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Lie Algebras

By their nature, Lie groups are usually nonlinear objects. However, it turns out there
is a way to linearize their study by looking at the tangent space to the identity. The
resulting object is called a Lie algebra. Simply by virtue of the fact that vector spaces
are simpler than groups, the Lie algebra provides a powerful tool for studying Lie
groups and their representations.

4.1 Basic Definitions

4.1.1 Lie Algebras of Linear Lie Groups

Let M be a manifold. Recall that a vector field on M is a smooth section of the
tangent bundle, T (M) = ∪m∈M Tm(M). If G is a Lie group and g ∈ G, then the map
lg : G → G defined by lgh = gh for g ∈ G is a diffeomorphism. A vector field X
on G is called left invariant if dlg X = X for all g ∈ G. Since G acts on itself simply
transitively under left multiplication, the tangent space of G at e, Te(G), is clearly
in bijection with the space of left invariant vector fields. The correspondence maps
v ∈ Te(G) to the vector field X where Xg = dlgv, g ∈ G, and conversely maps a
left invariant vector field X to v = Xe ∈ Te(G).

Elementary differential geometry shows that the set of left invariant vector fields
is an algebra under the Lie bracket of vector fields (see [8] or [88]). Using the bi-
jection of left invariant vector fields with Te(G), it follows that Te(G) has a natural
algebra structure which is called the Lie algebra of G.

Since we are interested in compact groups, there is a way to bypass much of this
differential geometry. Recall from Theorem 3.28 that a compact group G is a linear
group, i.e., G is isomorphic to a closed Lie subgroup of GL(n,C). In the setting of
Lie subgroups of GL(n,C), the Lie algebra has an explicit matrix realization which
we develop in this chapter. It should be remarked, however, that the theorems in this
chapter easily generalize to any Lie group.

Taking our cue from the above discussion, we will define an algebra structure on
Te(G) viewed as a subspace of TI (GL(n,C)). Since GL(n,C) is an open (dense)
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set in Mn,n(C) ∼= R2n2
, we will identify TI (GL(n,C)) with gl(n,C) where

gl(n,F) = Mn,n(F).

The identification of TI (GL(n,C)) with gl(n,C) is the standard one for open sets
in R2n2

. Namely, to any X ∈ TI (GL(n,C)), find a smooth curve γ : (−ε, ε) →
GL(n,C), ε > 0, so that γ (0) = I , and so X ( f ) = d

dt ( f ◦ γ )|t=0 for smooth func-
tions f on GL(n,C). The map sending X to γ ′(0) is a bijection from TI (GL(n,C))

to gl(n,C).

Definition 4.1. Let G be a Lie subgroup of GL(n,C).
(a) The Lie algebra of G is

g = {γ ′(0) | γ (0) = I and γ : (−ε, ε)→ G, ε > 0, is smooth} ⊆ gl(n,C).

(b) The Lie bracket on g is given by

[X, Y ] = XY − Y X .

Given a compact group G, Theorem 3.28 says that there is a faithful representa-
tion π : G → GL(n,C). Identifying G with its image under π , G may be viewed
as a closed Lie subgroup of GL(n,C). Using this identification, we use Definition
4.1 to define the Lie algebra of G. We will see in §4.2.1 that this construction is well
defined up to isomorphism.

Theorem 4.2. Let G be a Lie subgroup of GL(n,C).
(a) Then g is a real vector space.
(b) The Lie bracket is linear in each variable, skew symmetric, i.e., [X, Y ] =
−[Y, X ], and satisfies the Jacobi identity

[[X, Y ], Z ]+ [[Y, Z ], X ]+ [[Z , X ], Y ] = 0

for X, Y, Z ∈ g.
(c) Finally, g is closed under the Lie bracket and therefore an algebra.

Proof. Let Xi = γ ′i (0) ∈ g. For r ∈ R, consider the smooth curve γ that maps a
neighborhood of 0 ∈ R to G defined by γ (t) = γ1(r t)γ2(t). Then

γ ′(0) = (
rγ ′1(r t)γ2(t)+ γ1(r t)γ ′2(t)

) |t=0 = r X1 + X2

so that g is a real vector space.
The statements regarding the basic properties of the Lie bracket in part (b) are

elementary and left as an exercise (Exercise 4.1). To see that g is closed under the
bracket, consider the smooth curve σs that maps a neighborhood of 0 to G defined
by σs(t) = γ1(s)γ2(t) (γ1(s))

−1. In particular, σ ′s(0) = γ1(s)X2 (γ1(s))
−1 ∈ g. Since

the map s → σ ′s(0) is a smooth curve in a finite-dimensional vector space, tangent
vectors to this curve also lie in g. Applying d

ds |s=0, we calculate

d

ds

(
γ1(s)X2 (γ1(s))

−1) |s=0 = X1 X2 − X2 X1 = [X1, X2],

so that [X1, X2] ∈ g. �
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4.1.2 Exponential Map

Let G be a Lie subgroup of GL(n,C) and g ∈ G. Since G is a submanifold of
GL(n,C), Tg(G) can be identified with

{γ ′(0) | γ (0) = g and γ : (−ε, ε)→ G, ε > 0, is smooth}(4.3)

in the usual manner by mapping γ ′(0) to the element of Tg(G) that acts on a smooth
function f by d

dt ( f ◦ γ )|t=0. Now if γ (0) = I and γ : (−ε, ε) → G, ε > 0,
is smooth, then σ(t) = gγ (t) satisfies σ(0) = g and σ ′(0) = gγ ′(0). Since left
multiplication is a diffeomorphism, Equation 4.3 identifies Tg(G) with the set

gg = {gX | X ∈ g}.
We make use of this identification without further comment.

