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Representations

Lie groups are often the abstract embodiment of symmetry. However, most fre-
quently they manifest themselves through an action on a vector space which will
be called a representation. In this chapter we confine ourselves to the study of finite-
dimensional representations.

2.1 Basic Notions

2.1.1 Definitions

Definition 2.1. A representation of a Lie group G on a finite-dimensional complex
vector space V is a homomorphism of Lie groups π : G → GL(V ). The dimension
of a representation is dim V .

Technically, a representation should be denoted by the pair (π, V ). When no
ambiguity exists, it is customary to relax this requirement by referring to a repre-
sentation (π, V ) as simply π or as V . Some synonyms for expressing the fact that
(π, V ) is a representation of G include the phrases V is a G-module or G acts on V .
As evidence of further laziness, when a representation π is clearly understood it is
common to write

gv or g · v in place of (π(g))(v)

for g ∈ G and v ∈ V .
Although smoothness is part of the definition of a homomorphism (Definition

1.9), in fact we will see that continuity of π is sufficient to imply smoothness (Ex-
ercise 4.13). We will also eventually need to deal with infinite-dimensional vector
spaces. The additional complexity of infinite-dimensional spaces will require a slight
tweaking of our definition (Definition 3.11), although the changes will not affect the
finite-dimensional case.

Two representations will be called equivalent if they are the same up to, basically,
a change of basis. Recall that Hom(V, V ′) is the set of all linear maps from V to V ′.
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Definition 2.2. Let (π, V ) and (π ′, V ′) be finite-dimensional representations of a Lie
group G.
(1) T ∈ Hom(V, V ′) is called an intertwining operator or G-map if T ◦ π = π ′ ◦ T .
(2) The set of all G-maps is denoted by HomG(V, V ′).
(3) The representations V and V ′ are equivalent, V ∼= V ′, if there exists a bijective
G-map from V to V ′.

2.1.2 Examples

Let G be a Lie group. A representation of G on a finite-dimensional vector space V
smoothly assigns to each g ∈ G an invertible linear transformation of V satisfying

π(g)π(g′) = π(gg′)

for all g, g′ ∈ G. Although surprisingly important at times, the most boring example
of a representation is furnished by the map π : G → GL(1,C) = C\{0} given by
π(g) = 1. This one-dimensional representation is called the trivial representation.
More generally, the action of G on a vector space is called trivial if each g ∈ G acts
as the identity operator.

2.1.2.1 Standard Representations Let G be GL(n,F), SL(n,F), U (n), SU (n),
O(n), or SO(n). The standard representation of G is the representation on Cn where
π(g) is given by matrix multiplication on the left by the matrix g ∈ G. It is clear that
this defines a representation.

2.1.2.2 SU(2) This example illustrates a general strategy for constructing new rep-
resentations. Namely, if a group G acts on a space M , then G can be made to act on
the space of functions on M (or various generalizations of functions).

Begin with the standard two-dimensional representation of SU (2) on C2 where
gη is simply left multiplication of matrices for g ∈ SU (2) and η ∈ C2. Let

Vn(C2)

be the vector space of holomorphic polynomials on C2 that are homogeneous of
degree n. A basis for Vn(C2) is given by {zk

1zn−k
2 | 0 ≤ k ≤ n}, so dim Vn(C2) =

n + 1.
Define an action of SU (2) on Vn(C2) by setting

(g · P)(η) = P(g−1η)

for g ∈ SU (2), P ∈ Vn(C2), and η ∈ C2. To verify that this is indeed a representa-
tion, calculate that

[g1 · (g2 · P)] (η) = (g2 · P)(g−1
1 η) = P(g−1

2 g−1
1 η) = P((g1g2)

−1η)

= [(g1g2) · P] (η)

so that g1 · (g2 · P) = (g1g2) · P . Since smoothness and invertibility are clear, this
action yields an n + 1-dimensional representation of SU (2) on Vn(C2).
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Although these representations are fairly simple, they turn out to play an ex-
tremely important role as a building blocks in representation theory. With this in

mind, we write them out in all their glory. If g =
(

a −b
b a

)
∈ SU (2), then

g−1 =
(

a b
−b a

)
, so that g−1η = (aη1 + bη2,−bη1 + aη2) where η = (η1, η2).

In particular, if P = zk
1zn−k

2 , then (g · P)(η) = (aη1+bη2)
k(−bη1+aη2)

n−k , so that(
a −b
b a

)
· (zk

1zn−k
2 ) = (az1 + bz2)

k(−bz1 + az2)
n−k .(2.3)

Let us now consider another family of representations of SU (2). Define

V ′
n

to be the vector space of holomorphic functions in one variable of degree less than
or equal to n. As such, V ′

n has a basis consisting of {zk | 0 ≤ k ≤ n}, so V ′
n is also

n + 1-dimensional. In this case, define an action of SU (2) on V ′
n by

(g · Q) (u) = (−bu + a)n Q

(
au + b

−bu + a

)
(2.4)

for g =
(

a −b
b a

)
∈ SU (2), Q ∈ V ′

n , and u ∈ C. It is easy to see that (Exercise 2.1)

this yields a representation of SU (2).
In fact, this apparently new representation is old news since it turns out that

V ′
n
∼= Vn(C2). To see this, we need to construct a bijective intertwining operator

from Vn(C2) to V ′
n . Let T : Vn(C2) → V ′

n be given by (T P)(u) = P(u, 1) for
P ∈ Vn(C2) and u ∈ C. This map is clearly bijective. To see that T is a G-map, use
the definitions to calculate that

[T (g · P)] (u) = (g · P) (u, 1) = P(au + b,−bu + a)

= (−bu + a)n P

(
au + b

−bu + a
, 1

)
= (−bu + a)n (T P) (u) = [g · (T P)] (u),

so T (g · P) = g · (T P) as desired.

2.1.2.3 O(n) and Harmonic Polynomials Let

Vm(Rn)

be the vector space of complex-valued polynomials on Rn that are homogeneous
of degree m. Since Vm(Rn) has a basis consisting of {xk1

1 xk2
2 · · · xkn

n | ki ∈ N and
k1 + k2 + · · · + kn = m}, dim Vm(Rn) = (m+n−1

m

)
(Exercise 2.4). Define an action of

O(n) on Vm(Rn) by
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(g · P)(x) = P(g−1x)

for g ∈ O(n), P ∈ Vm(Rn), and x ∈ Rn . As in §2.1.2.2, this defines a representation.
As fine and natural as this representation is, it actually contains a smaller, even nicer,
representation.

Write � = ∂2
x1
+ · · · + ∂2

xn
for the Laplacian on Rn . It is a well-known corollary

of the chain rule and the definition of O(n) that � commutes with this action, i.e.,
�(g · P) = g · (�P) (Exercise 2.5).

Definition 2.5. Let Hm(Rn) be the subspace of all harmonic polynomials of degree
m, i.e., Hm(Rn) = {P ∈ Vm(Rn) | �P = 0}.

If P ∈ Hm(Rn) and g ∈ O(n), then �(g · P) = g · (�P) = 0 so that g · P ∈
Hm(Rn). In particular, the action of O(n) on Vm(Rn) descends to a representation of
O(n) (or SO(n), of course) on Hm(Rn). It will turn out that these representations do
not break into any smaller pieces.

