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Compact Lie Groups

1.1 Basic Notions

1.1.1 Manifolds

Lie theory is the study of symmetry springing from the intersection of algebra, anal-
ysis, and geometry. Less poetically, Lie groups are simultaneously groups and man-
ifolds. In this section, we recall the definition of a manifold (see [8] or [88] for more
detail). Let n ∈ N.

Definition 1.1. An n-dimensional topological manifold is a second countable (i.e.,
possessing a countable basis for the topology) Hausdorff topological space M that is
locally homeomorphic to an open subset of Rn .

This means that for all m ∈ M there exists a homeomorphism ϕ : U → V
for some open neighborhood U of m and an open neighborhood V of Rn . Such a
homeomorphism ϕ is called a chart.

Definition 1.2. An n-dimensional smooth manifold is a topological manifold M
along with a collection of charts, {ϕα : Uα → Vα}, called an atlas, so that
(1) M = ∪αUα and
(2) For all α, β with Uα ∩ Uβ �= ∅, the transition map ϕα,β = ϕβ ◦ ϕ−1

α :
ϕα(Uα ∩Uβ)→ ϕβ(Uα ∩Uβ) is a smooth map on Rn .

It is an elementary fact that each atlas can be completed to a unique maximal
atlas containing the original. By common convention, a manifold’s atlas will always
be extended to this completion.

Besides Rn , common examples of manifolds include the n-sphere,

Sn = {x ∈ Rn+1 | ‖x‖ = 1},
where ‖·‖ denotes the standard Euclidean norm, and the n-torus,

T n = S1 × S1 × · · · × S1︸ ︷︷ ︸
n copies

.
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Another important manifold is real projective space, P(Rn), which is the n-
dimensional compact manifold of all lines in Rn+1. It may be alternately realized as
Rn+1\{0} modulo the equivalence relation x ∼ λx for x ∈ Rn+1\{0} and λ ∈ R\{0},
or as Sn modulo the equivalence relation x ∼ ±x for x ∈ Sn . More generally, the
Grassmannian, Grk(Rn), consists of all k-planes in Rn . It is a compact manifold of
dimension k(n − k) and reduces to P(Rn−1) when k = 1.

Write Mn,m(F) for the set of n×m matrices over F where F is either R or C. By
looking at each coordinate, Mn,m(R) may be identified with Rnm and Mn,m(C) with
R2nm . Since the determinant is continuous on Mn,n(F), we see det−1{0} is a closed
subset. Thus the general linear group

GL(n,F) = {g ∈ Mn,n(F) | g is invertible}(1.3)

is an open subset of Mn,n(F) and therefore a manifold. In a similar spirit, for any
finite-dimensional vector space V over F, we write GL(V ) for the set of invertible
linear transformations on V .

1.1.2 Lie Groups

Definition 1.4. A Lie group G is a group and a manifold so that
(1) the multiplication map µ : G × G → G given by µ(g, g′) = gg′ is smooth and
(2) the inverse map ι : G → G by ι(g) = g−1 is smooth.

A trivial example of a Lie group is furnished by Rn with its additive group struc-
ture. A slightly fancier example of a Lie group is given by S1. In this case, the group
structure is inherited from multiplication in C\{0} via the identification

S1 ∼= {z ∈ C | |z| = 1}.

However, the most interesting example of a Lie group so far is GL(n,F). To
verify GL(n,F) is a Lie group, first observe that multiplication is smooth since it
is a polynomial map in the coordinates. Checking that the inverse map is smooth
requires the standard linear algebra formula g−1 = adj(g)/ det g, where the adj(g) is
the transpose of the matrix of cofactors. In particular, the coordinates of adj(g) are
polynomial functions in the coordinates of g and det g is a nonvanishing polynomial
on GL(n,F) so the inverse is a smooth map.

Writing down further examples of Lie groups requires a bit more machinery.
In fact, most of our future examples of Lie groups arise naturally as subgroups of
GL(n,F). To this end, we next develop the notion of a Lie subgroup.

1.1.3 Lie Subgroups and Homomorphisms

Recall that an (immersed) submanifold N of M is the image of a manifold N ′ under
an injective immersion ϕ : N ′ → M (i.e., a one-to-one smooth map whose differ-
ential has full rank at each point of N ′) together with the manifold structure on N



1.1 Basic Notions 3

making ϕ : N ′ → N a diffeomorphism. It is a familiar fact from differential ge-
ometry that the resulting topology on N may not coincide with the relative topology
on N as a subset of M . A submanifold N whose topology agrees with the relative
topology is called a regular (or imbedded) submanifold.

Defining the notion of a Lie subgroup is very similar. Essentially the word ho-
momorphism needs to be thrown in.

Definition 1.5. A Lie subgroup H of a Lie group G is the image in G of a Lie group
H ′ under an injective immersive homomorphism ϕ : H ′ → G together with the Lie
group structure on H making ϕ : H ′ → H a diffeomorphism.

The map ϕ in the above definition is required to be smooth. However, we will see
in Exercise 4.13 that it actually suffices to verify that ϕ is continuous.

As with manifolds, a Lie subgroup is not required to be a regular submanifold.
A typical example of this phenomenon is constructed by wrapping a line around the
torus at an irrational angle (Exercise 1.5). However, regular Lie subgroups play a
special role and there happens to be a remarkably simple criterion for determining
when Lie subgroups are regular.

Theorem 1.6. Let G be a Lie group and H ⊆ G a subgroup (with no manifold
assumption). Then H is a regular Lie subgroup if and only if H is closed.

The proof of this theorem requires a fair amount of effort. Although some of the
necessary machinery is developed in §4.1.2, the proof lies almost entirely within the
purview of a course on differential geometry. For the sake of clarity of exposition
and since the result is only used to efficiently construct examples of Lie groups in
§1.1.4 and §1.3.2, the proof of this theorem is relegated to Exercise 4.28. While we
are busy putting off work, we record another useful theorem whose proof, for similar
reasons, can also be left to a course on differential geometry (e.g., [8] or [88]). We
note, however, that a proof of this result follows almost immediately once Theorem
4.6 is established.

Theorem 1.7. Let H be a closed subgroup of a Lie group G. Then there is a unique
manifold structure on the quotient space G/H so the projection map π : G → G/H
is smooth, and so there exist local smooth sections of G/H into G.

Pressing on, an immediate corollary of Theorem 1.6 provides an extremely useful
method of constructing new Lie groups. The corollary requires the well-known fact
that when f : H → M is a smooth map of manifolds with f (H) ⊆ N , N a regular
submanifold of M , then f : H → N is also a smooth map (see [8] or [88]).

Corollary 1.8. A closed subgroup of a Lie group is a Lie group in its own right with
respect to the relative topology.

Another common method of constructing Lie groups depends on the Rank The-
orem from differential geometry.
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Definition 1.9. A homomorphism of Lie groups is a smooth homomorphism between
two Lie groups.

Theorem 1.10. If G and G ′ are Lie groups and ϕ : G → G ′ is a homomorphism of
Lie groups, then ϕ has constant rank and kerϕ is a (closed) regular Lie subgroup of
G of dimension dim G − rkϕ where rkϕ is the rank of the differential of ϕ.

Proof. It is well known (see [8]) that if a smooth map ϕ has constant rank, then
ϕ−1{e} is a closed regular submanifold of G of dimension dim G−rkϕ. Since kerϕ is
a subgroup, it suffices to show that ϕ has constant rank. Write lg for left translation by
g. Because ϕ is a homomorphism, ϕ◦lg = lϕ(g)◦ϕ, and since lg is a diffeomorphism,
the rank result follows by taking differentials. �

1.1.4 Compact Classical Lie Groups

With the help of Corollary 1.8, it is easy to write down new Lie groups. The first is
the special linear group

SL(n,F) = {g ∈ GL(n,F) | det g = 1}.

As SL(n,F) is a closed subgroup of GL(n,F), it follows that it is a Lie group.
Using similar techniques, we next write down four infinite families of compact

Lie groups collectively known as the classical compact Lie groups: SO(2n + 1),
SO(2n), SU (n), and Sp(n).

1.1.4.1 SO(n) The orthogonal group is defined as

O(n) = {g ∈ GL(n,R) | gt g = I },

where gt denotes the transpose of g. The orthogonal group is a closed subgroup of
GL(n,R), so Corollary 1.8 implies that O(n) is a Lie group. Since each column of
an orthogonal matrix is a unit vector, we see that topologically O(n) may be thought
of as a closed subset of Sn−1 × Sn−1 × · · · × Sn−1 ⊆ Rn2

(n copies). In particular,
O(n) is a compact Lie group.

The special orthogonal group (or rotation group) is defined as

SO(n) = {g ∈ O(n) | det g = 1}.