Definition 4.4. Let G be a Lie subgroup of GL(n,C) and X ∈ g.
(a) Let X̃ be the vector field on G defined by X̃g = gX , g ∈ G.
(b) Let γX be the integral curve of X̃ through I , i.e., γX is the unique maximally
defined smooth curve in G satisfying

γX (0) = I

and

γ ′X (t) = X̃γX (t) = γX (t)X .

It is well known from the theory of differential equations that integral curves
exist and are unique (see [8] or [88]).

Theorem 4.5. Let G be a Lie subgroup of GL(n,C) and X ∈ g.
(a) Then

γX (t) = exp(t X) = et X =
∞∑

n=0

tn

n!
Xn.

(b) Moreover γX is a homomorphism and complete, i.e., it is defined for all t ∈ R, so
that et X ∈ G for all t ∈ R.

Proof. It is a familiar fact that the map t → et X is a well-defined smooth homomor-
phism of R into GL(n,C) (Exercise 4.3). Hence, first extend X̃ to a vector field on
GL(n,C) by X̃g = gX , g ∈ GL(n,C). Since e0X = I and d

dt et X = et X X , t → et X

is the unique integral curve for X̃ passing through I as a vector field on GL(n,C).
It is obviously complete. On the other hand, since G is a submanifold of GL(n,C),
γX may be viewed as a curve in GL(n,C). It is still an integral curve for X̃ passing
through I as a vector field on GL(n,C). By uniqueness, γX (t) = et X on the domain
of γX . In particular, there is an ε > 0, so that γX (t) = et X for t ∈ (−ε, ε). Thus
et X ∈ G for t ∈ (−ε, ε). But since ent X = (et X )n for n ∈ N, et X ∈ G for all t ∈ R,
which finishes the proof. �
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Note that Theorem 4.5 shows that the map t → et X is actually a smooth map
from R to G for X ∈ g.

Theorem 4.6. Let G be a Lie subgroup of GL(n,C).
(a) g = {X ∈ gl(n,C) | et X ∈ G for t ∈ R}.
(b) The map exp : g → G is a local diffeomorphism near 0, i.e., there is a neighbor-
hood of 0 in g on which exp restricts to a diffeomorphism onto a neighborhood of I
in G.
(c) When G is connected, exp g generates G.

Proof. To see g is contained in {X ∈ gl(n,C) | et X ∈ G for t ∈ R}, use Theorem
4.5. Conversely, if et X ∈ G for t ∈ R for all X ∈ gl(n,C), apply d

dt |t=0 and use the
definition to see X ∈ g.

For part (b), by the Inverse Mapping theorem, it suffices to show the differential
of exp : g → G is invertible at I . In fact, we will see that the differential of exp at
I is the identity map on all of GL(n,C). Let X ∈ gl(n,C). Then, under our tangent
space identifications, the differential of exp maps X to d

dt et X |t=0 = X , as claimed.
Part (c) follows from Theorem 1.15. �


Note from the proof of Theorem 4.6 that X ∈ gl(n,C) is an element of g if
et X ∈ G for all t on a neighborhood of 0. However, it is not sufficient to merely
verify that eX ∈ G (Exercise 4.9). Also in general, exp need not be onto (Exercise
4.7). However, when G is compact and connected, we will in fact see in §5.1.4 that
G = exp g.

4.1.3 Lie Algebras for the Compact Classical Lie Groups

We already know that the Lie algebra of GL(n,F) is gl(n,F). The Lie algebra of
SL(n,F) turns out to be

sl(n,F) = {X ∈ gl(n,F) | tr X = 0}.

To check this, use Theorem 4.6. Suppose X is in the Lie algebra of SL(n,F). Then
1 = det et X = et tr X for t ∈ R (Exercise 4.3). Applying d

dt |t=0 implies 0 = tr X . On
the other hand, if tr X = 0, then det et X = et tr X = 1, so that X is in the Lie algebra
of SL(n,F).

It remains to calculate the Lie algebras for the compact classical Lie groups.

4.1.3.1 SU (n) First, we show that the Lie algebra of U (n) is

u(n) = {X ∈ gl(n,C) | X∗ = −X}.