2.1.2.4 Spin and Half-Spin Representations Any representation (π, V ) of SO(n)
automatically yields a representation of Spinn(R) by looking at (π ◦A, V ) where A
is the covering map from Spinn(R) to SO(n). The set of representations of Spinn(R)

constructed this way is exactly the set of representations in which −1 ∈ Spinn(R)

acts as the identity operator. In this section we construct an important representation,
called the spin representation, of Spinn(R) that is genuine, i.e., one that does not
originate from a representation of SO(n) in this manner.

Let (·, ·) be the symmetric bilinear form on Cn given by the dot product. Write
n = 2m when n is even and write n = 2m + 1 when n is odd. Recall a subspace
W ⊆ Cn is called isotropic if (·, ·) vanishes on W . It is well known that Cn can be
written as a direct sum

Cn =
{

W ⊕ W ′ n even
W ⊕ W ′ ⊕ Ce0 n odd

(2.6)

for W, W ′ maximal isotropic subspaces (of dimension m) and e0 a vector that is
perpendicular to W ⊕W ′ and satisfies (e0, e0) = 1 . Thus, when n is even, take W =
{(z1, . . . , zm, i z1, . . . , i zm) | zk ∈ C} and W ′ = {(z1, . . . , zm,−i z1, . . . ,−i zm) |
zk ∈ C}. For n odd, take W = {(z1, . . . , zm, i z1, . . . , i zm, 0) | zk ∈ C}, W ′ =
{(z1, . . . , zm,−i z1, . . . ,−i zm, 0) | zk ∈ C}, and e0 = (0, . . . , 0, 1).

Compared to our previous representations, the action of the spin representation
is fairly complicated. We state the necessary definition below, although it will take
some work to provide appropriate motivation and to show that everything is well
defined. Recall (Lemma 1.39) that one realization of Spinn(R) is {x1x2 · · · x2k | xi ∈
Sn−1 for 2 ≤ 2k ≤ 2n}.
Definition 2.7. (1) The elements of S = ∧

W are called spinors and Spinn(R) has a
representation on S called the spin representation.
(2) For n even, the action for the spin representation of Spinn(R) on S is induced by
the map
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x → ε(w)− 2ι(w′),

where x ∈ Sn−1 is uniquely written as x = w + w′ according to the decomposition
Rn ⊆ Cn = W ⊕ W ′.
(3) Let S+ = ∧+W = ⊕

k

∧2k W and S− = ∧−W = ⊕
k

∧2k+1W . As vector
spaces S = S+ ⊕ S−.
(4) For n even, the spin representation action of Spinn(R) on S preserves the sub-
spaces S+ and S−. These two spaces are therefore representations of Spinn(R) in
their own right and called the half-spin representations.
(5) For n odd, the action for the spin representation of Spinn(R) on S is induced by
the map

x → ε(w)− 2ι(w′)+ (−1)deg miζ ,

where x ∈ Sn−1 is uniquely written as x = w + w′ + ζe0 according to the decom-
position Rn ⊆ Cn = W ⊕ W ′ ⊕ Ce0, (−1)deg is the linear operator acting by ±1 on∧±W , and miζ is multiplication by iζ .

To start making proper sense of this definition, let Cn(C) = Cn(R) ⊗R C.
From the definition of Cn(R), it is easy to see that Cn(C) is simply T (Cn) mod-
ulo the ideal generated by either {(z ⊗ z + (z, z)) | z ∈ Cn} or equivalently by
{(z1 ⊗ z2 + z2 ⊗ z1 + 2(z1, z2)) | zi ∈ Cn} (c.f. Exercise 1.30).

Since Spinn(R) ⊆ Cn(C), Cn(C) itself becomes a representation for Spinn(R)

under left multiplication. Under this action, −1 ∈ Spinn(R) acts as m−1, and so
this representation is genuine. However, the spin representations turn out to be much
smaller than Cn(C). One way to find these smaller representations is to restrict left
multiplication of Spinn(R) to certain left ideals in Cn(C). While this method works
(e.g., Exercise 2.12), we take an equivalent path that realizes Cn(C) as a certain en-
domorphism ring.

Theorem 2.8. As algebras,

Cn(C) ∼=
{

End
∧

W n even(
End

∧
W
)⊕(

End
∧

W
)

n odd.

Proof. n even: For z = w + w′ ∈ Cn , define �̃ : Cn → End
∧

W by

�̃(z) = ε(w)− 2ι(w′).

As an algebra map, extend �̃ to �̃ : Tn(C) → End
∧

W . A simple calculation
(Exercise 2.6) shows �̃(z)2 = m−2(w,w′) = m−(z,z) so that �̃ descends to a map
�̃ : Cn(C)→ End

∧
W .

To see that �̃ is an isomorphism, it suffices to check that �̃ is surjective since
Cn(C) and End

∧
W both have dimension 2n . Pick a basis {w1, . . . , wm} of W and

let {w′
1, . . . , w

′
m} be the dual basis for W , i.e., (wi , w

′
j ) is 0 when i �= j and 1

when i = j . With respect to this basis, �̃ acts in a particularly simple fashion. If
1 ≤ i1 < · · · < ik ≤ m, then �̃(wi1 · · ·wikw

′
i1
· · ·w′

ik
) kills

∧pW for p < k, maps
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∧pW for p > k. An inductive argument

on n − k therefore shows that the image of �̃ contains each projection of
∧

W onto
Cwi1 ∧ · · ·∧wik . Successive use of the operators �̃(wi ) and �̃(w′

j ) can then be used

to map wi1∧· · ·∧wik to any other w j1∧· · ·∧w jl . This implies that �̃ is surjective (in
familiar matrix notation, this shows that the image of �̃ contains all endomorphisms
corresponding to each matrix basis element Ei, j ).

n odd: For z = w + w′ + ζe0 ∈ Cn , let �̃± : Cn → End
∧

W by

�̃±(z) = ε(w)− 2ι(w′)± (−1)deg miζ .

As an algebra map, extend �̃± to �̃± : Tn(C) → End
∧

W . A simple calculation
(Exercise 2.6) shows that �̃±(z)2 = m−(z,z) so that �̃± descends to a map �̃± :
Cn(C) → End

∧
W . Thus the map �̃ : Cn(C) → (

End
∧

W
)⊕(

End
∧

W
)

given
by �̃(v) = (�̃+ (v) , �̃− (v)) is well defined.

To see that �̃ is an isomorphism, it suffices to verify that �̃ is surjective since
Cn(C) and

(
End

∧
W
)⊕(

End
∧

W
)

both have dimension 2n . The argument is sim-
ilar to the one given for the even case and left as an exercise (Exercise 2.7). �
Theorem 2.9. As algebras,

C+n (C) ∼=
{ (

End
∧+W

)⊕(
End

∧−W
)

n even(
End

∧
W
)

n odd.