This is a closed subgroup of O(n), and so SO(n) is also a compact Lie group.
Although not obvious at the moment, the behavior of SO(n) depends heavily on

the parity of n. This will become pronounced starting in §6.1.4. For this reason, the
special orthogonal groups are considered to embody two separate infinite families:
SO(2n + 1) and SO(2n).
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1.1.4.2 SU (n) The unitary group is defined as

U (n) = {g ∈ GL(n,C) | g∗g = I },

where g∗ denotes the complex conjugate transpose of g. The unitary group is a closed
subgroup of GL(n,C), and so U (n) is a Lie group. As each column of a unitary
matrix is a unit vector, we see that U (n) may be thought of, topologically, as a closed
subset of S2n−1 × S2n−1 × · · ·×2n−1 ⊆ R2n2

(n copies). In particular, U (n) is a
compact Lie group.

Likewise, the special unitary group is defined as

SU (n) = {g ∈ U (n) | det g = 1}.

As usual, this is a closed subgroup of U (n), and so SU (n) is also a compact Lie
group. The special case of n = 2 will play an especially important future role. It is
straightforward to check (Exercise 1.8) that

SU (2) =
{(

a −b
b a

)
| a, b ∈ C and |a|2 + |b|2 = 1

}
(1.11)

so that topologically SU (2) ∼= S3.

1.1.4.3 Sp(n) The final compact classical Lie group, the symplectic group, ought to
be defined as

Sp(n) = {g ∈ GL(n,H) | g∗g = I },(1.12)

where H = {a + ib + jc + kd | a, b, c, d ∈ R} denotes the quaternions and g∗

denotes the quaternionic conjugate transpose of g. However, H is a noncommutative
division algebra, so understanding the meaning of GL(n,H) takes a bit more work.
Once this is done, Equation 1.12 will become the honest definition of Sp(n).

To begin, view Hn as a right vector space with respect to scalar multiplication and
let Mn,n(H) denote the set of n×n matrices over H. By using matrix multiplication on
the left, Mn,n(H) may therefore be identified with the set of H-linear transformations
of Hn . Thus the old definition of GL(n,F) in Equation 1.3 can be carried over to
define GL(n,H) = {g ∈ Mn,n(H) | g is an invertible transformation of Hn}.

Verifying that GL(n,H) is a Lie group, unfortunately, requires more work. In
the case of GL(n,F) in §1.1.2, that work was done by the determinant function
which is no longer readily available for GL(n,H). Instead, we embed GL(n,H)

into GL(2n,C) as follows.
Observe that any v ∈ H can be uniquely written as v = a + jb for a, b ∈

C. Thus there is a well-defined C-linear isomorphism ϑ : Hn → C2n given by
ϑ(v1, . . . , vn) = (a1, . . . , an, b1, . . . , bn) where vp = ap + jbp, ap, bp ∈ C. Use
this to define a C-linear injection of algebras ϑ̃ : Mn,n(H) → Mn,n(C) by ϑ̃X =
ϑ ◦ X ◦ ϑ−1 for X ∈ Mn,n(H) with respect to the usual identification of matrices as
linear maps. It is straightforward to verify (Exercise 1.12) that when X is uniquely
written as X = A + j B for A, B ∈ Mn,n(C), then
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ϑ̃(A + j B) =
(

A −B
B A

)
,(1.13)

where A denotes complex conjugation of A. Thus ϑ̃ is a C-linear algebra isomor-
phism from Mn,n(H) to

M2n,2n(C)H ≡ {
(

A −B
B A

)
| A, B ∈ Mn,n(C)}.

An alternate way of checking this is to first let r j denote scalar multiplication
by j on Hn , i.e., right multiplication by j . It is easy to verify (Exercise 1.12) that
ϑr jϑ

−1z = J z for z ∈ C2n where

J =
(

0 −In

In 0

)
.

Since ϑ is a C-linear isomorphism, the image of ϑ̃ consists of all Y ∈ M2n,2n(C)

commuting with ϑr jϑ
−1 so that M2n,2n(C)H = {Y ∈ M2n(C) | Y J = JY }.

Finally, observe that X is invertible if and only if ϑ̃X is invertible. In particular,
Mn,n(H) may be thought of as R4n2

and, since det ◦ϑ̃ is continuous, GL(n,H) is the
open set in Mn,n(H) defined by the complement of (det ◦ϑ̃)−1{0}. Since GL(n,H) is
now clearly a Lie group, Equation 1.12 shows that Sp(n) is a Lie group by Corollary
1.8. As with the previous examples, Sp(n) is compact since each column vector is a
unit vector in Hn ∼= R4n .

As an aside, Dieudonné developed the notion of determinant suitable for Mn,n(H)

(see [2], 151–158). This quaternionic determinant has most of the nice properties of
the usual determinant and it turns out that elements of Sp(n) always have determin-
ant 1.

There is another useful realization for Sp(n) besides the one given in Equation
1.12. The isomorphism is given by ϑ̃ and it remains only to describe the image
of Sp(n) under ϑ̃ . First, it is easy to verify (Exercise 1.12) that ϑ̃(X∗) = (ϑ̃X)∗

for X ∈ Mn,n(H), and thus ϑ̃Sp(n) = U (2n) ∩ M2n,2n(C)H. This answer can be
reshaped further. Define

Sp(n,C) = {g ∈ GL(2n,C) | gt Jg = J }

so that U (2n)∩M2n,2n(C)H = U (2n)∩Sp(n,C). Hence ϑ̃ realizes the isomorphism:

Sp(n) ∼= U (2n) ∩ M2n,2n(C)H(1.14)

= U (2n) ∩ Sp(n,C).

1.1.5 Exercises

Exercise 1.1 Show that Sn is a manifold that can be equipped with an atlas consist-
ing of only two charts.
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Exercise 1.2 (a) Show that Grk(Rn) may be realized as the rank k elements of
Mn,k(R) modulo the equivalence relation X ∼ Xg for X ∈ Mn,k(R) of rank k and
g ∈ GL(k,R). Find another realization showing that Grk(Rn) is compact.
(b) For S ⊆ {1, 2, . . . , n} with |S| = k and X ∈ Mn,k(R), let X |S be the k × k
matrix obtained from X by keeping only those rows indexed by an element of S,
let US = {X ∈ Mn,k(R) | X |S is invertible}, and let ϕS : US → M(n−k),k(R) by
ϕS(X) = [X (X |S)−1]|Sc . Use these definitions to show that Grk(Rn) is a k(n − k)
dimensional manifold.

Exercise 1.3 (a) Show that conditions (1) and (2) in Definition 1.4 may be replaced
by the single condition that the map (g1, g2)→ g1g−1

2 is smooth.
(b) In fact, show that condition (1) in Definition 1.4 implies condition (2).

Exercise 1.4 If U is an open set containing e in a Lie group G, show there exists an
open set V ⊆ U containing e, so V V−1 ⊆ U , where V V−1 is {vw−1 | v,w ∈ V }.
Exercise 1.5 Fix a, b ∈ R\{0} and consider the subgroup of T 2 defined by Ra,b =
{(e2π iat , e2π ibt ) | t ∈ R}.
(a) Suppose a

b ∈ Q and a
b = p

q for relatively prime p, q ∈ Z. As t varies, show that

the first component of Ra,b wraps around S1 exactly p-times, while the second com-
ponent wraps around q-times. Conclude that Ra,b is closed and therefore a regular
Lie subgroup diffeomorphic to S1.
(b) Suppose a

b /∈ Q. Show that Ra,b wraps around infinitely often without repeating.
Conclude that Ra,b is a Lie subgroup diffeomorphic to R, but not a regular Lie sub-
group (c.f. Exercise 5.*).
(c) What happens if a or b is 0?

Exercise 1.6 (a) Use Theorem 1.10 and the map det : GL(n,R) → R to give an
alternate proof that SL(n,R) is a Lie group and has dimension n2 − 1.
(b) Show the map X → X Xt from GL(n,R) to {X ∈ Mn,n(R) | Xt = X} has
constant rank n(n+1)

2 . Use the proof of Theorem 1.10 to give an alternate proof that
O(n) is a Lie group and has dimension n(n−1)

2 .
(c) Use the map X → X X∗ on GL(n,C) to give an alternate proof that U (n) is a
Lie group and has dimension n2.
(d) Use the map X → X X∗ on GL(n,H) to give an alternate proof that Sp(n) is a
Lie group and has dimension 2n2 + n.

Exercise 1.7 For a Lie group G, write Z(G) = {z ∈ G | zg = gz, all g ∈ G} for
the center of G. Show
(a) Z(U (n)) ∼= S1 and Z(SU (n)) ∼= Z/nZ for n ≥ 2,
(b) Z(O(2n)) ∼= Z/2Z, Z(SO(2n)) ∼= Z/2Z for n ≥ 2, and Z(SO(2)) = SO(2),
(c) Z(O(2n + 1)) ∼= Z/2Z for n ≥ 1, and Z(SO(2n + 1)) = {I } for n ≥ 1,
(d) Z(Sp(n)) ∼= Z/2Z.