Again, this follows from Theorem 4.6. Suppose X is in the Lie algebra of U (n).
Then I = et X

(
et X

)∗ = et X et X∗
for t ∈ R (Exercise 4.3). Applying d

dt |t=0 implies
that 0 = X + X∗. On the other hand, if X∗ = −X , then et X et X∗ = et X e−t X = I , so
that X is in the Lie algebra of U (n).
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To calculate the Lie algebra of SU (n), simply toss the determinant condition into
the mix. It is handled as in the case of SL(n,F). Thus the Lie algebra of SU (n) is

su(n) = {X ∈ gl(n,C) | X∗ = −X , tr X = 0}.
Using the fact that the tangent space has the same dimension as the manifold, we

now have a simple way to calculate the dimension of U (n) and SU (n). In particular,
since dim u(n) = 2 n(n−1)

2 +n, dim U (n) = n2 and, since dim su(n) = 2 n(n−1)
2 +n−1,

dim SU (n) = n2 − 1.

4.1.3.2 SO(n) Working with Xt instead of X∗ for X ∈ gl(n,R), O(n) and SO(n)
are handled in the same way as U (n) and SU (n). Thus the Lie algebras for O(n) and
SO(n) are, respectively,

o(n) = {X ∈ gl(n,R) | Xt = −X}
so(n) = {X ∈ gl(n,R) | Xt = −X , tr X = 0} = o(n).

Both groups have the same tangent space at I since SO(n) = O(n)0. In par-
ticular, both groups also have the same dimension and, since dim o(n) = n(n−1)

2 ,
dim O(n) = dim SO(n) = n(n−1)

2 .

4.1.3.3 Sp(n) Recall from §1.1.4.3 that two realizations were given for Sp(n). We
give the corresponding Lie algebra for each.

The first realization was Sp(n) = {g ∈ GL(n,H) | g∗g = I }. Since GL(n,H)

is an open dense set in gl(n,H) = Mn,n(H) ∼= R4n2
, gl(n,H) can be identified with

the tangent space TI (GL(n,H)). It is therefore clear that Definition 4.1 generalizes
in the obvious fashion so as to realize the Lie algebra of Sp(n) inside gl(n,H).
Working within this scheme and mimicking the case of U (n), it follows that the Lie
algebra of this realization of Sp(n) is

sp(n) = {X ∈ gl(n,H) | X∗ = −X}.
Since dim sp(n) = 4 n(n−1)

2 + 3n, we see that dim Sp(n) = 2n2 + n.
The second realization of Sp(n) was as Sp(n) ∼= U (2n) ∩ Sp(n,C), where

Sp(n,C) = {g ∈ GL(2n,C) | gt Jg = J } and

J =
(

0 −In

In 0

)
.

The Lie algebra of this realization of Sp(n) is

sp(n) ∼= u(2n) ∩ sp(n,C),

where the Lie algebra of Sp(n,C) is

sp(n,C) = {X ∈ gl(2n,C) | Xt J = −J X}.
The only statement that needs checking is the identification of sp(n,C). As usual,
this follows from Theorem 4.6. Suppose X is in the Lie algebra of Sp(n,C). Then
et Xt

J et X = J for t ∈ R. Applying d
dt |t=0 implies 0 = Xt J + J X . On the other hand,

if Xt J = −J X , then J X J−1 = −Xt , so et Xt
J et X J−1 = et Xt

et J X J−1 = et Xt
e−t X t =

I , so that X is in the Lie algebra of Sp(n,C).
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4.1.4 Exercises

Exercise 4.1 Let G be a Lie subgroup of GL(n,C). Show that the Lie bracket is
linear in each variable, skew-symmetric, and satisfies the Jacobi identity.

Exercise 4.2 (1) Show that the map ϑ̃ : H → M2,2(C) from Equation 1.13 in
§1.1.4.3 induces an isomorphism Sp(1) ∼= SU (2) of Lie groups.
(2) Show that

ϑ̃i =
(

i 0
0 −i

)
, ϑ̃ j =

(
0 −1
1 0

)
, ϑ̃k =

(
0 −i
−i 0

)
.

(3) Let Im(H) = spanR{i, j, k} and equip Im(H) with the algebra structure [u, v] =
2 Im(uv) = uv − uv = uv − vu for u, v ∈ Im(H). Show ϑ̃ induces an isomorphism
Im(H) ∼= su(2) as (Lie) algebras.

Exercise 4.3 (1) Let X, Y ∈ gl(n,C). Show that the map t → et X is a well-defined
smooth homomorphism of R into GL(n,C).
(2) If X and Y commute, show that eX+Y = eX eY . Show by example that this need
not be true when X and do not Y commute.
(3) Show that det eX = etr X ,

(
eX
)∗ = eX∗

,
(
eX
)−1 = e−X , d

dt et X = et X X = Xet X ,

and AeX A−1 = eAX A−1
for A ∈ GL(n,C).

Exercise 4.4 (1) For x, y ∈ R, show that

exp

(
x −y
y x

)
= ex

(
cos y − sin y
sin y cos y

)
exp

(
x y
y x

)
= ex

(
cosh y sinh y
sinh y cosh y

)
exp

(
x 0
y x

)
= ex

(
1 0
y 1

)
.

(2) Show every matrix in gl(2,R) is conjugate to one of the form

(
x −y
y x

)
,(

x y
y x

)
, or

(
x 0
y x

)
.