Proof. n even: From the definition of �̃ in the proof of Theorem 2.8, it is clear
that the operators in �̃(C+n (C)) preserve

∧±W . Thus restricted to C+n (C), �̃ may
be viewed as a map to

(
End

∧+W
)⊕(

End
∧−W

)
. Since this map is already

known to be injective, it suffices to show that dim
[(

End
∧+W

)⊕(
End

∧−W
)] =

dim C+n (C). In fact, it is a simple task (Exercise 2.9) to see that both dimensions
are 2n−1. For instance, Equation 1.34 and Theorem 1.35 show dim C+n (C) = 2n−1.
Alternatively, use Exercise 1.3.1 to show that Cn−1(R) ∼= C+n (R).

n odd: In this case, operators in �̃(C+n (C)) no longer have to preserve
∧±W .

However, restriction of the map �̃+ to C+n (C) yields a map of C+n (C) to End
∧

W
(alternatively, �̃− could have been used). By construction, this map is known to be
surjective. Thus to see that the map is an isomorphism, it again suffices to show that
dim

(
End

∧
W
) = dim C+n (C). As before, it is simple (Exercise 2.9) to see that both

dimensions are 2n−1. �
At long last, the origin of the spin representations can be untangled. Since

Spinn(R) ⊆ C+n (C), Definition 2.7 uses the homomorphism �̃ from Theorem 2.9
for n even and the homomorphism �̃+ for n odd and restricts the action to Spinn(R).
In the case of n even, �̃ can be further restricted to either End

∧±W to construct
the two half-spin representations. Finally, −1 ∈ Spinn(R) acts by m−1, so the spin
representations are genuine as claimed.

2.1.3 Exercises

Exercise 2.1 Show that Equation 2.4 defines a representation of SU (2) on V ′
n .
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Exercise 2.2 (a) Find the joint eigenspaces for the action of {diag(eiθ , e−iθ ) |
θ ∈ R} ⊆ SU (2) on Vn(C2). That is, find all nonzero P ∈ Vn(C2), so that(
diag(eiθ , e−iθ )

) · P = λθ P for all θ ∈ R and some λθ ∈ C.
(b) Find the joint eigenspaces for the action of SO(2) on Vm(R2) and on Hm(R2).
(c) Find the joint eigenspaces for the action of

{(cos θ1 + e1e2 sin θ1) (cos θ2 + e3e4 sin θ2) | θi ∈ R} ⊆ Spin(4)

on the half-spin representations S±.

Exercise 2.3 Define a Hermitian inner product on Vn(C2) by(∑
k

ak zk
1zn−k

2 ,
∑

k

bk zk
1zn−k

2

)
=
∑

k!(n − k)! akbk .

For g ∈ SU (2), show that
(
g P, g P ′) = (P, P ′) for P, P ′ ∈ Vn(C2).

Exercise 2.4 Show that | {xk1
1 xk2

2 · · · xkn
n | ki ∈ N and k1 + k2 + · · · + kn = m} |=(m+n−1

m

)
.

Exercise 2.5 For g ∈ O(n) and f a smooth function on Rn , show that �( f ◦ lg) =
(� f ) ◦ lg where lg(x) = gx .

Exercise 2.6 (a) For n even and �̃(z) = ε(w) − 2ι(w′) for z = w + w′ ∈ Cn with
w ∈ W and w′ ∈ W ′, show �̃(z)2 = m−2(w,w′) = m−(z,z).
(b) For n odd and �̃(z) = ε(w)− 2ι(w′)± (−1)deg miζ for z = w+w′ + ζe0 ∈ Cn

with w ∈ W , w′ ∈ W ′, and ζ ∈ C, show that �̃(z)2 = m−2(w,w′)−ζ 2 = m−(z,z).

Exercise 2.7 In the proof of Theorem 2.8, show that the map �̃ is surjective when n
is odd.

Exercise 2.8 Use Theorem 2.8 to compute the center of Cn(C).

Exercise 2.9 From Theorem 2.9, show directly that dim C+n (C) and

dim
[(

End
∧+

W
)⊕(

End
∧−

W
)]

are both 2n−1 for n even, and dim
(
End

∧
W
) = 2n−1 for n odd.

Exercise 2.10 Up to equivalence, show that the spin and half-spin representations
are independent of the choice of the maximal isotropic decomposition for Cn (as in
Equation 2.6).

Exercise 2.11 For n odd, �̃+ was used to define the spin representation of Spinn(R)

on
∧

W . Show that an equivalent representation is constructed by using �̃− in place
of �̃+.
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Exercise 2.12 (a) Use the same notation as in the proof of Theorem 2.8. For n even,
let w′

0 = w′
1 · · ·w′

m ∈ Cn(C), let J be the left ideal of Cn(C) generated by w′
0, and

let T :
∧

W → J be the linear map satisfying T (wi1 ∧ · · · ∧ wik ) = wi1 · · ·wikw
′
0.

Show that T is a well-defined and Spinn(R)-intertwining isomorphism with respect
to the spin action on

∧
W and left Clifford multiplication on J .

(b) For n odd, let w′
0 = (1−ie0)w

′
1 · · ·w′

m . Show that there is an analogous Spinn(R)-
intertwining isomorphism with respect to the spin action on

∧
W and left Clifford

multiplication on the appropriate left ideal of Cn(C).

Exercise 2.13 (a) Define a nondegenerate bilinear form (·, ·) on
∧

W by setting(∧k W,
∧l W

)
= 0 when k+ l �= m and requiring α(u∗)∧v = (u, v)w1∧· · ·∧wm

for u ∈ ∧k W and v ∈ ∧m−k W (see §1.3.2 for notation). Show that the form is
symmetric when m ≡ 0, 3 mod(4) and that it is skew-symmetric when m ≡ 1, 2,
mod(4).
(b) With respect to the spin representation action, show that (g · u, g · v) = (u, v) for
u, v ∈ S =∧

W and g ∈ Spinn(R).
(c) For n even, show that (·, ·) restricts to a nondegenerate form on S± = ∧±W
when m is even, but restricts to zero when m is odd.

2.2 Operations on Representations

2.2.1 Constructing New Representations

Given one or two representations, it is possible to form many new representations
using standard constructions from linear algebra. For instance, if V and W are vector
spaces, one can form new vector spaces via the direct sum, V⊕W , the tensor product,
V⊗W , or the set of linear maps from V to W , Hom(V, W ). The tensor product leads

to the construction of the tensor algebra, T (V ) = ⊕∞
k=0

(⊗k V
)

, and its quotients,

the exterior algebra,
∧
(V ) = ⊕dim V

k=0

∧k V , and the symmetric algebra, S(V ) =⊕∞
k=0Sk(V ). Further constructions include the dual (or contragradient) space, V ∗ =

Hom(V,C), and the conjugate space, V , which has the same underlying additive
structure as V , but is equipped with a new scalar multiplication structure, ·′, given
by z ·′ v = zv for z ∈ C and v ∈ V . Each of these new vector spaces also carries a
representation as defined below.

Definition 2.10. Let V and W be finite-dimensional representations of a Lie group
G.
(1) G acts on V ⊕ W by g(v,w) = (gv, gw).
(2) G acts on V ⊗ W by g

∑
vi ⊗ w j =

∑
gvi ⊗ gw j .

(3) G acts on Hom(V, W ) by (gT ) (v) = g
[
T
(
g−1v

)]
.

(4) G acts on
⊗k V by g

∑
vi1 ⊗ · · · ⊗ vik =

∑(
gvi1

)⊗ · · · ⊗ (
gvik

)
.