Exercise 1.8 Verify directly Equation 1.11.
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Exercise 1.9 (a) Let A ⊆ GL(n,R) be the subgroup of diagonal matrices with
positive elements on the diagonal and let N ⊆ GL(n,R) be the subgroup of upper
triangular matrices with 1’s on the diagonal. Using Gram-Schmidt orthogonalization,
show multiplication induces a diffeomorphism of O(n)×A×N onto GL(n,R). This
is called the Iwasawa or K AN decomposition for GL(n,R). As topological spaces,
show that GL(n,R) ∼= O(n) × R

n(n+1)
2 . Similarly, as topological spaces, show that

SL(n,R) ∼= SO(n)× R
(n+2)(n−1)

2 .
(b) Let A ⊆ GL(n,C) be the subgroup of diagonal matrices with positive real el-
ements on the diagonal and let N ⊆ GL(n,C) be the subgroup of upper triangular
matrices with 1’s on the diagonal. Show that multiplication induces a diffeomor-
phism of U (n) × A × N onto GL(n,C). As topological spaces, show GL(n,C) ∼=
U (n)×Rn2

. Similarly, as topological spaces, show that SL(n,C) ∼= SU (n)×Rn2−1.

Exercise 1.10 Let N ⊆ GL(n,C) be the subgroup of upper triangular matrices with
1’s on the diagonal, let N ⊆ GL(n,C) be the subgroup of lower triangular matrices
with 1’s on the diagonal, and let W be the subgroup of permutation matrices (i.e.,
matrices with a single one in each row and each column and zeros elsewhere). Use
Gaussian elimination to show GL(n,C) = �w∈W NwN . This is called the Bruhat
decomposition for GL(n,C).

Exercise 1.11 (a) Let P ⊆ GL(n,R) be the set of positive definite symmetric ma-
trices. Show that multiplication gives a bijection from P × O(n) to GL(n,R).
(b) Let H ⊆ GL(n,C) be the set of positive definite Hermitian matrices. Show that
multiplication gives a bijection from H ×U (n) to GL(n,C).

Exercise 1.12 (a) Show that ϑ̃ is given by the formula in Equation 1.13.
(b) Show ϑr jϑ

−1z = J z for z ∈ C2n .
(c) Show that ϑ̃(X∗) = (ϑ̃X)∗ for X ∈ Mn,n(H).

Exercise 1.13 For v, u ∈ Hn , let (v, u) =∑n
p=1 vpu p.

(a) Show that (Xv, u) = (v, X∗u) for X ∈ Mn,n(H).
(b) Show that Sp(n) = {g ∈ Mn(H) | (gv, gu) = (v, u), all v, u ∈ Hn}.

1.2 Basic Topology

1.2.1 Connectedness

Recall that a topological space is connected if it is not the disjoint union of two
nonempty open sets. A space is path connected if any two points can be joined by a
continuous path. While in general these two notions are distinct, they are equivalent
for manifolds. In fact, it is even possible to replace continuous paths with smooth
paths.

The first theorem is a technical tool that will be used often.

Theorem 1.15. Let G be a connected Lie group and U a neighborhood of e. Then U
generates G, i.e., G = ∪∞n=1U n where U n consists of all n-fold products of elements
of U.
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Proof. We may assume U is open without loss of generality. Let V = U ∩U−1 ⊆ U
where U−1 is the set of all inverses of elements in U . This is an open set since
the inverse map is continuous. Let H = ∪∞n=1V n . By construction, H is an open
subgroup containing e. For g ∈ G, write gH = {gh | h ∈ H}. The set gH contains
g and is open since left multiplication by g−1 is continuous. Thus G is the union of
all the open sets gH . If we pick a representative gα H for each coset in G/H , then
G = �α(gα H). Hence the connectedness of G implies that G/H contains exactly
one coset, i.e., eH = G, which is sufficient to finish the proof. �

We still lack general methods for determining when a Lie group G is connected.
This shortcoming is remedied next.

Definition 1.16. If G is a Lie group, write G0 for the connected component of G
containing e.

Lemma 1.17. Let G be a Lie group. The connected component G0 is a regular Lie
subgroup of G. If G1 is any connected component of G with g1 ∈ G1, then G1 =
g1G0.

Proof. We prove the second statement of the lemma first. Since left multiplication
by g1 is a homeomorphism, it follows easily that g1G0 is a connected component of
G. But since e ∈ G0, this means that g1 ∈ g1G0 so g1G0 ∩ G1 �= ∅. Since both are
connected components, G1 = g1G0 and the second statement is finished.

Returning to the first statement of the lemma, it clearly suffices to show that
G0 is a subgroup. The inverse map is a homeomorphism, so (G0)−1 is a connected
component of G. As above, (G0)−1 = G0 since both components contain e. Finally,
if g1 ∈ G0, then the components g1G0 and G0 both contain g1 since e, g−1

1 ∈ G0.
Thus g1G0 = G0, and so G0 is a subgroup, as desired. �
Theorem 1.18. If G is a Lie group and H a connected Lie subgroup so that G/H is
also connected, then G is connected.

Proof. Since H is connected and contains e, H ⊆ G0, so there is a continuous map
π : G/H → G/G0 defined by π(gH) = gG0. It is trivial that G/G0 has the
discrete topology with respect to the quotient topology. The assumption that G/H is
connected forces π(G/H) to be connected, and so π(G/H) = eG0. However, π is
a surjective map so G/G0 = eG0, which means G = G0. �
Definition 1.19. Let be G a Lie group and M a manifold.
(1) An action of G on M is a smooth map from G×M → M , denoted by (g,m)→
g · m for g ∈ G and m ∈ M , so that:

(i) e · m = m, all m ∈ M and
(ii) g1 · (g2 · m) = (g1g2) · m for all g1, g2 ∈ G and m ∈ M .

(2) The action is called transitive if for each m, n ∈ M , there is a g ∈ G, so g ·m = n.
(3) The stabilizer of m ∈ M is Gm = {g ∈ G | g · m = m}.

If G has a transitive action on M and m0 ∈ M , then it is clear (Theorem 1.7) that
the action of G on m0 induces a diffeomorphism from G/Gm0 onto M .
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Theorem 1.20. The compact classical groups, SO(n), SU (n), and Sp(n), are con-
nected.

Proof. Start with SO(n) and proceed by induction on n. As SO(1) = {1}, the case
n = 1 is trivial. Next, observe that SO(n) has a transitive action on Sn−1 in Rn by
matrix multiplication. For n ≥ 2, the stabilizer of the north pole, N = (1, 0, . . . , 0),
is easily seen to be isomorphic to SO(n − 1) which is connected by the induction
hypothesis. From the transitive action, it follows that SO(n)/SO(n)N ∼= Sn−1 which
is also connected. Thus Theorem 1.18 finishes the proof.

For SU (n), repeat the above argument with Rn replaced by Cn and start the
induction with the fact that SU (1) ∼= S1. For Sp(n), repeat the same argument with
Rn replaced by Hn and start the induction with Sp(1) ∼= {v ∈ H | |v| = 1} ∼= S3. �

1.2.2 Simply Connected Cover

For a connected Lie group G, recall that the fundamental group, π1(G), is the ho-
motopy class of all loops at a fixed base point. The Lie group G is called simply
connected if π1(G) is trivial.

Standard covering theory from topology and differential geometry (see [69] and
[8] or [88] for more detail) says that there exists a unique (up to isomorphism) simply
connected cover G̃ of G, i.e., a connected, simply connected manifold G̃ with a
covering (or projection) map π : G̃ → G. Recall that being a covering map means
π is a smooth surjective map with the property that each g ∈ G has a connected
neighborhood U of g in G so that the restriction of π to each connected component
of π−1(U ) is a diffeomorphism onto U .

Lemma 1.21. If H is a discrete normal subgroup of a connected Lie group G, then
H is contained in the center of G.

Proof. For each h ∈ H , consider Ch = {ghg−1 | g ∈ G}. Since Ch is the continuous
image of the connected set G, Ch is connected. Normality of H implies Ch ⊆ H .
Discreteness of H and connectedness of Ch imply that Ch is a single point. As h is
clearly in Ch , this shows that Ch = {h}, and so h is central. �
Theorem 1.22. Let G be a connected Lie group.
(1) The connected simply connected cover G̃ is a Lie group.
(2) If π is the covering map and Z̃ = kerπ , then Z̃ is a discrete central subgroup
of G̃.
(3) π induces a diffeomorphic isomorphism G ∼= G̃/Z̃ .
(4) π1(G) ∼= Z̃ .

Proof. Because coverings satisfy the lifting property (e.g., for any smooth map f of
a connected simply connected manifold M to G with m0 ∈ M and g0 ∈ π−1( f (m0)),
there exists a unique smooth map f̃ : M → G̃ satisfying π ◦ f̃ = f and f̃ (m0) =
g0), the Lie group structure on G lifts to a Lie group structure on G̃, making π a
homomorphism. To see this, consider the map s : G̃ × G̃ → G by f (g̃, h̃) =
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π(g̃)π(̃h)−1 and fix some ẽ ∈ π−1(e). Then there is a unique lift s̃ : G̃ × G̃ → G̃ so
that π ◦s̃ = s. To define the group structure G̃, let h̃−1 = s̃ (̃e, h̃) and g̃h̃ = s̃(g̃, h̃−1).
It is straightforward to verify that this structure makes G̃ into a Lie group and π into
a homomorphism (Exercise 1.21).