Exercise 4.5 (1) The Euclidean motion group on Rn consists of the set of transfor-
mations of Rn of the form x → Ax + b, where A ∈ GL(n,R) and b ∈ Rn for
x ∈ Rn . Show that the Euclidean motion group can be realized as a linear group of
the form

{
(

A b
0 1

)
| A ∈ GL(n,R), b ∈ Rn}.

(2) Use power series to make sense of (eA−I)
A .

(3) Show that the exponential map is given in this case by
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exp

(
A b
0 1

)
=
(

eA (eA−I)
A b

0 1

)
.

Exercise 4.6 (1) Let X ∈ sl(2,C) be given by

X =
(

a b
c −a

)
with a, b, c ∈ C and let λ ∈ C so that λ2 = a2+bc. Show eX = (cosh λ) I + sinh λ

λ
X .

(2) Let X ∈ so(3) be given by

X =
⎛⎝ 0 a b
−a 0 c
−b −c 0

⎞⎠
for a, b, c ∈ R and let θ = √

a2 + b2 + c2. Show eX = I + sin θ
θ

X + 1−cos θ
θ2 X2. Also

show that eX is the rotation about (c,−b, a) through an angle θ .

Exercise 4.7 (1) Show that the map exp: sl(2,R)→ SL(2,R) is not onto by show-
ing that the complement of the image of exp consists of all g ∈ SL(2,R) that are
conjugate to (−1 ±1

0 −1

)
(i.e., all g �= −I with both eigenvalues equal to −1).
(2) Calculate the image of gl(2,R) under exp.

Exercise 4.8 (1) Use the Jordan canonical form to show exp: gl(n,C)→ GL(n,C)

is surjective.
(2) Show that exp: u(n)→ U (n) and exp: su(n)→ SU (n) are surjective maps.
(3) Show that exp: so(n)→ SO(n) is surjective.
(4) Show that exp: sp(n)→ Sp(n) is surjective.

Exercise 4.9 Find an X ∈ gl(2,C) so that eX ∈ SL(2,C), but X /∈ sl(2,C).

Exercise 4.10 Let G be a Lie subgroup of GL(n,C). Show G0 = {I } if and only if
g = {0}.
Exercise 4.11 Let G be a Lie subgroup of GL(n,C) and ϕ : R → G a continuous
homomorphism.
(1) Show that ϕ is smooth if and only if ϕ is smooth at 0.
(2) Let U be a neighborhood of 0 in g on which exp is injective. Show it is possible
to linearly reparametrize ϕ, i.e., replace ϕ(t) by ϕ(st) for some nonzero s ∈ R, so
that ϕ([−1, 1]) ⊆ exp U .
(3) Let X ∈ U so that exp X = 1. Show that ϕ(t) = et X for t ∈ Q.
(4) Show that ϕ (t) = et X for t ∈ R and conclude that ϕ is actually real analytic and,
in particular, smooth.
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Exercise 4.12 (1) Let G be a Lie subgroup of GL(n,C). Let {Xi }ni=1 be a basis for
g. By calculating the differential on each standard basis vector, show that the map

(t1, . . . , tn)→ et1 X1 · · · etn Xn

is a local diffeomorphism near 0 from Rn to G. The coordinates (t1, . . . , tn) are
called coordinates of the second kind.
(2) Show that the map

(t1, . . . , tn)→ et1 X1+···+tn Xn

is a local diffeomorphism near 0 from Rn to G. The coordinates (t1, . . . , tn) are
called coordinates of the first kind.

Exercise 4.13 Suppose G and H are Lie subgroups of general linear groups and
ϕ : H → G is a continuous homomorphism. Using Exercises 4.11 and 4.12, show
that ϕ is actually a real analytic and therefore smooth map.

Exercise 4.14 Suppose B(·, ·) is a bilinear form on Fn . Let

Aut(B) = {g ∈ GL(n,F) | (gv, gw) = (v,w), v,w ∈ Fn}
Der(B) = {X ∈ gl(n,F) | (Xv,w) = −(v, Xw), v,w ∈ Fn}.

Show that Aut(B) is a closed Lie subgroup of GL(n,F) with Lie algebra Der(B).

Exercise 4.15 Suppose Fn is equipped with an algebra structure ·. Let

Aut(·) = {g ∈ GL(n,F) | g(v · w) = gv · gw, v,w ∈ Fn}
Der(·) = {X ∈ gl(n,F) | X (v · w) = Xv · w + v · Xw, v,w ∈ Fn}.

Show that Aut(·) is a closed Lie subgroup of GL(n,F) with Lie algebra Der(·).
Exercise 4.16 Let G be a Lie subgroup of GL(n,C). Use the exponential map to
show G has a neighborhood of I that contains no subgroup of G other than {e}.
Exercise 4.17 For X, Y ∈ gl(n,C), show that eX+Y = limn→∞(e

X
n e

Y
n )n .