(5) G acts on
∧k V by g

∑
vi1 ∧ · · · ∧ vik =

∑(
gvi1

) ∧ · · · ∧ (
gvik

)
.

(6) G acts on Sk(V ) by g
∑

vi1 · · · vik =
∑(

gvi1

) · · · (gvik

)
.
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(7) G acts on V ∗ by (gT ) (v) = T
(
g−1v

)
.

(8) G acts on V by the same action as it does on V .

It needs to be verified that each of these actions define a representation. All are
simple. We check numbers (3) and (5) and leave the rest for Exercise 2.14. For num-
ber (3), smoothness and invertibility are clear. It remains to verify the homomorphism
property so we calculate

[g1 (g2T )] (v) = g1
[
(g2T )

(
g−1

1 v
)] = g1g2

[
T (g−1

2 g−1
1 v)

] = [(g1g2)T ] (v)

for gi ∈ G, T ∈ Hom(V, W ), and v ∈ V . For number (5), recall that
∧k V is simply⊗k V modulo Ik , where Ik is

⊗k V intersect the ideal generated by {v⊗ v | v ∈ V }.
Since number (4) is a representation, it therefore suffices to show that the action of
G on

⊗k V preserves Ik—but this is clear.
Some special notes are in order. For number (1) dealing with V ⊕ W , choose

in the obvious way a basis for V ⊕ W that is constructed from a basis for V and a
basis for W . With respect to this basis, the action of G can be realized on V ⊕W by

multiplication by a matrix of the form

( ∗ 0
0 ∗

)
where the upper left block is given

by the action of G on V and the lower right block is given by the action of G on W .
For number (7) dealing with V ∗, fix a basis B = {vi }ni=1 for V and let B∗ =

{v∗i }ni=1 be the dual basis for V ∗, i.e., v∗i (v j ) is 1 when i = j and is 0 when i �= j .
Using these bases, identify V and V ∗ with Cn by the coordinate maps

[∑
i civi

]
B =

(c1, . . . , cn) and
[∑

i civ
∗
i

]
B∗ = (c1, . . . , cn). With respect to these bases, realize the

action of g on V and V ∗ by a matrices Mg and M ′
g so that [g · v]B = Mg [v]B and

[g · T ]B∗ = M ′
g [T ]B∗ for v ∈ V and T ∈ V ∗. In particular,

[
Mg

]
i, j = v∗i

(
g · v j

)
and

[
M ′

g

]
i, j
=
(

g · v∗j
)
(vi ). Thus

[
M ′

g

]
i, j
= v∗j (g

−1 · vi ) =
[
Mg−1

]
j,i

so that M ′
g =

M−1,t
g . In other words, once appropriate bases are chosen and the G action is realized

by matrix multiplication, the action of G on V ∗ is obtained from the action of G on
V simply by taking the inverse transpose of the matrix.

For number (8) dealing with V , fix a basis for V and realize the action of g
by a matrix Mg as above. To examine the action of g on v ∈ V , recall that scalar
multiplication is the conjugate of the original scalar multiplication in V . In particular,
in V , g · v is therefore realized by the matrix Mg . In other words, once a basis is
chosen and the G action is realized by matrix multiplication, the action of G on V is
obtained from the action of G on V simply by taking the conjugate of the matrix.

It should also be noted that few of these constructions are independent of each
other. For instance, the action in number (7) on V ∗ is just the special case of the
action in number (3) on Hom(V, W ) in which W = C is the trivial representation.
Also the actions in (4), (5), and (6) really only make repeated use of number (2).
Moreover, as representations, it is the case that V ∗ ⊗ W ∼= Hom(V, W ) (Exercise
2.15) and, for compact G, V ∗ ∼= V (Corollary 2.20).
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2.2.2 Irreducibility and Schur’s Lemma

Now that we have many ways to glue representations together, it makes sense to seek
some sort of classification. For this to be successful, it is necessary to examine the
smallest possible building blocks.

Definition 2.11. Let G be a Lie group and V a finite-dimensional representation of
G.
(1) A subspace U ⊆ V is G-invariant (also called a submodule or a subrepresenta-
tion) if gU ⊆ U for g ∈ G. Thus U is a representation of G in its own right.
(2) A nonzero representation V is irreducible if the only G-invariant subspaces are
{0} and V . A nonzero representation is called reducible if there is a proper (i.e.,
neither zero nor all of V ) G-invariant subspace of V .

It follows that a nonzero finite-dimensional representation V is irreducible if and
only if

V = spanC{gv | g ∈ G}

for each nonzero v ∈ V , since this property is equivalent to excluding proper G-
invariant subspaces. For example, it is well known from linear algebra that this con-
dition is satisfied for each of the standard representations in §2.1.2.1 and so each is
irreducible.

For more general representations, this approach is often impossible to carry out.
In those cases, other tools are needed. One important tool is based on the next result.

Theorem 2.12 (Schur’s Lemma). Let V and W be finite-dimensional representa-
tions of a Lie group G. If V and W are irreducible, then

dim HomG(V, W ) =
{

1 if V ∼= W
0 if V �∼= W .

Proof. If nonzero T ∈ HomG(V, W ), then ker T is not all of V and G-invariant
so irreducibility implies T is injective. Similarly, the image of T is nonzero and
G-invariant, so irreducibility implies T is surjective and therefore a bijection. Thus
there exists a nonzero T ∈ HomG(V, W ) if and only if V ∼= W .

In the case V ∼= W , fix a bijective T0 ∈ HomG(V, W ). If also T ∈ HomG(V, W ),
then T ◦ T−1

0 ∈ HomG(V, V ). Since V is a finite-dimensional vector space over C,
there exists an eigenvalue λ for T ◦ T−1

0 . As ker(T ◦ T−1
0 − λI ) is nonzero and G-

invariant, irreducibility implies T ◦ T−1
0 −λI = 0, and so HomG(V, W ) = CT0. �

Note Schur’s Lemma implies that

HomG(V, V ) = CI(2.13)

for irreducible V .
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2.2.3 Unitarity

Definition 2.14. (1) Let V be a representation of a Lie group G. A form (·, ·) :
V × V → C is called G-invariant if (gv, gv′) = (v, v′) for g ∈ G and v, v′ ∈ V .
(2) A representation V of a Lie group G is called unitary if there exists a G-invariant
(Hermitian) inner product on V .

Noncompact groups abound with nonunitary representations (Exercise 2.18).
However, compact groups are much more nicely behaved.

Theorem 2.15. Every representation of a compact Lie group is unitary.

Proof. Begin with any inner product 〈·, ·〉 on V and define

(v, v′) =
∫

G

〈
gv, gv′

〉
dg.

This is well defined since G is compact and g → 〈
gv, gv′

〉
is continuous. The new

form is clearly Hermitian and it is G-invariant since dg is right invariant. It remains
only to see it is definite, but by definition, (v, v) = ∫

G 〈gv, gv〉 dg which is positive
for v �= 0 since 〈gv, gv〉 > 0. �

Theorem 2.15 provides the underpinning for much of the representation theory
of compact Lie groups. It also says a representation (π, V ) of a compact Lie group is
better than a homomorphism π : G → GL(V ); it is a homomorphism to the unitary
group on V with respect to the G-invariant inner product (Exercise 2.20).

