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Preface

As an undergraduate, I was offered a reading course on the representation theory of
finite groups. When I learned this basically meant studying homomorphisms from
groups into matrices, I was not impressed. In its place I opted for a reading course
on the much more glamorous sounding topic of multilinear algebra. Ironically, when
I finally took a course on representation theory from B. Kostant in graduate school, I
was immediately captivated.

In broad terms, representation theory is simply the study of symmetry. In prac-
tice, the theory often begins by classifying all the ways in which a group acts on
vector spaces and then moves into questions of decomposition, unitarity, geometric
realizations, and special structures. In general, each of these problems is extremely
difficult. However in the case of compact Lie groups, answers to most of these ques-
tions are well understood. As a result, the theory of compact Lie groups is used
extensively as a stepping stone in the study of noncompact Lie groups.

Regarding prerequisites for this text, the reader must first be familiar with the
definition of a group and basic topology. Secondly, elementary knowledge of differ-
ential geometry is assumed. Students lacking a formal course in manifold theory will
be able to follow most of this book if they are willing to take a few facts on faith.
This mostly consists of accepting the existence of an invariant integral in §1.4.1. In a
bit more detail, the notion of a submanifold is used in §1.1.3, the theory of covering
spaces is used in §1.2, §1.3, §4.2.3, and §7.3.6, integral curves are used in §4.1.2,
and Frobenius’ theorem on integral submanifolds is used in the proof of Theorem
4.14. A third prerequisite is elementary functional analysis. Again, students lacking
formal course work in this area can follow most of the text if they are willing to
assume a few facts. In particular, the Spectral Theorem for normal bounded opera-
tors is used in the proof of Theorem 3.12, vector-valued integration is introduced in
§3.2.2, and the Spectral Theorem for compact self-adjoint operators is used in the
proof of Lemma 3.13.

The text assumes no prior knowledge of Lie groups or Lie algebras and so all
the necessary theory is developed here. Students already familiar with Lie groups
can quickly skim most of Chapters 1 and 4. Similarly, students familiar with Lie
algebras can quickly skim most of Chapter 6.



xii Preface

The book is organized as follows. Chapter 1 lays out the basic definitions, exam-
ples, and theory of compact Lie groups. Though the construction of the spin groups
in §1.3 is very important to later representation theory and mathematical physics,
this material can be easily omitted on a first reading. Doing so allows for a more
rapid transition to the harmonic analysis in Chapter 3. A similar remark holds for the
construction of the spin representations in §2.1.2.4. Chapter 2 introduces the concept
of a finite-dimensional representation. Examples, Schur’s Lemma, unitarity, and the
canonical decomposition are developed here. Chapter 3 begins with matrix coeffi-
cients and character theory. It culminates in the celebrated Peter–Weyl Theorem and
its corresponding Fourier theory.

Up through Chapter 3, the notion of a Lie algebra is unnecessary. In order to
progress further, Chapter 4 takes up their study. Since this book works with compact
Lie groups, it suffices to consider linear Lie groups which allows for a fair amount
of differential geometry to be bypassed. Chapter 5 examines maximal tori and Car-
tan subalgebras. The Maximal Torus Theorem, Dynkin’s Formula, the Commutator
Theorem, and basic structural results are given. Chapter 6 introduces weights, roots,
the Cartan involution, the Killing form, the standard sl(2,C), various lattices, and
the Weyl group. Chapter 7 uses all this technology to prove the Weyl Integration
Formula, the Weyl Character Formula, the Highest Weight Theorem, and the Borel–
Weil Theorem.

Since this work is intended as a textbook, most references are given only in the
bibliography. The interested reader may consult [61] or [34] for brief historical out-
lines of the theory. With that said, there are a number of resources that had a powerful
impact on this work and to which I am greatly indebted. First, the excellent lectures
of B. Kostant and D. Vogan shaped my view of the subject. Notes from those lec-
tures were used extensively in certain sections of this text. Second, any book written
by A. Knapp on Lie theory is a tremendous asset to all students in the field. In par-
ticular, [61] was an extremely valuable resource. Third, although many other works
deserve recommendation, there are four outstanding texts that were especially in-
fluential: [34] by Duistermaat and Kolk, [72] by Rossmann, [70] by Onishchik and
Vinberg, and [52] by Hoffmann and Morris. Many thanks also go to C. Conley who
took up the onerous burden of reading certain parts of the text and making helpful
suggestions. Finally, the author is grateful to the Baylor Sabbatical Committee for its
support during parts of the preparation of this text.

Mark Sepanski
March 2006
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