Hence we have constructed a connected simply connected Lie group G̃ and a
covering homomorphism π : G̃ → G. Since π is a covering and a homomor-
phism, Z̃ = kerπ is a discrete normal subgroup of G̃ and so central by Lemma 1.21.
Hence π induces a diffeomorphic isomorphism from G̃/Z̃ to G. The statement re-
garding π1(G) is a standard result from the covering theory of deck transformations
(see [8]). �
Lemma 1.23. Sp(1) and SU (2) are simply connected and isomorphic to each other.
Either group is the simply connected cover of SO(3), i.e., SO(3) is isomorphic to
Sp(1)/{±1} or SU (2)/{±I }.
Proof. The isomorphism from Sp(1) to SU (2) is given by ϑ̃ in §1.1.4.3. Since either
group is topologically S3, the first statement follows.

For the second statement, write (·, ·) for the real inner product on H given by
(u, v) = Re(uv) for u, v ∈ H. By choosing an orthonormal basis {1, i, j, k}, we may
identify H with R4 and (·, ·) with the standard Euclidean dot product on R4. Then
1⊥ = {v ∈ H | (1, v) = 0} is the set of imaginary (or pure) quaternions, Im(H),
spanned over R by {i, j, k}. In particular, we may identify O(3) with O(Im(H)) ≡
{R-linear maps T : Im(H)→ Im(H) | (T u, T v) = (u, v) all u, v ∈ Im(H)} and the
connected component O(Im(H))0 with SO(3).

Define a smooth homomorphism Ad : Sp(1) → O(Im(H))0 by (Ad(g))(u) =
gug for g ∈ Sp(1) and u ∈ Im(H). To see this is well defined, first view Ad(g) as an
R-linear transformation on H. Using the fact that gg = 1 for g ∈ Sp(1), it follows
immediately that Ad(g) leaves (·, ·) invariant. As Ad(g) fixes 1, Ad(g) preserves
Im(H). Thus Ad(g) ∈ O(Im(H))0 since Sp(1) is connected.

It is well known that SO(3) consists of all rotations (Exercise 1.22). To show
Ad is surjective, it therefore suffices to show that each rotation lies in the image of
Ad. Let v ∈ Im(H) be a unit vector. Then v can be completed to a basis {v, u, w}
of Im(H) sharing the same properties as the {i, j, k} basis. It is a simple calculation
to show that Ad(cos θ + v sin θ) fixes v and is a rotation through an angel of 2θ
in the uw plane (Exercise 1.23). Hence Ad is surjective. The same calculation also
shows that ker Ad = {±1}. Since the simply connected cover is unique, the proof is
finished. �

In §6.3.3 we develop a direct method for calculating π1(G). For now we com-
pute the fundamental group for the classical compact Lie groups by use of a higher
homotopy exact sequence.

Theorem 1.24. (1) π1(SO(2)) ∼= Z and π1(SO(n)) ∼= Z/2Z for n ≥ 3.
(2) SU (n) is simply connected for n ≥ 2.
(3) Sp(n) is simply connected for n ≥ 1.
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Proof. Start with SO(n). As SO(2) ∼= S1, π1(SO(2)) ∼= Z. Recall from the proof of
Theorem 1.20 that SO(n) has a transitive action on Sn−1 with stabilizer isomorphic
to SO(n − 1). From the resulting exact sequence, {1} → SO(n − 1) → SO(n) →
Sn−1 → {1}, there is a long exact sequence of higher homotopy groups (e.g., see
[51] p. 296)

· · · → π2(S
n−1)→ π1(SO(n − 1))→ π1(SO(n))→ π1(S

n−1)→ · · · .

For n ≥ 3, π1(Sn−1) is trivial, so there is an exact sequence

π2(S
n−1)→ π1(SO(n − 1))→ π1(SO(n))→ {1}.

Since π2(Sn−1) is trivial for n ≥ 4, induction on the exact sequence implies
π1(SO(n)) ∼= π1(SO(3)) for n ≥ 4. It only remains to show that π1(SO(3)) ∼=
Z/2Z, but this follows from Lemma 1.23 and Theorem 1.22.

For SU (n), as in the proof of Theorem 1.20, there is an exact sequence {1} →
SU (n−1)→ SU (n)→ S2n−1 → {1}. Since π1(S2n−1) and π2(S2n−1) are trivial for
n ≥ 3 (actually for n = 2 as well, though not useful here), the long exact sequence
of higher homotopy groups implies that π1(SU (n)) ∼= π1(SU (2)) for n ≥ 2. By
Lemma 1.23, π1(SU (2)) is trivial.

For Sp(n), the corresponding exact sequence is {1} → Sp(n − 1) → Sp(n) →
S4n−1 → {1}. Since π1(S4n−1) and π2(S4n−1) are trivial for n ≥ 2 (actually for
n = 1 as well), the resulting long exact sequence implies π1(Sp(n)) ∼= π1(Sp(1))
for n ≥ 1. By Lemma 1.23, π1(Sp(1)) is trivial. �

As an immediate corollary of Theorems 1.22 and 1.24, there is a connected sim-
ply connected double cover of SO(n), n ≥ 3. That simply connected Lie group is
called Spinn(R) and it fits in the following exact sequence:

{1} → Z/2Z → Spinn(R)→ SO(n)→ {I }.(1.25)

Lemma 1.23 shows Spin3(R) ∼= SU (2) ∼= Sp(1). For larger n, an explicit construc-
tion of Spinn(R) is given in §1.3.2.

1.2.3 Exercises

Exercise 1.14 For a connected Lie group G, show that even if the second countable
hypothesis is omitted from the definition of manifold, G is still second countable.

Exercise 1.15 Show that an open subgroup of a Lie group is closed.

Exercise 1.16 Show that GL(n,C) and SL(n,C) are connected.

Exercise 1.17 Show that GL(n,R) has two connected components: GL(n,R)0 =
{g ∈ GL(n,R) | det g > 0} and {g ∈ GL(n,R) | det g < 0}. Prove SL(n,R) is
connected.
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Exercise 1.18 Show O(2n + 1) ∼= SO(2n + 1)× (Z/2Z) as both a manifold and a
group. In particular, O(2n + 1) has two connected components with O(2n + 1)0 =
SO(2n + 1).

Exercise 1.19 (a) Show O(2n) ∼= SO(2n) × (Z/2Z) as a manifold. In particular,
O(2n) has two connected components with O(2n)0 = SO(2n).
(b) Show that O(2n) is not isomorphic to SO(2n) × (Z/2Z) as a group. Instead
show that O(2n) is isomorphic to a semidirect product SO(2n) � (Z/2Z). Describe
explicitly the multiplication structure on SO(2n) � (Z/2Z) under its isomorphism
with O(2n).

Exercise 1.20 Show U (n) ∼= (SU (n)×S1)/(Z/nZ) as both a manifold and a group.
In particular, U (n) is connected.

Exercise 1.21 Check the details in the proof of Theorem 1.22 to carefully show that
the Lie group structure on G lifts to a Lie group structure on G̃, making the covering
map π : G̃ → G a homomorphism.

Exercise 1.22 Let R3 ⊆ GL(3,R) be the set of rotations in R3 about the origin.
Show that R3 = SO(3).

Exercise 1.23 (a) Let v ∈ Im(H) be a unit vector. Show that v can be completed to
a basis {v, u, w} of Im(H), sharing the same properties as the {i, j, k} basis.
(b) Show Ad(cos θ + v sin θ) from the proof of Lemma 1.23 fixes v and acts by a
rotation through an angle 2θ on the R-span of {u, w}.

Exercise 1.24 Let su(2) =
{(

i x −b
b −i x

)
| b ∈ C, x ∈ R

}
and (X, Y ) = 1

2 tr(XY ∗)

for X, Y ∈ su(2). Define (Ad g)X = gXg−1 for g ∈ SU (2) and X ∈ su(2). Modify
the proof of Lemma 1.23 to directly show that the map Ad : SU (2) → SO(3) is
well defined and realizes the simply connected cover of SO(3) as SU (2).

1.3 The Double Cover of SO(n)

At the end of §1.2.2 we saw that SO(n), n ≥ 3, has a simply connected double cover
called Spinn(R). The proof of Lemma 1.23 gave an explicit construction of Spin3(R)

as Sp(1) or SU (2). The key idea was to first view SO(3) as the set of rotations in
R3 and then use the structure of the quaternion algebra, H, along with a conjugation
action to realize each rotation uniquely up to a ±-sign.