Definition 2.16. A finite-dimensional representation of a Lie group is called com-
pletely reducible if it is a direct sum of irreducible submodules.

Reducible but not completely reducible representations show up frequently for
noncompact groups (Exercise 2.18), but again, compact groups are much simpler.
We note that an analogous result will hold even in the infinite-dimensional setting of
unitary representations of compact groups (Corollary 3.15).

Corollary 2.17. Finite-dimensional representations of compact Lie groups are com-
pletely reducible.

Proof. Suppose V is a representation of a compact Lie group G that is reducible.
Let (·, ·) be a G-invariant inner product. If W ⊆ V is a proper G-invariant subspace,
then V = W ⊕ W⊥. Moreover, W⊥ is also a proper G-invariant subspace since
(gw′, w) = (w′, g−1w) = 0 for w′ ∈ W⊥ and w ∈ W . By the finite dimensionality
of V and induction, the proof is finished. �

As a result, any representation V of a compact Lie group G may be written as

V ∼=
⊕N

i=1
ni Vi ,(2.18)
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where {Vi | 1 ≤ i ≤ N } is a collection of inequivalent irreducible representations of
G and ni Vi = Vi⊕· · ·⊕Vi (ni copies). To study any representation of G, it therefore
suffices to understand each irreducible representation and to know how to compute
the ni . In §2.2.4 we will find a formula for ni .

Understanding the set of irreducible representations will take much more work.
The bulk of the remaining text is, in one way or another, devoted to answering this
question. In §3.3 we will derive a large amount of information on the set of all ir-
reducible representations by studying functions on G. However, we will not be able
to classify and construct all irreducible representations individually until §7.3.5 and
§?? where we study highest weights and associated structures.

Corollary 2.19. If V is a finite-dimensional representation of a compact Lie group
G, V is irreducible if and only if dim HomG(V, V ) = 1.

Proof. If V is irreducible, then Schur’s Lemma (Theorem 2.12) implies that
dim HomG(V, V ) = 1. On the other hand, if V is reducible, then V = W ⊕ W ′ for
proper submodules W, W ′ of V . In particular, this shows that dim HomG(V, V ) ≥ 2
since it contains the projection onto either summand. Hence dim HomG(V, V ) = 1
implies that V is irreducible. �

The above result also has a corresponding version that holds even in the infinite-
dimensional setting of unitary representations of compact groups (Theorem 3.12).

Corollary 2.20. (1) If V is a finite-dimensional representation of a compact Lie
group G, then V ∼= V ∗.
(2) If V is irreducible, then the G-invariant inner product is unique up to scalar
multiplication by a positive real number.

Proof. For part (1), let (·, ·) be a G-invariant inner product on V . Define the bijective
linear map T : V → V ∗ by T v = (·, v) for v ∈ V . To see that it is a G-map, calculate
that g(T v) = (g−1·, v) = (·, gv) = T (gv).

For part (2), assume V is irreducible. If (·, ·)′ is another G-invariant inner prod-
uct on V , define a second bijective linear map T ′ : V → V ∗ by T ′v = (·, v)′.
Schur’s Lemma (Theorem 2.12) shows that dim HomG(V , V ∗) = 1. Since T, T ′ ∈
HomG(V , V ∗), there exists c ∈ C, so T ′ = cT . Thus (·, v)′ = c(·, v) for all v ∈ V .
It is clear that c must be in R and positive. �
Corollary 2.21. Let V be a finite-dimensional representation of a compact Lie group
G with a G-invariant inner product (·, ·). If V1, V2 are inequivalent irreducible sub-
modules of V , then V1 ⊥ V2, i.e., (V1, V2) = 0.

Proof. Consider W = {v1 ∈ V1 | (v1, V2) = 0}. Since (·, ·) is G-invariant, W
is a submodule of V1. If (V1, V2) �= 0, i.e., W �= V1, then irreducibility implies
that W = {0} and (·, ·) yields a nondegenerate pairing of V1 and V2. Thus the map
v1 → (·, v1) exhibits an equivalence V1

∼= V ∗
2 . This implies that V1

∼= V2
∗ ∼= V2. �
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2.2.4 Canonical Decomposition

Definition 2.22. (1) Let G be a compact Lie group. Denote the set of equivalence
classes of irreducible (unitary) representations of G by Ĝ. When needed, choose a
representative representation (π, Eπ ) for each [π ] ∈ Ĝ.
(2) Let V be a finite-dimensional representation of G. For [π] ∈ Ĝ, let V[π ] be the
largest subspace of V that is a direct sum of irreducible submodules equivalent to
Eπ . The submodule V[π] is called the π -isotypic component of V .
(3) The multiplicity of π in V , mπ , is dim V[π ]

dim Eπ
, i.e., V[π ]

∼= mπ Eπ .

First, we verify that V[π ] is well defined. The following lemma does that as well
as showing that V[π ] is the sum of all submodules of V equivalent to Eπ .

Lemma 2.23. If V1, V2 are direct sums of irreducible submodules isomorphic to Eπ ,
then so is V1 + V2.

Proof. By finite dimensionality, it suffices to check the following: if {Wi } are G-
submodules of a representation and W1 is irreducible satisfying W1 � W2⊕· · ·⊕Wn ,
then W1∩(W2 ⊕ · · · ⊕ Wn) = {0}. However, W1∩(W2 ⊕ · · · ⊕ Wn) is a G-invariant
submodule of W1, so the initial hypothesis and irreducibility finish the argument. �

If V, W are representations of a Lie group G and V ∼= W ⊕W , note this decom-
position is not canonical. For example, if c ∈ C\{0}, then W ′ = {(w, cw) | w ∈ W }
and W ′′ = {(w,−cw) | w ∈ W } are two other submodules both equivalent to W and
satisfying V ∼= W ′ ⊕ W ′′. The following result gives a uniform method of handling
this ambiguity as well as giving a formula for the ni in Equation 2.18.

Theorem 2.24 (Canonical Decomposition). Let V be a finite-dimensional repre-
sentation of a compact Lie group G.
(1) There is a G-intertwining isomorphism ιπ

HomG(Eπ , V )⊗ Eπ

∼=→ V[π ]

induced by mapping T⊗v → T (v) for T ∈ HomG(Eπ , V ) and v ∈ V . In particular,
the multiplicity of π is

mπ = dim HomG(Eπ , V ).

(2) There is a G-intertwining isomorphism⊕
[π ]∈Ĝ

HomG(Eπ , V )⊗ Eπ

∼=→ V =
⊕

[π ]∈Ĝ

V[π ].

Proof. For part (1), let T ∈ HomG(Eπ , V ) be nonzero. Then ker T = {0} by the
irreducibility of Eπ . Thus T is an equivalence of Eπ with T (Eπ ), and so T (Eπ ) ⊆
V[π ]. Thus ιπ is well defined. Next, by the definition of the G-action on Hom(Eπ , V )
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and the definition of HomG(Eπ , V ), it follows that G acts trivially on HomG(Eπ , V ).
Thus g(T ⊗ v) = T ⊗ (gv), so ιπ (g(T ⊗ v)) = T (gv) = gT (v) = gιπ (T ⊗ v),
and so ιπ is a G-map. To see that ιπ is surjective, let V1

∼= Eπ be a direct summand
in V[π ] with equivalence given by T : Eπ → V1. Then T ∈ HomG(Eπ , V ) and V1

clearly lies in the image of ιπ . Finally, make use of a dimension count to show that
ιπ is injective. Write V[π ] = V1 ⊕ · · · ⊕ Vmπ

with Vi
∼= Eπ . Then

dim HomG(Eπ , V ) = dim HomG(Eπ , V[π ]) = dim HomG(Eπ , V1 ⊕ · · · ⊕ Vmπ
)

=
mπ∑
i=1

dim HomG(Eπ , Vi ) = mπ

by Schur’s Lemma (Theorem 2.12). Thus dim HomG(Eπ , V )⊗ Eπ = mπ dim Eπ =
dim V[π ].