4.2 Further Constructions

4.2.1 Lie Algebra Homomorphisms

Definition 4.7. Suppose ϕ : H → G is a homomorphism of Lie subgroups of gen-
eral linear groups. Let the differential of ϕ, dϕ : h → g, be given by

dϕ(X) = d

dt
ϕ(et X )|t=0.
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This is well defined by Theorem 4.6 and Definition 4.1. Note by the chain rule
that if γ : R → G is any smooth map with γ ′(0) = X , then dϕ can be alternately
computed as dϕ(X) = d

dt ϕ(γ (t))|t=0. If one examines the identifications of Lie
algebras with tangent spaces, then it is straightforward to see that the above definition
of dϕ corresponds to the usual differential geometry definition of the differential
dϕ : TI (H)→ TI (G). In particular, dϕ is a linear map and d(ϕ1 ◦ ϕ2) = dϕ1 ◦ dϕ2.
Alternatively, this can be verified directly with the chain and product rules (Exercise
4.18).

Theorem 4.8. Suppose ϕ, ϕi : H → G are homomorphisms of Lie subgroups of
general linear groups.
(a) The following diagram is commutative:

h
dϕ→ g

exp ↓ ↓ exp

H
ϕ→ G

so that exp ◦dϕ = ϕ ◦ exp, i.e., edϕX = ϕ(eX ) for X ∈ h.
(b) The differential dϕ is a homomorphism of Lie algebras, i.e.,

dϕ[X, Y ] = [dϕX, dϕY ]

for X, Y ∈ h.
(c) If H is connected and dϕ1 = dϕ2, then ϕ1 = ϕ2.

Proof. For part (a), observe that since ϕ is a homomorphism that

d

dt
ϕ(et X ) = d

ds
ϕ(e(t+s)X )|s=0 = ϕ(et X )

d

ds
ϕ(es X )|s=0 = ϕ(et X )dϕX .

Thus t → ϕ(et X ) is the integral curve of d̃ϕX through I . Theorem 4.5 therefore
implies ϕ(et X ) = etdϕX .

For part (b), start with the equality ϕ(et X esY e−t X ) = etdϕX esdϕY e−tdϕX that fol-
lows from the fact that ϕ is a homomorphism and part (a). Apply ∂

∂s |s=0 and rewrite

et X esY e−t X as eset X Y e−t X
(Exercise 4.3) to get

dϕ(et X Y e−t X ) = etdϕX dϕY e−tdϕX .

Next apply d
dt |t=0 to get

d

dt

(
dϕ(et X Y e−t X )

) |t=0 = dϕXdϕY − dϕY dϕX = [dϕX, dϕY ]

and use the fact that dϕ is linear to get

dϕ([X, Y ]) = dϕ(XY − Y X) = d

dt
dϕ(et X Y e−t X )|t=0 = [dϕX, dϕY ].

For part (c), use part (a) to show that ϕ1 and ϕ2 agree on exp h. By Theorem 4.6 and
since ϕi is a homomorphism, the proof is finished. �
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As a corollary of Theorem 4.8, we can check that the Lie algebra of a compact
group is well defined up to isomorphism. To see this, suppose Gi are Lie subgroups
of general linear groups with ϕ : G1 → G2 an isomorphism. Since ϕ◦ϕ−1 and ϕ−1◦ϕ
are the identity maps, taking differentials shows dϕ is a Lie algebra isomorphism
from g1 to g2.

A smooth homomorphism of the additive group R into a Lie group G is called a
one-parameter subgroup. The next corollary shows that all one-parameter subgroups
are of the form t → et X for X ∈ g.

Corollary 4.9. Let G be a Lie subgroup of GL(n,C) and let γ : R → G be a
smooth homomorphism, i.e., γ (s + t) = γ (s)γ (t) for s, t ∈ R. If γ ′(0) = X, then
γ (t) = et X .

Proof. View the multiplicative group R+ as a Lie subgroup of GL(1,C). Let γ̃ , σ :
R+ → G be the two homomorphisms defined by γ̃ = γ ◦ ln and σ(x) = e(ln x)X .
Then

dγ̃ (x) = d

dt
γ̃ (etx )|t=0 = d

dt
γ (t x)|t=0 = x X

dσ(x) = d

dt
σ(etx )|t=0 = d

dt
etx X |t=0 = x X .

Theorem 4.8 thus shows that γ̃ = σ so that γ (t) = et X . �

In the definition below any choice of basis can be used to identify GL(g) and

End(g) with GL(dim g,R) and gl(dim g,R), respectively. Under this identification,
exp corresponds to the map exp : End(g) → GL(g) with eT = ∑∞

k=0
1
k! T k for

T ∈ End(g) where T k X = (T ◦ · · · ◦ T )X (k copies) for T ∈ End(g) and X ∈ g.

Definition 4.10. Let G be a Lie subgroup of GL(n,C).
(a) For g ∈ G, let conjugation, cg : G → G, be the Lie group homomorphism given
by cg(h) = ghg−1 for h ∈ G
(b) The Adjoint representation of G on g, Ad : G → GL(g), is given by Ad(g) =
d
(
cg
)
.