This section gives a general construction of Spinn(R). The algebra that takes the
place of H is called the Clifford algebra, Cn(R), and instead of simply construct-
ing rotations, it is more advantageous to use a conjugation action that constructs all
reflections.
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1.3.1 Clifford Algebras

Alhough the entire theory of Clifford algebras easily generalizes (Exercise 1.30),
it is sufficient for our purposes here to work over Rn equipped with the standard
Euclidean dot product (·, ·). Recall that the tensor algebra over Rn is Tn(R) =⊕∞

k=0 Rn⊗Rn⊗· · ·⊗Rn (k copies) with a basis {1}∪{xi1⊗xi2⊗· · ·⊗xik | 1 ≤ ik ≤ n},
where {x1, x2, . . . , xn} is a basis of Rn .

Definition 1.26. The Clifford algebra is

Cn(R) = Tn(R)/I

where I is the ideal of Tn(R) generated by

{(x ⊗ x + |x |2) | x ∈ Rn}.
By way of notation for Clifford multiplication, write

x1x2 · · · xk

for the element x1 ⊗ x2 ⊗ · · · ⊗ xk + I ∈ Cn(R), where x1, x2, . . . , xn ∈ Rn .

In particular,

x2 = − |x |2(1.27)

in Cn(R) for x ∈ Rn . Starting with the equality xy + yx = (x + y)2 − x2 − y2 for
x, y ∈ Rn , it follows that Equation 1.27 is equivalent to

xy + yx = −2(x, y)(1.28)

in Cn(R) for x, y ∈ Rn .
It is a straightforward exercise (Exercise 1.25) to show that

C0(R) ∼= R, C1(R) ∼= C, and C2(R) ∼= H.

More generally, define the standard basis for Rn to be {e1, e2, . . . , en}, where
ek = (0, . . . , 0, 1, 0, . . . , 0) with the 1 appearing in the k th entry. Clearly {1} ∪
{ei1 ei2 · · · eik | k > 0, 1 ≤ ik ≤ n} spans Cn(R), but this is overkill. First, observe that
Cn(R) inherits a filtration from Tn(R) by degree. Up to lower degree terms, Equa-
tion 1.28 can be used to commute adjacent ei j and Equation 1.27 can be used to
remove multiple copies of ei j within a product ei1 ei2 · · · eik . An inductive argument
on filtration degree therefore shows that

{1} ∪ {ei1 ei2 · · · eik | 1 ≤ i1 < i2 < . . . ik ≤ n}(1.29)

spans Cn(R), so dim Cn(R) ≤ 2n . In fact, we will shortly see Equation 1.29 provides
a basis for Cn(R) and so dim Cn(R) = 2n . This will be done by constructing a linear
isomorphism 	 : Cn(R) → ∧

Rn , where
∧

Rn = ⊕n
k=0

∧k Rn is the exterior
algebra of Rn .

To begin, we recall some multilinear algebra.
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Definition 1.30. (1) For x ∈ Rn , let exterior multiplication be the map ε(x) :∧k Rn →∧k+1 Rn given by

(ε(x))(y) = x ∧ y

for y ∈∧k Rn .
(2) For x ∈ Rn , let interior multiplication be the map ι(x) :

∧k Rn → ∧k−1 Rn

given by

(ι(x))(y1 ∧ y2 ∧ · · · ∧ yk) =
∑k

i=1
(−1)i+1(x, yi ) y1 ∧ y2 ∧ · · · ∧ ŷi ∧ · · · ∧ yk

for yi ∈ Rn , where ŷi means to omit the term.

It is straightforward (Exercise 1.26) from multilinear algebra that ι(x) is the ad-
joint of ε(x) with respect to the natural form on

∧
Rn . In particular, ε(x)2 = ι(x)2 =

0 for x ∈ Rn . It is also straightforward (Exercise 1.26) that

ε(x)ι(x)+ ι(x)ε(x) = m|x |2,(1.31)

where m|x |2 is the operator that multiplies by |x |2.

Definition 1.32. (1) For x ∈ Rn , let Lx :
∧

Rn → ∧
Rn be given by Lx = ε(x) −

ι(x).
(2) Let � : Tn(R) → End(

∧
Rn) be the natural map of algebras determined by

setting �(x) = Lx for x ∈ Rn .

Observe that Equation 1.31 implies that L2
x + m|x |2 = 0 so that �(I) = 0. In

particular, � descends to Cn(R).

Definition 1.33. (1) Abusing notation, let � : Cn(R) → End(
∧

Rn) be the map
induced on Cn(R) by the original map � : Tn(R)→ End(

∧
Rn).

(2) Let 	 : Cn(R)→∧
Rn by 	(v) = (�(v))(1).

Explicitly, for xi ∈ Rn , 	(x1) = (ε(x1)− ι(x1)) 1 = x1, and

	(x1x2) = (ε(x1)− ι(x1)) (ε(x2)− ι(x2)) 1

= (ε(x1)− ι(x1)) x2 = x1 ∧ x2 − (x1, x2).

In general,

	(x1x2 · · · xk) = x1 ∧ x2 ∧ · · · ∧ xk + terms in
⊕

i≥1

∧k−2i
Rn .(1.34)

Equation 1.34 is easily established (Exercise 1.27) by induction on k. Also by induc-
tion on degree, it is an immediate corollary of Equation 1.34 that 	 is surjective. A
dimension count therefore shows that 	 is a linear isomorphism. In summary:

Theorem 1.35. The map 	 : Cn(R) → ∧
Rn is a linear isomorphism of vector

spaces, and so dim Cn(R) = 2n and Equation 1.29 provides a basis for Cn(R).

Thus, with respect to the standard basis (or any orthonormal basis for that matter),
Cn(R) has a particularly simple algebra structure. Namely, Cn(R) is the R-span of the
basis {1} ∪ {ei1 ei2 · · · eik | 1 ≤ i1 < i2 < · · · < ik ≤ n} with the algebraic relations
generated by e2

i = −1 and ei e j = −e j ei when i �= j .
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1.3.2 Spinn(R) and Pinn(R)

For the next definition, observe that Tn(R) breaks into a direct sum of the subalgebra
generated by the tensor product of any even number of elements of Rn and the sub-
space generated the tensor product of any odd number of elements of Rn . Since I is
generated by elements of even degree, it follows that this decomposition descends to
Cn(R).

Definition 1.36. (1) Let C+n (R) be the subalgebra of Cn(R) spanned by all products
of an even number of elements of Rn .
(2) Let C−n (R) be the subspace of Cn(R) spanned by all products of an odd number
of elements of Rn so Cn(R) = C+n (R)⊕ C−n (R) as a vector space.
(3) Let the automorphism α, called the main involution, of Cn(R) act as multiplication
by ±1 on C±n (R).
(4) Conjugation, an anti-involution on Cn(R), is defined by

(x1x2 · · · xk)
∗ = (−1)k xk · · · x2x1

for xi ∈ Rn .

The next definition makes sense for n ≥ 1. However, because of Equation 1.25,
we are really only interested in the case of n ≥ 3 (see Exercise 1.34 for details when
n = 1, 2).

Definition 1.37. (1) Let Spinn(R) = {g ∈ C+n (R) | gg∗ = 1 and gxg∗ ∈ Rn for all
x ∈ Rn}.
(2) Let Pinn(R) = {g ∈ Cn(R) | gg∗ = 1 and α(g)xg∗ ∈ Rn for all x ∈ Rn}. Note
Spinn(R) ⊆ Pinn(R).
(3) For g ∈ Pinn(R) and x ∈ Rn , define the homomorphism A : Pinn(R) →
GL(n,R) by (Ag)x = α(g)xg∗. Note (Ag) x = gxg∗ when g ∈ Spinn(R).

Viewing left multiplication by v ∈ Cn(R) as an element of End(Cn(R)), use of the
determinant shows that the set of invertible elements of Cn(R) is an open subgroup
of Cn(R). It follows fairly easily that the set of invertible elements is a Lie group.
As both Spinn(R) and Pinn(R) are closed subgroups of this Lie group, Corollary 1.8
implies that Spinn(R) and Pinn(R) are Lie groups as well.

Lemma 1.38. A is a covering map of Pinn(R) onto O(n) with kerA = {±1}, so
there is an exact sequence

{1} → {±1} → Pinn(R)
A→ O(n)→ {I }.

Proof. A maps Pinn(R) into O(n): Let g ∈ Pinn(R) and x ∈ Rn . Using Equation
1.27 and the fact that conjugation on Rn is multiplication by −1, we calculate

|(Ag)x |2 = − (
α(g)xg∗

)2 = − (
α(g)xg∗

) (
α(g)xg∗

) = α(g)xg∗
(
α(g)xg∗

)∗
= α(g)xg∗gx∗α(g)∗ = α(g)xx∗α(g)∗ = −α(g)x2α(g)∗ = |x |2 α(gg∗)

= |x |2 .
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Thus Ag ∈ O(n).
A maps Pinn(R) onto O(n): It is well known (Exercise 1.32) that each orthogonal

matrix is a product of reflections. Thus it suffices to show that each reflection lies
in the image of A. Let x ∈ Sn−1 be any unit vector in Rn and write rx for the
reflection across the plane perpendicular to x . Observe xx∗ = −x2 = |x |2 = 1.
Thus α(x)xx∗ = −xxx∗ = −x . If y ∈ Rn and (x, y) = 0, then Equation 1.28 says
xy = −yx so that α(x)yx∗ = xyx = −x2 y = y. Hence x ∈ Pinn(R) and Ax = rx .

kerA = {±1}: Since R ∩ Pinn(R) = {±1} and both elements are clearly in
kerA, it suffices to show that kerA ⊆ R. So suppose g ∈ Pinn(R) with Ag = I .
As g∗ = g−1, α(g)x = xg for all x ∈ Rn . Expanding g with respect to the standard
basis from Equation 1.29, we may uniquely write g = e1a + b, where a, b are linear
combinations of 1 and monomials in e2, e3, . . . , en . Looking at the special case of
x = e1, we have α(e1a+b)e1 = e1 (e1a + b) so that−e1α(a)e1+α(b)e1 = −a+e1b.
Since a and b contain no e1’s, α(a)e1 = e1a and α(b)e1 = e1b. Thus a + e1b1 =
−a + e1b which implies that a = 0 so that g contains no e1. Induction similarly
shows that g contains no ek , 1 ≤ k ≤ n, and so g ∈ R.