For part (2), it only remains to show that V = ⊕
[π ]∈Ĝ V[π ]. By Equation 2.18,

V =∑
[π ]∈Ĝ V[π ] and by Corollary 2.21 the sum is direct. �

See Theorem 3.19 for the generalization to the infinite-dimensional setting of
unitary representations of compact groups.

2.2.5 Exercises

Exercise 2.14 Verify that the actions given in Definition 2.10 are representations.

Exercise 2.15 (a) Let V and W be finite-dimensional representations of a Lie group
G. Show that V ∗ ⊗ W is equivalent to Hom(V, W ) by mapping T ⊗ w to the linear
map wT (·).
(b) Show, as representations, that V ⊗ V ∼= S2(V )⊕∧2

(V ).

Exercise 2.16 If V is an irreducible finite-dimensional representation of a Lie group
G, show that V ∗ is also irreducible.

Exercise 2.17 This exercise considers a natural generalization of Vn(C2). Let W be
a representation of a Lie group G. Define Vn(W ) to be the space of holomorphic
polynomials on W that are homogeneous of degree n and let (g P) (η) = P(g−1η).
Show that there is an equivalence of representations Sn(W ∗) ∼= Vn(W ) induced by
viewing T1 · · · Tn , Ti ∈ W ∗, as a function on W .

Exercise 2.18 (a) Show that the map π : t →
(

1 t
0 1

)
produces a representation of

R on C2.
(b) Show that this representation is not unitary.
(c) Find all invariant submodules.
(b) Show that the representation is reducible and yet not completely reducible.

Exercise 2.19 Use Schur’s Lemma (Theorem 2.12) to quickly calculate the centers
of the groups having standard representations listed in §2.1.2.1.
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Exercise 2.20 Let (·, ·) be an inner product on Cn . Show that U (n) ∼= {g ∈
GL(n,C) | (gv, gv′) = (v, v′) for v, v′ ∈ Cn}.
Exercise 2.21 (a) Use Equation 2.13 to show that all irreducible finite-dimensional
representations of an Abelian Lie group are 1-dimensional (c.f. Exercise 3.18).
(b) Classify all irreducible representations of S1 and show that Ŝ1 ∼= Z.
(c) Find the irreducible summands of the representation of S1 on C2 generated by
the isomorphism S1 ∼= SO(2).
(d) Show that a smooth homomorphism ϕ : R → C satisfies the differential equation
ϕ′ = [

ϕ′(0)
]
ϕ. Use this to show that the set of irreducible representations of R is

indexed by C and that the unitary ones are indexed by iR.
(e) Use part (d) to show that the set of irreducible representations of R+ under its
multiplicative structure is indexed by C and that the unitary ones are indexed by iR.
(f) Classify all irreducible representations of C ∼= R2 under its additive structure and
of C\{0} under its multiplicative structure.

Exercise 2.22 Let V be a finite-dimensional representation of a compact Lie group
G. Show the set of G-invariant inner products on G is isomorphic to HomG(V ∗, V ∗).

Exercise 2.23 (a) Let πi : Vi → U (n) be two (unitary) equivalent irreducible rep-
resentations of a compact Lie group G. Use Corollary 2.20 to show that there exists
a unitary transformation intertwining π1 and π2.
(b) Repeat part (a) without the hypothesis of irreducibility.

Exercise 2.24 Let V be a finite-dimensional representation of a compact Lie group
G and let W ⊆ V be a subrepresentation. Show that W[π ] ⊆ V[π ] for [π ] ∈ Ĝ.

Exercise 2.25 Suppose V is a finite-dimensional representation of a compact Lie
group G. Show that the set of G-intertwining automorphisms of V is isomorphic to∏

[π ]∈Ĝ GL(mπ ,C) where mπ is the multiplicity of the isotypic component V[π ].

2.3 Examples of Irreducibility

2.3.1 SU(2) and Vn(C2)

In this section we show that the representation Vn(C2) from §2.1.2.2 of SU (2) is
irreducible. In fact, we will later see (Theorem 3.32) these are, up to equivalence,
the only irreducible representations of SU (2). The trick employed here points to-
wards the powerful techniques that will be developed in §4 where derivatives, i.e.,
the tangent space of G, are studied systematically (c.f. Lemma 6.6).

Let H ⊆ Vn(C2) be a nonzero invariant subspace. From Equation 2.3,

diag(eiθ , e−iθ ) · (zk
1zn−k

2 ) = ei(n−2k)θ zk
1zn−k

2 .(2.25)

As the joint eigenvalues ei(n−2k)θ are distinct and since H is preserved by
{diag(eiθ , e−iθ )}, H is spanned by some of the joint eigenvectors zk

1zn−k
2 . In par-

ticular, there is a k0, so zk0
1 zn−k0

2 ∈ H .
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Let Kt =
(

cos t − sin t
sin t cos t

)
∈ SU (2) and let ηt =

(
cos t i sin t
i sin t cos t

)
∈ SU (2).

Since H is SU (2) invariant, 1
2 (Kt ± iηt ) zk0

1 zn−k0
2 ∈ H . Thus, when the limits ex-

ist, d
dt

[
1
2 (Kt ± iηt ) zk0

1 zn−k0
2

]
|t=0 ∈ H . Using Equation 2.3, a simple calculation

(Exercise 2.26) shows that

1

2

d

dt

[
(Kt ± iηt ) zk0

1 zn−k0
2

]
|t=0 =

{
k0 zk0−1

1 zn−k0+1
2 for +

(k0 − n) zk0+1
1 zn−k0−1

2 for − .
(2.26)

Induction therefore implies that Vn(C) ⊆ H , and so Vn(C) is irreducible.

2.3.2 SO(n) and Harmonic Polynomials

In this section we show that the representation of SO(n) on the harmonic polyno-
mials Hm(Rn) ⊆ Vm(Rn) is irreducible (see §2.1.2.3 for notation). Let Dm(Rn) be
the space of complex constant coefficient differential operators on Rn of degree m.
Recall that the algebra isomorphism from

⊕
m Vm(Rn) to

⊕
m Dm(Rn) is generated

by mapping xi → ∂xi . In general, if q ∈⊕
m Vm(Rn), write ∂q for the corresponding

element of
⊕

m Dm(Rn).
Define 〈·, ·〉 a Hermitian form on Vm(Rn) by 〈p, q〉 = ∂q(p) ∈ C for p, q ∈

Vm(Rn). Since {xk1
1 xk2

2 . . . xkn
n | ki ∈ N and k1 + k2 + · · · + kn = m} turns out to be

an orthogonal basis for Vm(Rn), it is easy to see that 〈·, ·〉 is an inner product. In fact,
〈·, ·〉 is actually O(n)-invariant (Exercise 2.27), although we will not need this fact.