(c) The adjoint representation of g on g, ad : g → End(g), is given by ad = d Ad,
i.e., (ad X) Y = d

dt (Ad(et X )Y )|t=0 for X, Y ∈ g.

Some notes are in order. Except for the fact that g is a real vector space instead
of a complex one, Ad is seen to satisfy the key property of a representation,

Ad(g1g2) = Ad(g1)Ad(g2),

by taking the differential of the relation cg1g2 = cg1 ◦ cg2 for gi ∈ G. More explicitly,
however, dcg(X) = d

dt (get X g−1)|t=0 so that

Ad(g)X = gXg−1.

Applying Theorem 4.8, we see that
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cgeX = eAd(g)X .

Since this is simply the statement geX g−1 = egXg−1
, the equality is already well

known from linear algebra.
Secondly, ((d Ad) (X)) Y = d

dt et X Y e−t X |t=0 so that

(ad X) Y = XY − Y X = [X, Y ].

Applying Theorem 4.8, we see that

Ad(eX ) = ead X .(4.11)

The notion of a representation of a Lie algebra will be developed in §6.1. When that
is done, ad will, in fact, be a representation of g on itself.

4.2.2 Lie Subgroups and Subalgebras

If M is a manifold and ξi are vector fields, the Lie bracket of vector fields is defined
as [ξ1, ξ2] = ξ1ξ2 − ξ2ξ1. For M = Rn , it is easy to see (Exercise 4.19) that the Lie
bracket of the vector fields ξ =∑

i ξi (x)
∂
∂xi

and η =∑
i ηi (x)

∂
∂xi

is given by

[ξ, η] =
∑

i

∑
j

(
ξ j

∂ηi

∂x j
− η j

∂ξi

∂x j

)
∂

∂xi
.(4.12)

For M = GL(n,C), recall that GL(n,C) is viewed as an open set in Mn,n(C) ∼=
R2n2 ∼= Rn2 × Rn2

by writing Z ∈ Mn,n(C) as Z = X + iY , X, Y ∈ Mn,n(R), and
mapping Z to (X, Y ). For A ∈ gl(n,C), the value of the vector field Ã at the point
Z ∈ GL(n,C) is defined as Z A. Unraveling our identifications (see the discussion
around Equation 4.3 for the usual identification of Tg(G) with gg), this means that
the vector field Ã on GL(n,C) corresponds to the vector field

∂A =
∑
i, j

∑
k

Re(zik Ak j )
∂

∂xi j
+
∑
i, j

∑
k

Im(zik Ak j )
∂

∂yi j

on the open set of R2n2
cut out by the determinant.

Lemma 4.13. For A, B ∈ Mn(C), [∂A, ∂B] = ∂[A,B].

Proof. For the sake of clarity of exposition, we will verify this lemma for Mn(R) and
leave the general case of Mn(C) to the reader. In this setting and with A ∈ Mn(R), ∂A

is simply
∑

i, j

∑
k xik Ak j

∂
∂xi j

. Writing δi,p for 0 when i �= p and for 1 when i = p,
Equation 4.12 shows that

[∂A, ∂B] =
∑
i, j

∑
p,q

(∑
k

x pk Akqδi,p Bq j −
∑

k

x pk Bkqδi,p Aq j

)
∂

∂xi j

=
∑
i, j

∑
q,k

xik
(

Akq Bq j − Bkq Aq j
) ∂

∂xi j

=
∑
i, j

∑
k

xik[A, B]k j
∂

∂xi j
= ∂[A,B]. �
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For us, the importance of Lemma 4.13 is that if h is a k-dimensional subalge-
bra of gl(n,C), then the vector fields {∂X | X ∈ h} form a subalgebra under the Lie
bracket of vector fields. Moreover, on GL(n,C), their value at each point determines
a smooth rank k subbundle of the tangent bundle. Thus Frobenius’ theorem from dif-
ferential geometry (see [8] or [88]) says this subbundle foliates GL(n,C) into inte-
gral submanifolds. In particular, there is a unique maximal connected k-dimensional
submanifold H of GL(n,C) so that I ∈ H and Th(H) = {(∂X )h | X ∈ h}, h ∈ H ,
where (∂X )h is the value of ∂X at h. Under our usual identification, this means that
the tangent space of H at h corresponds to hh, i.e., that {γ ′(0) | γ (0) = h and
γ : (−ε, ε) → H , ε > 0, is smooth} = hh. Finally, it is an important fact that
integral submanifolds such as H , as was the case for regular submanifolds, satisfy
the property that when f : M → G is a smooth map of manifolds with f (M) ⊆ H ,
then f : M → H is also a smooth map (see [88]).

Theorem 4.14. Let G be a Lie subgroup of GL(n,C). There is a bijection between
the set of connected Lie subgroups of G and the set of subalgebras of g. If H is a
connected Lie subgroup of G, the correspondence maps H to its Lie algebra h.