A is a covering map: From Theorem 1.10, π has constant rank with N = rkπ =
dim Pinn(R) since kerπ = {±1}. For any g ∈ Pinn(R), the Rank Theorem from
differential geometry ([8]) says there exists cubical charts (U, ϕ) of g and (V, ψ) of
π(g) so that ψ ◦π ◦ϕ−1(x1, . . . , xN ) = (x1, . . . , xN , 0, . . . , 0) with dim O(n)− N
zeros. Using the second countability of Pinn(R) and the Baire category theorem,
surjectivity of π implies dim O(n) = N . In particular, π restricted to U is a dif-
feomorphism onto V . Since kerπ = {±1}, π is also a diffeomorphism of −U onto
V . Finally, injectivity of π on U implies that (−U ) ∩ U = ∅ so that the connected
components of π−1(V ) are U and −U . �
Lemma 1.39. Pinn(R) and Spinn(R) are compact Lie groups with

Pinn(R) = {x1 · · · xk | xi ∈ Sn−1 for 1 ≤ k ≤ 2n}
Spinn(R) = {x1x2 · · · x2k | xi ∈ Sn−1 for 2 ≤ 2k ≤ 2n}

and Spinn(R) = A−1(SO(n)).

Proof. We know from the proof of Lemma 1.38 that Ax = rx for each x ∈ Sn−1 ⊆
Pinn(R). Since elements of O(n) are products of at most 2n reflections and A is
surjective with kernel {±1}, this implies that Pinn(R) = {x1 · · · xk | xi ∈ Sn−1 for
1 ≤ k ≤ 2n}. The equality Spinn(R) = Pinn(R) ∩ C+n (R) then implies Spinn(R) =
{x1x2 · · · x2k | xi ∈ Sn−1 for 2 ≤ 2k ≤ 2n}. In particular, Pinn(R) and Spinn(R)

are compact. Moreover because det rx = −1, the last equality is equivalent to the
equality Spinn(R) = A−1(SO(n)). �
Theorem 1.40. (1) Pinn(R) has two connected (n ≥ 2) components with Spinn(R) =
Pinn(R)0.
(2) Spinn(R) is the connected (n ≥ 2) simply connected (n ≥ 3) two-fold cover of
SO(n). The covering homomorphism is given by A with kerA = {±1}, i.e., there is
an exact sequence
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{1} → {±1} → Spinn(R)
A→ SO(n)→ {I }.

Proof. For n ≥ 2, consider the path t → γ (t) = cos t + e1e2 sin t . Since
γ (t) = e1(−e1 cos t + e2 sin t), it follows that γ (t) ∈ Spinn(R) and so {±1} are
path connected in Spinn(R). From Lemmas 1.38 and 1.39, we know that Spinn(R) is
a double cover of SO(n) and so Spinn(R) is connected. Thus, for n ≥ 3, Theorem
1.24 and the uniqueness of connected simply connected coverings implies Spinn(R)

is the connected simply connected cover of SO(n).
Finally, let x0 ∈ Sn−1. Clearly Pinn(R) = x0 Spinn(R) � Spinn(R). We know

that A is a continuous map of Pinn(R) onto O(n). Since O(n) is not connected but
x0 Spinn(R) and Spinn(R) are connected, x0 Spinn(R) � Spinn(R) cannot be con-
nected. Thus x0 Spinn(R) and Spinn(R) are the connected components of
Pinn(R). �

1.3.3 Exercises

Exercise 1.25 Show C0(R) ∼= R, C1(R) ∼= C, and C2(R) ∼= H.

Exercise 1.26 (a) Show ι(x) = ε(x)∗ with respect to the inner product on
∧

Rn

induced by defining (x1 ∧ x2 ∧ · · · ∧ xk, y1 ∧ y2 ∧ · · · ∧ yl) to be 0 when k �= l and
to be det(xi , y j ) when k = l.
(b) Show ε(x)ι(x)+ ι(x)ε(x) = m|x |2 for any x ∈ Rn .

Exercise 1.27 (a) Prove Equation 1.34.
(b) Prove Theorem 1.35.

Exercise 1.28 For u, v ∈ Cn(R), show that uv = 1 if and only if vu = 1.

Exercise 1.29 For n ≥ 3, show that the polynomial x2
1 + · · ·+ x2

n is irreducible over
C. However, show that x2

1 + · · · + x2
n is a product of linear factors over Cn(R).

Exercise 1.30 Let (·, ·) be any symmetric bilinear form on Rn or Cn . Generalize the
notion of Clifford algebra in Definition 1.26 by replacing x⊗x+|x |2 by x⊗x−(x, x)
in the definition of I. Prove the analogue of Theorem 1.35 still holds. If (·, ·) has
signature p, q on Rn , the resulting Clifford algebra is denoted Cp,q(R) (so Cn(R) =
C0,n(R)) and if (·, ·) is the negative dot product on Cn , the resulting Clifford algebra
is denoted by Cn(C).

Exercise 1.31 Show that there is an algebra isomorphism Cn−1(R) ∼= C+n (R) in-
duced by mapping a + b, a ∈ C+n−1(R) and b ∈ C−n−1(R) to a + ben . Conclude that
dim C+n (R) = 2n−1.

Exercise 1.32 Use induction on n to show that any g ∈ O(n) may be written as a
product of at most 2n reflections. Hint: If g ∈ O(n) and ge1 �= e1, show that there is
a reflection r1 so that r1ge1 = e1. Now use orthogonality and induction.

Exercise 1.33 Show that A(cos t + e1e2 sin t) =
⎛⎝ cos 2t − sin 2t 0

sin 2t cos 2t 0
0 0 In−2

⎞⎠.
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Exercise 1.34 (a) Under the isomorphism C1(R) ∼= C induced by e1 → i , show that
Pin(1) = {±1,±i} and Spin(1) = {±1} with A(±1) = I and A(±i) = −I on Ri .
(b) Under the isomorphism C2(R) ∼= H induced by e1 → i , e2 → j , and e1e2 → k,
show that Pin(2) = {cos θ+k sin θ , i sin θ+ j cos θ} and Spin(2) = {cos θ+k sin θ}
with A(cos θ + k cos θ) acting as rotation by 2θ in the i j-plane.

Exercise 1.35 (a) For n odd, show that the center of Spinn(R) is {±1}.
(b) For n even, show that the center of Spinn(R) is {±1,±e1e2 · · · en}.
Exercise 1.36 (a) Replace R by C in Definitions 1.36 and 1.37 to define Spinn(C)

(c.f. Exercise 1.30). Modify the proof of Theorem 1.40 to show A realizes Spinn(C)

as a connected double cover of SO(n,C) = {g ∈ SL(n,C) | (gx, gy) = (x, y) for
all x, y ∈ Cn}, where (·, ·) is the negative dot product on Cn .
(b) Replace Cn(R) by Cp,q(R) (Exercise 1.30) in Definitions 1.36 and 1.37 to define
Spinp,q(R). Modify the proof of Theorem 1.40 to show that A realizes Spinp,q(R) as
a double cover of SO(p, q)0, where SO(p, q) = {g ∈ SL(n,R) | (gx, gy) = (x, y)
for all x, y ∈ Cn} and (·, ·) has signature p, q on Rn .
(c) For p, q > 0 but not both 1, show that Spinp,q(R) is connected. For p = q = 1,
show that Spin1,1(R) has two connected components.

Exercise 1.37 (a) Let so(n) = {X ∈ Mn,n(R) | Xt = −X} and q =∑
i �= j Rei e j ⊆

Cn(R). Show that so(n) and q are closed under the bracket (Lie) algebra structure
given by [x, y] = xy − yx .
(b) Show that there is a (Lie) bracket algebra isomorphism from so(n) to q induced
by the map Ei, j − E j,i → 1

2 ei e j where {Ei, j } is the set of standard basis elements
for Mn,n(R).

