

(2) Let A ~ be an involutive distribution of least dimension containing the given dis- 
tribution A on M. It is natural to call A a distribution of constant curvature, if its sec- 

tional curvature Kxy at each point p~M is independent of the area element x~yC Ap and 
is constant along each maximal integral manifold of the distribution A ~ By Theorem 2.4, 

the horizontal distribution of a Riemannian submersion ~: M--~ has constant curvature if 
and only if B is a manifold of (the same) constant curvature. In particular, as Theorem 

3.3 shows, there is connected with any manifold M of constant curvature a (horizontal) dis- 
tribution H(TM) of the same constant curvature on its tangent bundle TM, provided with a 

Sasaki metric or another suitable (see Remark (i)) Riemmanian metric. 

(3) Let G be a connected Lie group with biinvariant metric and N be a closed Lie sub- 

group of it. The normal Riemannian metric on the homogeneous space G/N is defined by the 
requirement that the canonical projection ~: G-+G/N be a Riemannian submersion (see [4, 5]). 

Let A be the horizontal distribution of this submersion. Using the formula of Proposition 
4.7 for calculating the curvature tensor of the left-invariant distribution A on G, with the 
help of Theorem 2.2 we get an expression (familiar from [3, 5]) for the curvature tensor of 
the Riemannian homogeneous space G/N. According to Theorem 4.4 this space is flat (Ricci 

flat or of scalar curvature zero) if and only if, A is a commutative Lie subalgebra of the 
Lie group G. Now if [A, A] coincides with the Lie algebra of the Lie subgroup N, then by 
Corollary 4.6, there exists on G a unique biinvariant metric, which induces on G/N the given 
normal metric and in relation to which A • [A, A]. In this case the curvature tensor of the 
distribution A (and of the space G/N) is equal to K (X, Y) Z = --[[X, F],Z], X, Y, Z~ A. 

(4) The concept of curvature tensor of a framed nonholonomic manifold was introduced 

by Schouten and van Kampen [9]. This tensor (the Schouten tensor in the terminology of 
Vagner [I0]) depends only on the metric in the given nonholonomic manifold and on its fram- 
ing, but is independent of the metric of the ambient space. If the distribution A is com- 
pletely geodesic, then its curvature tensor in the sense of the present paper (with all 
three arguments belonging to A) is the Schouten tensor. V. V. Vagner, generalizing the con- 
cept of intrinsic geometry of a nonholonomic manifold introduced in [9], constructed in [i0] 
a new curvature tensor, with the help of the Schouten tensor, and the new tensor is essen- 
tially different from the one considered here. The total and Gaussian curvatures of a two- 
dimensional nonholonomic surface in Euclidean space E n, considered by Sintsov [II] for n = 3 

and by Glova [12] for n = 4, are the sectional curvatures of the first and second kinds K (I) 
and K(2) , respectively (see Sec. I). They are connected with the Gaussian curvature K in 

our sense by (1.6). In the integrable case these three curvatures coincide. Nonholonomic 
manifolds were also studied from the point of view of their curvstures by Vranceanu [13], 
Mihailescu [14], and Slukhaev [15]. 
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PROBABILITIES OF LARGE DEVIATIONS IN THE CASE OF STABLE LIMIT 

DISTRIBUTIONS 

N. N. Amosova 

Let XI, X2, . be a sequence of independent identically distributed random vari- 
ables with common distribution function F(x). Let the distribution law F(x) belong to the 
domain of attraction of a stable law with exponent ~, 0 < ~ < 2. As is known, one then has 

1 - -  F ( x )  = ~ 

F ( - - x ) - -  c~+o(t) h(x), x--> q- oc, 
x o~ 

where h(x) is a slowly varying function, and ci and c2 are certain constants, c~ ~ O, c2 ~ 0 
and 01~-02~0. Let us assume in addition that EXI--0 if ~ > i, and we setSn~i=iX i . 

We consider the case when c I = 0 (so that c 2 > 0 automatically). Let f (--x)~ x -~ h (x), 

and 

t - - F ( x ) :  ~,(x) h(x) ( x ~ o ) ,  (1) 
x o5 

where the function s(x) as x § +~ satisfies the following conditions: 

a) ~ (x)-+0, ~(~;)) :O(i) for any y > 0, 

b) for any function @(x) such that @(x) § 0, 

~(~.(J + ~(x))) _ ~ + o( t ) .  
(~) 

One should note that it follows in particular from a) that for any function c (x) one can 
find a constant A~ > 0 such that 

(x) ~ exp (- -A~In x), x > x~. 

L e t  h(y) du = /~(x) ,  x ~ :c o . The f o l l o w i n g  t h e o r e m  h o l d s .  
x .  Y 

THEOREM. I f  (1) h o l d s  w i t h  some f u n c t i o n  a ( x ) ,  s a t i s f y i n g  a) and b ) ,  and  h (x )  i s  a 
s l o w l y  v a r y i n g  f u n c t i o n ,  t h e n  one h a s *  

*Here and below, the limits are indicated as n + ~, if nothing is said to the contrary. 
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