Proof. Suppose h is a subalgebra of g. Let H be the unique maximal connected
submanifold of G so that I ∈ H , and so the tangent space of H at h corresponds to hh
for h ∈ H . Now the connected submanifold h−1

0 H , h0 ∈ H , contains I . Moreover,
since d

dt (h
−1
0 γ (t))|t=0 = h−1

0 γ ′(0), the tangent space of h−1
0 H at h−1

0 h corresponds
to h−1

0 hh. Uniqueness of the integral submanifold therefore shows h−1
0 H = H . A

similar argument shows that h0 H = H , so that H is a subgroup of G. By the remark
above the statement of this theorem, the multiplication and inverse operations are
smooth as maps on H , so that H is a Lie subgroup of G. Hence the correspondence
is surjective.

To see it is injective, suppose H and H ′ are connected Lie subgroups of G, so that
h = h′. Using the exponential map and Theorem 4.6, H and H ′ share a neighborhood
of I . Since they are both connected, this forces H = H ′. �


4.2.3 Covering Homomorphisms

Theorem 4.15. Let H and G be connected Lie subgroups of general linear groups
and ϕ : H → G a homomorphism of Lie groups. Then ϕ is a covering map if and
only if dϕ is an isomorphism.

Proof. If ϕ is a covering, then there is a neighborhood U of I in H and a neighbor-
hood V of I in G, so that ϕ restricts to a diffeomorphism ϕ : U → V . Thus the
differential at I , dϕ, is an isomorphism.

Suppose now that dϕ is an isomorphism. By the Inverse Mapping theorem, there
is a neighborhood U0 of I in H and a neighborhood V0 of I in G so that ϕ restricts to
a diffeomorphism ϕ : U0 → V0. In particular, kerϕ∩U0 = {I }. Let V be a connected
neighborhood of I in V0 so that V V−1 ⊆ V0 (Exercise 1.4) and let U = ϕ−1V ∩U0

so that U is connected, UU−1 ⊆ U0, and ϕ : U → V is still a diffeomorphism.
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As ϕ is a homomorphism, ϕ−1V = U kerϕ. To see that ϕ satisfies the covering
condition at I ∈ G, we show that the set of connected components of ϕ−1V is
{Uγ | γ ∈ kerϕ}. For this, it suffices to show that Uγ1 ∩ Uγ2 = ∅ for distinct
γi ∈ kerϕ. Suppose u1γ1 = u2γ2 for ui ∈ U and γi ∈ kerϕ. Then γ2γ

−1
1 = u−1

2 u1

is in U0 ∩ kerϕ and so γ2γ
−1
1 = I , as desired.

It remains to see that ϕ satisfies the covering condition at any g ∈ G. For this, first
note that ϕ is surjective since G is connected, ϕ is a homomorphism, and the image
of ϕ contains a neighborhood of I (Theorem 1.15). Choose h ∈ H so that ϕ(h) = g.
Then gV is a connected neighborhood of g in G and ϕ−1(gV ) = hU kerϕ. The
set of connected components of hU kerϕ is clearly {hUγ | γ ∈ kerϕ}. Since ϕ

restricted to hUγ is obviously a diffeomorphism to gV , ϕ is a covering map. �

Theorem 4.16. Let H and G be connected Lie subgroups of general linear groups
with H simply connected. If ψ : h → g is a homomorphism of Lie algebras, then
there exists a unique homomorphism of Lie groups ϕ : H → G so that dϕ = ψ .

Proof. Uniqueness follows from Theorem 4.8. For existence, suppose H is a Lie
subgroup of GL(n,C) and G is a subgroup of GL(m,C). Then we may view H×G
as a block diagonal Lie subgroup of GL(n+m,C). When this is done, the Lie algebra
of H × G is clearly the direct sum of h and g in gl(n + m,C). More importantly,
note h and g commute and define

a = {X + ψX | X ∈ h} ⊆ h⊕ g.

Using the fact that ψ is a homomorphism of Lie algebras, if follows that a is a
subalgebra of h⊕ g since

[X + ψX, Y + ψY ] = [X, Y ]+ [ψX, ψY ] = [X, Y ]+ ψ[X, Y ]

for X, Y ∈ h.
Let A be the connected Lie subgroup of H × G with Lie algebra a (Theorem

4.14) and let πH and πG be the Lie group homomorphisms projecting A to H and
G, respectively. By the definitions, dπH (X +ψX) = X and dπG(X +ψX) = ψX .
Then dπH is a Lie algebra isomorphism of a and h, so that Theorem 4.15 implies
πH is a covering map from A to H . Since H is simply connected, this means that
πH : A → H is an isomorphism. Define the Lie group homomorphism ϕ : H → G
by ϕ = πG ◦ π−1

H to finish the proof. �

Note Theorem 4.16 can easily fail when H is not simply connected (Exercise

4.20).

4.2.4 Exercises

Exercise 4.18 (1) Let ϕ : H → G be a homomorphism of linear Lie groups. Use
the fact that d

dt

(
etr X etY

) |t=0 = r X + Y , X, Y ∈ h, to directly show that dϕ : h → g
is a linear map.
(2) Let ϕ′ : K → H be a homomorphism of linear Lie groups. Show that d(ϕ◦ϕ′) =
dϕ ◦ dϕ′.
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Exercise 4.19 Verify that Equation 4.12 holds.