1.4 Integration

1.4.1 Volume Forms

If � : M → N is a smooth map of manifolds, write d� : Tp(M) → T�(p)(N )

for the differential of � where Tp(M) is the tangent space of M at p. Write �∗ :
T ∗
�(p)(N ) → T ∗

p (M) for the pullback of � where T ∗
p (M) is the cotangent space

of M at p. As usual, extend the definition of the pullback to the exterior algebra,
�∗ :

∧
T ∗
�(p)(N )→∧

T ∗
p (M), as a map of algebras.

If M is an n-dimensional manifold, M is said to be orientable if there exists a
nonvanishing element ωM ∈ ∧∗

n(M) where
∧∗

n(M) is the exterior n-bundle of the
cotangent bundle of M . When this happens, ωM determines an orientation on M that
permits integration of n-forms on M .

Suppose ωM (ωN ) is a nonvanishing n-form providing an orientation on M (N ). If
� is a diffeomorphism, � : M → N , then �∗ωN = cωM where c is a nonvanishing
function on M . When c > 0, � is called orientation preserving and when c < 0,
� is called orientation reversing. Similarly, a chart (U, ϕ) of M is said to be an
orientation preserving chart if U is open and if ϕ is orientation preserving with
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respect to the orientations provided by ω|U , i.e., ω restricted to U , and by the standard
volume form on ϕ(U ) ⊆ Rn , i.e., dx1 ∧ dx2 ∧ · · · ∧ dxn|ϕ(U ).

If ω is a continuous n-form compactly supported in U where (U, ϕ) is an orien-
tation preserving chart, recall the integral of ω with respect to the orientation on M
induced by ωM is defined as ∫

M
ω =

∫
ϕ(U )

(ϕ−1)∗ω.

As usual (see [8] or [88] for more detail), the requirement that ω be supported in
U is removed by covering M with orientation preserving charts, multiplying ω by a
partition of unity subordinate to that cover, and summing over the partition using the
above definition on each chart.

The change of variables formula from differential geometry is well known. If
� : M → N is a diffeomorphism of oriented manifolds and ω′ is any continuous
compactly supported n-form on N , then∫

N
ω′ = ±

∫
M
�∗ω′(1.41)

with the sign being a + when � is orientation preserving and a − when � is ori-
entation reversing. A simple generalization of Equation 1.41 applicable to covering
maps is also useful. Namely, if 	 : M → N is an m-fold covering map of oriented
manifolds and ω′ is any continuous compactly supported n-form on N , then

m
∫

N
ω′ = ±

∫
M
	∗ω′(1.42)

with the sign determined by whether 	 is orientation preserving or orientation re-
versing. The proof follows immediately from Equation 1.41 by using a partition of
unity argument and the definition of a covering (Exercise 1.39).

Finally, functions on M can be integrated by fixing a volume form on M . A vol-
ume form is simply a fixed choice of a nonvanishing n-form, ωM , defining the orien-
tation on M . If f is a continuous compactly supported function on M , integration is
defined with respect to this volume form by∫

M
f =

∫
M

f ωM .

It is easy to see (Exercise 1.40) that switching the volume form ωM to cωM , for some
c ∈ R\{0}, multiplies the value of

∫
M f by |c| (for negative c, the orientation is

switched as well as the form against which f is integrated). In particular, the value
of
∫

M f depends only on the choice of volume form modulo ±ωM .

1.4.2 Invariant Integration

Let G be a Lie group of dimension n.
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Definition 1.43. (1) Write lg and rg for left and right translation by g ∈ G, i.e.,
lg(h) = gh and rg(h) = hg for h ∈ G.
(2) A volume form, ωG , on G is called left invariant if l∗gωG = ωG and right invariant
if r∗gωG = ωG for all g ∈ G.

Lemma 1.44. (1) Up to multiplication by a nonzero scalar, there is a unique left
invariant volume form on G.
(2) If G is compact, up to multiplication by±1, there is a unique left invariant volume
form, ωG, on G, so

∫
G 1 = 1 with respect to ωG.

Proof. Since dim
∧∗

n(G)e = 1, up to multiplication by a nonzero scalar, there is a
unique choice of ωe ∈

∧∗
n(G)e. This choice uniquely extends to a left invariant n-

form, ω, by defining ωg = l∗g−1ωe. For part (2), recall that replacing the volume form
ω by cω multiplies the value of the resulting integral by |c|. Because G is compact,∫

G 1 is finite with respect to the volume form ω. Thus there is a unique c, up to
multiplication by ±1, so that

∫
G 1 = 1 with respect to the volume form cω. �

Definition 1.45. For compact G, let ωG be a left invariant volume form on G nor-
malized so

∫
G 1 = 1 with respect to ωG . For any f ∈ C(G), define∫

G
f (g) dg =

∫
G

f =
∫

G
f ωG

with respect to the orientation given by ωG . By using the Riesz Representation The-
orem, dg is also used to denote its completion to a Borel measure on G called Haar
measure (see [37] or [73] for details).

If G has a suitably nice parametrization, it is possible to use the relation ωg =
l∗g−1ωe to pull the volume form back to an explicit integral over Euclidean space (see
Exercise 1.44).

Theorem 1.46. Let G be compact. The measure dg is left invariant, right invariant,
and invariant under inversion, i.e.,∫

G
f (hg) dg =

∫
G

f (gh) dg =
∫

G
f (g−1) dg =

∫
G

f (g) dg

for h ∈ G and f a Borel integrable function on G.

Proof. It suffices to work with continuous f . Left invariance follows from the left
invariance of ωG and the change of variables formula in Equation 1.41 (lh is clearly
orientation preserving):∫

G
f (hg) dg =

∫
G
( f ◦ lh)ωG =

∫
G
( f ◦ lh)(l

∗
hωG)

=
∫

G
l∗h( f ωG) =

∫
G

f ωG =
∫

G
f (g) dg.
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To address right invariance, first observe that lg and rg commute. Thus the n-
form r∗gωG is still left invariant. By Lemma 1.44, this means r∗gωG = c(g)−1ωG

for some c(g) ∈ R\{0}. Because rg ◦ rh = rhg , it follows that the modular function
c : G → R\{0} is a homomorphism. The compactness of G clearly forces |c(g)| = 1
(Exercise 1.41).

Since rg is orientation preserving if and only if c(g) > 0, the definitions and
Equation 1.41 imply that∫

G
f (gh) dg =

∫
G
( f ◦ rh)ωG = c(h)

∫
G
( f ◦ rh)(r

∗
hωG)

= c(h)
∫

G
r∗h ( f ωG) = c(h) sgn (c(h))

∫
G

f ωG =
∫

G
f (g) dg.

Invariance of the measure under the transformation g → g−1 is handled similarly
(Exercise 1.42). �

We already know that ωG is the unique (up to ±1) left invariant normalized vol-
ume form on G. More generally, the corresponding measure dg is the unique left
invariant normalized Borel measure on G.

Theorem 1.47. For compact G, the measure dg is the unique left invariant Borel
measure on G normalized so G has measure 1.

Proof. Suppose dh is a left invariant Borel measure on G normalized so G has mea-
sure 1. Then for nonnegative measurable f , definitions and the Fubini–Tonelli The-
orem show that∫

G
f (g) dg =

∫
G

∫
G

f (g) dg dh =
∫

G

∫
G

f (gh) dg dh

=
∫

G

∫
G

f (gh) dh dg =
∫

G

∫
G

f (h) dh dg =
∫

G
f (h) dh,

which is sufficient to establish dg = dh. �

1.4.3 Fubini’s Theorem

Part of the point of Fubini’s Theorem is to reduce integration in multiple variables
to more simple iterated integrals. Here we examine a variant that is appropriate for
compact Lie groups. In the special case where the Hi are compact Lie groups and
G = H1 × H2, Fubini’s Theorem will simply say that∫

H1×H2

f (g) dg =
∫

H1

(∫
H2

f (h1h2) dh2

)
dh1

for integrable f on G.
More generally, let G be a Lie group and H a closed subgroup of G, so (Theorem

1.7) G/H is a manifold. In general, G/H may not be orientable (Exercise 1.38). The
next theorem tells us when G/H is orientable and how its corresponding measure
relates to dg and dh, the invariant measures on G and H . Abusing notation, continue
to write lg for left translation by g ∈ G on G/H .
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Theorem 1.48. Let G be a compact Lie group and H a closed subgroup of G. If l∗h
is the identity map on

∧∗
top(G/H)eH for all h ∈ H (which is always true when H

is connected), then, up to scalar, G/H possesses a unique left G-invariant volume
form, ωG/H , and a corresponding left invariant Borel measure, d(gH). Up to ±1,
ωG/H can be uniquely normalized, so∫

G/H
F =

∫
G

F ◦ π,

where π : G → G/H is the canonical projection and F is an integrable function on
G/H. In this case, ∫

G
f (g) dg =

∫
G/H

(∫
H

f (gh) dh

)
d(gH),

where f is an integrable function on G.