Lemma 2.27. With respect to the inner product 〈·, ·〉 on Vm(Rn), Hm(Rn)⊥ =
|x |2 Vm−2(Rn) where |x |2 =∑n

i=1 x2
i ∈ V2(Rn). As O(n)-modules,

Vm(Rn) ∼= Hm(Rn)⊕Hm−2(Rn)⊕Hm−4(Rn)⊕ · · · .

Proof. Let p ∈ Vm(Rn) and q ∈ Vm−2(Rn). Then
〈
p, |x |2 q

〉 = ∂|x |2q p = ∂q�p =
〈�p, q〉. Thus

[|x |2 Vm−2(Rn)
]⊥ = Hm(Rn) so that

Vm(Rn) = Hm(Rn)⊕ |x |2 Vm−2(Rn).(2.28)

Induction therefore shows that

Vm(Rn) = Hm(Rn)⊕ |x |2 Hm−2(Rn)⊕ |x |4 Hm−4(Rn)⊕ · · · .

The last statement of the lemma follows by observing that O(n) fixes |x |2k . �
By direct calculation, dimHm(R1) = 0 for m ≥ 2. For n ≥ 2, however, it is clear

that dim Vm(Rn) > dim Vm−1(Rn) so that dimHm(Rn) ≥ 1.

Lemma 2.29. If G is a compact Lie group with finite-dimensional representations
U, V, W satisfying U ⊕ V ∼= U ⊕ W , then V ∼= W .



2.3 Examples of Irreducibility 43

Proof. Using Equation 2.18, decompose U ∼= ⊕
[π ]∈Ĝ mπ Eπ , V ∼= ⊕

[π]∈Ĝ m ′
π Eπ ,

and W ∼= ⊕
[π ]∈Ĝ m ′′

π Eπ . The condition U ⊕ V ∼= U ⊕ W therefore implies that
mπ + m ′

π = mπ + m ′′
π so that m ′

π = m ′′
π and V ∼= W . �

Definition 2.30. If H is a Lie subgroup of a Lie group G and V is a representation
of G, write V |H for the representation of H on V given by restricting the action of
G to H .

For the remainder of this section, view O(n − 1) as a Lie subgroup of O(n) via

the embedding g →
(

1 0
0 g

)
.

Lemma 2.31.

Hm(Rn)|O(n−1)
∼= Hm(Rn−1)⊕Hm−1(Rn−1)⊕ · · · ⊕H0(Rn−1).

Proof. Any p ∈ Vm(Rn) may be uniquely written as p = ∑m
k=0 xk

1 pk with pk ∈
Vm−k(Rn−1) where Rn is viewed as R× Rn−1. Since O(n − 1) acts trivially on xk

1 ,

Vm(Rn)|O(n−1)
∼=
⊕m

k=0
Vm−k(Rn−1).(2.32)

Applying Equation 2.28 first (restricted to O(n− 1)) and then Equation 2.32, we get

Vm(Rn)|O(n−1)
∼= Hm(Rn)|O(n−1) ⊕

⊕m−2

k=0
Vm−2−k(Rn−1).

Applying Equation 2.32 first and then Equation 2.28 yields

Vm(Rn)|O(n−1)
∼=
⊕m

k=0

[
Hm−k(Rn−1)⊕ Vm−2−k(Rn−1)

]
=
[⊕m

k=0
Hm−k(Rn−1)

]
⊕
[⊕m−2

k=0
Vm−2−k(Rn−1)

]
.

The proof is now finished by Lemma 2.29. �
Theorem 2.33. Hm(Rn) is an irreducible O(n)-module and, in fact, is irreducible
under SO(n) for n ≥ 3.

Proof. See Exercise 2.31 for the case of n = 2. In this proof assume n ≥ 3.
Hm(Rn)|SO(n−1) contains, up to scalar multiplication, a unique SO(n − 1)-

invariant function: If f ∈ Hm(Rn) is nonzero and SO(n)-invariant, then it is con-
stant on each sphere in Rn and thus a function of the radius. Homogeneity implies
that f (x) = C |x |m for some nonzero constant. It is trivial to check the condition that
� f = 0 now forces m = 0. Thus only H0(Rn) contains a nonzero SO(n)-invariant
function. The desired result now follows from the previous observation and Lemma
2.31.

If V is a finite-dimensional SO(n)-invariant subspace of continuous functions on
Sn−1, then V contains a nonzero SO(n − 1)-invariant function: Here the action of
SO(n) on V is, as usual, given by (g f )(s) = f (g−1s). Since SO(n) acts transitively
on Sn−1 and V is nonzero invariant, there exists f ∈ V , so f (1, 0, . . . , 0) �= 0.
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Define f̃ (s) = ∫
SO(n−1) f (gs) dg. If { fi } is a basis of V , then f (gs) = (

g−1 f
)
(s)

and so may be written as f (gs) = ∑
i ci (g) fi (s) for some smooth functions ci . By

integrating, it follows that f̃ ∈ V . From the definition, it is clear that f̃ is SO(n−1)-
invariant. It is nonzero since f̃ (1, 0, . . . , 0) = f (1, 0, . . . , 0).

Hm(Rn) is an irreducible SO(n)-module: Suppose Hm(Rn) = V1 ⊕ V2 for
proper SO(n)-invariant subspaces. By homogeneity, restricting functions in Vi from
Rn to Sn−1 is injective. Hence, both V1 and V2 contain independent SO(n − 1)-
invariant functions. But this contradicts the fact that Hm(Rn) has only one indepen-
dent SO(n − 1)-invariant function. �

A relatively small dose of functional analysis (Exercise 3.14) can be used
to further show that L2(Sn−1) = ⊕∞

m=0 Hm(Rn)|Sn−1 (Hilbert space direct sum)
and that Hm(Rn)|Sn−1 is the eigenspace of the Laplacian on Sn−1 with eigenvalue
−m(n + m − 2).

2.3.3 Spin and Half-Spin Representations

The spin representation S = ∧
W of Spinn(R) for n odd and the half-spin rep-

resentations S± = ∧± W for n even were constructed in §2.1.2.4, where W is a
maximal isotropic subspace of Cn . This section shows that these representations are
irreducible.