Exercise 4.20 Use the spin representations to show that Theorem 4.16 can fail when
H is not simply connected.

Exercise 4.21 (1) Let

H =
(

1 0
0 −1

)
, E =

(
0 1
0 0

)
, and F =

(
0 0
1 0

)
.

Show that [H, E] = 2E , [H, F] = −2F , and [E, F] = H .
(2) Up to the Ad action of SL(2,R), find all Lie subalgebras of sl(2,R).

Exercise 4.22 (1) Let G be a Lie subgroup of a linear group and H ⊆ G. Show that
the centralizer of H in G,

ZG(H) = {g ∈ G | gh = hg, h ∈ H},
is a Lie subgroup of G with Lie algebra the centralizer of H in g,

zg(H) = {X ∈ g | Ad(h)X = X , h ∈ H}.

(2) If h ⊆ g, show that the centralizer of h in G,

ZG(h) = {g ∈ G | Ad(g)X = X , X ∈ h},
is a Lie subgroup of G with Lie algebra the centralizer of h in g,

zg(h) = {Y ∈ g | [Y, X ] = 0, X ∈ h}.

(3) If H is a connected Lie subgroup of G, show ZG(H) = ZG(h) and zg(H) =
zg(h).

Exercise 4.23 (1) Let G be a Lie subgroup of a linear group and let H be a connected
Lie subgroup of G. Show that the normalizer of H in G,

NG(H) = {g ∈ G | gHg−1 = H},
is a Lie subgroup of G with Lie algebra the normalizer of h in g,

ng(h) = {Y ∈ g | [Y, h] ⊆ h}.

(2) Show H is normal in G if and only if h is an ideal in g.

Exercise 4.24 (1) Let ϕ : H → G be a homomorphism of Lie subgroups of linear
groups. Show that kerϕ is a closed Lie subgroup of H with Lie algebra ker dϕ.
(2) Show that the Lie subgroup ϕ(H) of G has Lie algebra dϕh.
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Exercise 4.25 If G is a Lie subgroup of a linear group satisfying span[g, g] = g,
show that tr (ad X) = 0 for X ∈ g.

Exercise 4.26 (1) For X, Y ∈ gl(n,C), show that et X etY = et (X+Y )+ 1
2 t2[X,Y ]+O(t3)

for t near 0.
(2) Show that et X etY e−t X = etY+t2[X,Y ]+O(t3) for t near 0.

Exercise 4.27 For X, Y ∈ gl(n,C), show that e[X,Y ] = limn→∞
(

e
X
n e

Y
n e−

X
n e−

Y
n

)n2

.

Exercise 4.28 This exercise gives a proof of Theorem 1.6. Recall the well-known
fact that an n-dimensional submanifold N of an m-dimensional manifold M is regu-
lar if and only each n ∈ N lies in an open set U of M with the property that there is
a chart ϕ : U → Rm of M so that N ∩U = ϕ−1(Rn), where Rn is viewed as sitting
in Rm in the usual manner ([8]). Such a chart is called cubical. Let G ⊆ GL(n,C)

be a Lie subgroup and H ⊆ G be a subgroup (with no manifold assumption).
(1) Assume first that H is a regular submanifold of G and hi → h with hi ∈ H
and h ∈ G. Show that there is a cubical chart U of G around e and open sets
V ⊆ W ⊆ U , so that V−1V ⊆ W ⊆ U . Noting that h−1

i h j ∈ V−1V for big
i, j , use the definitions to show that H is closed.
(2) For the remainder, only assume H is closed. Let h = {X ∈ g | et X ∈ H , t ∈ R}.
Show that et X etY = et (X+Y )+O(t2), X, Y ∈ g, and use induction to see that

et (X+Y ) = lim
n→∞

(
e

t
n X e

t
n Y
)n

.

Conclude that h is a subspace and choose a complementary subspace s ⊆ g, so that
s⊕ h = g.
(3) Temporarily, assume there are no neighborhoods V of 0 in g with exp(h ∩ V ) =
H ∩ exp V . Using this assumption and the fact that the map (Y, Z) → eY eZ is a
local diffeomorphism at (0, 0) from s⊕h to G, construct a nonzero sequence Yn ∈ s,
so that Yn → 0 and eYn ∈ H . Show that you can pass to a subsequence and further
assume Yn/ ‖Yn‖ → Y for some nonzero Y ∈ s.
(4) For any t ∈ R, show that there is kn ∈ Z so that kn ‖Yn‖ → t . Conclude that(
eYn

)kn → etY .
(5) Obtain a contradiction to the assumption in part (3) by showing that Y ∈ h.
Conclude that there is a neighborhood V of 0 in g, so that exp is a diffeomorphism
from V to its image in G and exp(h ∩ V ) = H ∩ exp V .
(6) Given any h ∈ H , consider the neighborhood U = h exp V of h in G and the
chart ϕ = exp−1 ◦l−1

h : G → g of G. Show that ϕ−1(h) = H ∩ U , so that H is a
regular submanifold, as desired.