Proof. Consider first the question of the existence of a left invariant volume form on
G/H . As in the proof of Lemma 1.44, let ωeH ∈ ∧∗

top(G/H)eH . If it makes sense
to define the form ω by setting ωgH = l∗g−1ωeH , then ω is clearly left invariant and
unique up to scalar multiplication. However, this process is well defined if and only
if l∗g−1 = l∗

(gh)−1 on
∧∗

top(G/H)eH for all h ∈ H and g ∈ G. Since lgh = lg ◦ lh , it

follows that ωG/H exists if and only if l∗h is the identity map on
∧∗

top(G/H)eH for all
h ∈ H .

Since
∧∗

top(G/H)eH is one-dimensional, l∗hωeH = c(h)ωeH for h ∈ H and some
c(h) ∈ R\{0}. The equality lhh′ = lh ◦ lh′ shows that c : H → R\{0} is a homomor-
phism. The compactness of G shows that c(h) ∈ {±1}. If H is connected, the image
of H under c must be connected and so c(h) = 1, which shows that ωG/H exists.

Suppose that ωG/H exists. Since dh is invariant, the function g → ∫
H f (gh) dh

may be viewed as a function on G/H . Working with characteristic functions, the as-
signment f → ∫

G/H

(∫
H f (gh) dh

)
d(gH) defines a normalized left invariant Borel

measure on G. By Theorem 1.47, this measure must be dg and so the second dis-
played formula of this theorem is established. To see that the first displayed equation
holds, let f = F ◦ π . �

1.4.4 Exercises

Exercise 1.38 (a) Show that the antipode map, x → −x , on S2n is orientation re-
versing.
(b) Show P(R2n) is not orientable.
(c) Find a compact Lie group G with a closed subgroup H , so G/H ∼= P(R2n).

Exercise 1.39 If 	 : M → N is an m-fold covering map of oriented manifolds and
ω′ is any continuous compactly supported n-form on N , show that

m
∫

N
ω′ = ±

∫
M
	∗ω′
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with the sign determined by whether 	 is orientation preserving or orientation re-
versing.

Exercise 1.40 If f is a continuous compactly supported function on an orientable
manifold M , show that switching the volume form from ωM to cωM , for some c ∈
R\{0}, multiplies the value of

∫
M f by |c|.

Exercise 1.41 If G is a compact Lie group and c : G → R\{0} is a homomorphism,
show that c(g) ∈ {±1} for all g ∈ G and that c(g) = 1 if G is connected.

Exercise 1.42 (a) For f a continuous function on a compact Lie group G, show that∫
G f (g−1) dg = ∫

G f (g) dg.
(b) If ϕ is a smooth automorphism of G, show that

∫
G f ◦ ϕ = ∫

G f .

Exercise 1.43 Let G be the Lie group {
(

x y
0 1

)
| x, y ∈ R and x > 0}. Show that

the left invariant measure is x−2dxdy but the right invariant measure is x−1dxdy.

Exercise 1.44 Let G be a Lie group and ϕ : U → V ⊆ Rn a chart of G with e ∈ U ,
0 ∈ V , and ϕ(e) = 0. Suppose f is any integrable function on G supported in U .
(a) For x ∈ V , write g = g(x) = ϕ−1(x) ∈ U . Show the function lx = ϕ ◦ lg−1 ◦ ϕ−1

is well defined on a neighborhood of x .
(b) Write

∣∣ ∂lx
∂x |x

∣∣ for the absolute value of the determinant of the Jacobian matrix of
lx evaluated at x , i.e.,

∣∣ ∂lx
∂x |x

∣∣ = |det J |, where the Jacobian matrix J is given by

Ji, j = ∂(lx ) j

∂xi
|x . Pull back the relation ωg = l∗g−1ωe to show that the left invariant

measure dg can be scaled so that∫
G

f dg =
∫

V
( f ◦ ϕ−1)(x)

∣∣∣∣∂lx

∂x
|x
∣∣∣∣ dx1 . . . dxn.

(c) Show that changing lx to rx = ϕ ◦ rg−1 ◦ ϕ−1 in part (b) gives an expression for
the right invariant measure.
(d) Write {( ∂

∂xi
|y)}ni=1 for the standard basis of of Ty(Rn). Show that the Jacobian

matrix J is the change of basis matrix for the bases {d(lg−1 ◦ ϕ−1)( ∂
∂xi
|x )}ni=1 and

{dϕ−1( ∂
∂xi
|0)}ni=1 of Te(G), i.e., d(lg−1 ◦ ϕ−1)( ∂

∂xi
|x ) =

∑
j Ji, j dϕ−1( ∂

∂x j
|0).

(e) Fix a basis {vi }ni=1 of Te(G). Let C be the change of basis matrix for the bases
{d(lg−1 ◦ ϕ−1)( ∂

∂xi
|x )}ni=1 and {v}ni=1, i.e., d(lg−1 ◦ ϕ−1)( ∂

∂xi
|x ) =

∑
j Ci, jv j . After

rescaling dg, conclude that∫
G

f dg =
∫

V
( f ◦ ϕ−1)(x) |det C | dx1 · · · dxn .

(f) Let H be a closed subgroup of a compact Lie group G and now suppose ϕ :
U → V ⊆ Rn a chart of G/H with eH ∈ U , 0 ∈ V , and ϕ(e) = 0. Suppose l∗h
is the identity map on

∧∗
top(G/H)eH for all h ∈ H (which is always true when H

is connected) and F is any integrable function on G/H supported in U . Fix a basis
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{vi }ni=1 of TeH (G/H) and define C as in part (e). Show that that d(gH) can be scaled
so that ∫

G/H
F d(gH) =

∫
V
(F ◦ ϕ−1)(x) |det C | dx1 · · · dxn .

Exercise 1.45 (a) View GL(n,R) as an open dense set in Mn,n(R) and identify
functions on GL(n,R) with functions on Mn,n(R) that vanish on the complement of
GL(n,R). Show that the left and right invariant measure on GL(n,R) is given by∫

GL(n,R)

f (g) dg =
∫

Mn,n(R)

f (X) |det X |−n d X,

where d X is the standard Euclidean measure on Mn,n(R) ∼= Rn2
. In particular, the

invariant measure for the multiplicative group R× = R\{0} is dx
|x | .

(b) Show that the invariant measure for the multiplicative group C× is dxdy
x2+y2 with

respect to the usual embedding of C× into C ∼= R2.
(c) Show that the invariant measure for the multiplicative group H× is dxdydudv

(x2+y2+u2+v2)
2

with respect to the usual embedding of H× into H ∼= R4.

Exercise 1.46 (a) On S2, show that the SO(3) normalized invariant measure is given
by the integral 1

4π

∫ π

0

∫ 2π
0 F(cos θ sinφ, sin θ sinφ, cosφ) sinφ dθdφ.

(b) Let f be the function on SO(3) that maps a matrix to the determinant of the
lower right 2× 2 submatrix. Evaluate

∫
SO(3) f .

Exercise 1.47 Let

α(θ) =
⎛⎝ cos θ − sin θ 0

sin θ cos θ 0
0 0 1

⎞⎠ , β (θ) =
⎛⎝ 1 0 0

0 cos θ − sin θ

0 sin θ cos θ

⎞⎠ ,

and γ (θ) =
⎛⎝ cos θ 0 − sin θ

0 1 0
sin θ 0 cos θ

⎞⎠ .

(a) Verify that (cos θ sinφ, sin θ sinφ, cosφ) = α(θ)β(φ)e3 where e3 = (0, 0, 1).
Use the isomorphism S2 ∼= SO(3)/SO(2) to show that each element g ∈ SO(3)
can be written as g = α(θ)β(φ)α(ψ) for 0 ≤ θ, ψ < 2π and 0 ≤ φ ≤ π and that
(θ, φ, ψ) is unique when φ �= 0, π . The coordinates (θ, φ, ψ) for SO(3) are called
the Euler angles.
(b) Viewing the map (θ, φ, ψ)→ g = α(θ)β(φ)α(ψ) as a map into M3,3(R) ∼= R9,
show that

g−1 ∂g

∂θ
= β ′(0) sinφ cosψ + γ ′(0) sinφ sinψ + α′(0) cosφ

g−1 ∂g

∂φ
= β ′(0) sinψ − γ ′(0) cosψ

g−1 ∂g

∂ψ
= α′(0).
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For 0 < θ,ψ < 2π and 0 < φ < π , conclude that the inverse of the map
(θ, φ, ψ)→ α(θ)β(φ)α(ψ) is a chart for an open dense subset of SO(3).
(c) Use Exercise 1.44 to show that the invariant integral on SO(3) is given by∫

SO(3)
f (g) dg = 1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f (α(θ)β(φ)α(ψ)) sinφ dθdφdψ

for integrable f on SO(3).

Exercise 1.48 Let

α(θ) =
(

ei θ
2 0

0 e−i θ
2

)
and β (θ) =

(
cos θ

2 − sin θ
2

sin θ
2 cos θ

2

)
.

As in Exercise 1.47, show that the invariant integral on SU (2) is given by∫
SU (2)

f (g) dg = 1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f (α(θ)β(φ)α(ψ)) sinφ dθdφdψ

for integrable f on SU (2).