For n even with n = 2m, let W = {(z1, . . . , zm, i z1, . . . , i zm) | zk ∈ C} and
W ′ = {(z1, . . . , zm,−i z1, . . . ,−i zm) | zk ∈ C}. Identify W with Cm by projecting
onto the first m coordinates. For x = (x1, . . . , xm) and y = (y1, . . . , ym) in Rm , let
(x, y) = (x1, . . . , xm, y1, . . . , ym) ∈ Rn . In particular, (x, y) = 1

2 (x − iy, i(x −
iy))+ 1

2 (x + iy,−i(x + iy)). Using Definition 2.7, the identification of Cm with W ,
and noting ((a,−ia), (b, ib)) = 2(a, b), the spin action of Spin2m(R) on

∧± Cm ∼=
S± is induced by having (x, y) act as

1

2
ε(x − iy)− 2ι(x + iy).(2.34)

For n odd with n = 2m + 1, take W = {(z1, . . . , zm, i z1, . . . , i zm, 0) | zk ∈ C},
W ′ = {(z1, . . . , zm,−i z1, . . . ,−i zm, 0) | zk ∈ C}, and e0 = (0, . . . , 0, 1).
As above, identify W with Cm by projecting onto the first m coordinates. For
x = (x1, . . . , xm) and y = (y1, . . . , ym) in Rm and u ∈ R, let (x, y, u) =
(x1, . . . , xm, y1, . . . , ym, u) ∈ Rn . In particular, (x, y, u) = 1

2 (x−iy, i(x−iy), 0)+
1
2 (x+ iy,−i(x+ iy), 0)+(0, 0, u). Using Definition 2.7 and the identification of Cm

with W , the spin action of Spin2m+1(R) on
∧

Cm ∼= S is induced by having (x, y, u)
act as

1

2
ε(x − iy)− 2ι(x + iy)+ (−1)deg miu .(2.35)

Theorem 2.36. For n even, the half-spin representations S± of Spinn(R) are irre-
ducible. For n odd, the spin representation S of Spinn(R) is irreducible.
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Proof. Using the standard basis {e j }nj=1, calculate

(e j ± ie j+m)(ek ± iek+m) = e j ek ± i(e j ek+m + e j+mek)− e j+mek+m

for 1 ≤ j, k ≤ m. Since e j ek , e j ek+m , e j+mek , and e j+mek+m lie in Spinn(R), Equa-
tions 2.34 and 2.35 imply that the operators ε(e j )ε(ek) and ι(e j )ι(ek) on

∧
Cm are

achieved by linear combinations of the action of elements of Spinn(R) on
∧

Cm .
For n even, let W be a nonzero Spinn(R)-invariant subspace contained in either

S+ ∼= ∧+ Cm or S− ∼= ∧− Cm . The operators ε(e j )ε(ek) can be used to show that
W contains a nonzero element in either

∧m Cm or
∧m−1 Cm , depending on the parity

of m. In the first case, since dim
∧m Cm = 1, the operators ι(e j )ι(ek) can be used to

generate all of
∧± Cm . In the second case, the operators ι(e j )ι(ek) and ε(e j ′)ε(ek)

can be used to generate all of
∧m−1 Cm after which the operators ι(e j )ι(ek) can be

used to generate all of S±. Thus both half-spin representation are irreducible.
Similarly, for n odd, examination of the element (e j ± ie j+m)en shows that the

operators ε(e j )(−1)deg and ι(e j )(−1)deg are obtainable as linear combinations of the
action of elements of Spinn(R) on

∧
Cm . Hence any nonzero Spinn(R)-invariant

subspace W of
∧

Cm contains
∧m Cm by use of the operators ε(e j )(−1)deg. Fi-

nally,the operators ι(e j )(−1)deg can then be used to show that W = ∧
Cm so that S

is irreducible. �

2.3.4 Exercises

Exercise 2.26 Verify Equation 2.26.

Exercise 2.27 (a) For g ∈ O(n), use the chain rule to show that ∂g·xi f = g
(
∂xi f

)
for smooth f on Rn .
(b) For g ∈ O(n), show that ∂g·p f = g

(
∂p f

)
for p ∈ Vm(Rn).

(c) Show that 〈·, ·〉 is O(n)-invariant on Vm(Rn).

Exercise 2.28 For p ∈ Vm(Rn) show that there exists a unique h ∈⊕
k Hm−2k(Rn),

so p|Sn−1 = h|Sn−1 .

Exercise 2.29 Show that � is an O(n)-map from Vm(Rn) onto Vm−2(Rn).

Exercise 2.30 Show that dimH0(Rn) = 1, dimH1(Rn) = n, and dimHm(Rn) =
(2m+n−2)(m+n−3)!

m!(n−2)! for m ≥ 2.

Exercise 2.31 Show that Hm(R2) is O(2)-irreducible but not SO(2)-irreducible
when m ≥ 2.

Exercise 2.32 Exercises 2.32 through 2.34 outline an alternate method of proving
irreducibility of Hm(Rn) using reproducing kernels ([6]). Let H be a Hilbert space
of functions on a space X that is closed under conjugation and such that evaluation
at any x ∈ X is a continuous operator on H. Write (·, ·) for the inner product on H.
Then for x ∈ X , there exists a unique φx ∈ H, so f (x) = ( f, φx ) for f ∈ H. The
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function � : X × X → C, given by (x, y) → (φy, φx ), is called the reproducing
kernel.
(a) Show that �(x, y) = φy(x) for x, y ∈ X and f (x) = ( f,�(·, x)) for f ∈ H.
(b) Show that span{φx | x ∈ X} is dense in H.
(c) If {eα}α∈A is an orthonormal basis of H, then �(x, y) =∑

α eα(x) eα(y).
(d) If there exists a measure µ on X such that H is a closed subspace in L2(X, dµ),
then f (x) = ∫

X �(y, x) f (y) dµ(y).

Exercise 2.33 Suppose there is a Lie group G acting transitively on X . Fix x0 ∈ X
so that X ∼= G/H where H = Gx0 . Let G act on functions by (g f ) (x) = f (g−1x)
for g ∈ G and x ∈ X . Assume this action preserves H, is unitary, and that HH =
{ f ∈ H | h f = f for h ∈ H} is one dimensional.
(a) Show that gφx = φgx and �(gx, gy) = �(x, y) for g ∈ G and x, y ∈ X .
(b) Let W be a nonzero closed G-invariant subspace of H and write �W for its
reproducing kernel. Show that the function x → �W (x, x0) lies in HH .
(c) Show that G acts irreducibly on H.

Exercise 2.34 Let H = Hm(Rn) ⊆ Vm(Rn), where Vm(Rn) is viewed as sitting in
L2(Sn−1) by restriction to Sn−1. Let p0 = (1, 0, . . . , 0).
(a) Show that Vm(Rn)O(n−1) consists of all functions of the form

x →
� m

2 �∑
j=0

(−1) j c j (x, x) j (x, p0)
k−2 j

for constants c j ∈ C.
(b) Find a linear recurrence formula on the c j to show that dimHm(Rn)O(n−1) = 1.
(c) Show that Hm(Rn) is irreducible under O(n).
(d) Show that Hm(Rn) is still irreducible under restriction to SO(n) for n ≥ 3.

Exercise 2.35 Let G = U (n), Vp,q(Cn) be the set of complex polynomials ho-
mogeneous of degree p in z1, . . . , zn and homogeneous of degree q in z1, . . . , zn

equipped with the typical action of G, �p,q =
∑

j ∂z j ∂z j , and Hp,q(Cn) = Vp,q(Cn)∩
ker�p,q . Use restriction to S2n−1 and techniques similar to those found in Exercises
2.32 through 2.34 to demonstrate the following.
(a) Show that �p,q is a G-map from Vp,q(Cn) onto Vp−1,q−1(Cn).
(b) Show Hm(R2n) ∼=⊕

p+q=m Hp,q(Cn).
(c) Show that Hp,q(Cn) is U (n)-irreducible.
(d) Show that Hp,q(Cn) is still irreducible under restriction to SU (n).

Exercise 2.36 Show that S+ and S− are inequivalent representations of Spinn(R)

for n even.




