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Roots and Associated Structures

By examining the joint eigenvalues of a Cartan subalgebra under the ad-action, a
great deal of information about a Lie group and its Lie algebra may be encoded. For
instance, the fundamental group can be read off from this data (§6.3.3). Moreover,
this encoding is a key step in the classification of irreducible representations (§7).

6.1 Root Theory

6.1.1 Representations of Lie Algebras

Definition 6.1. (a) Let g be the Lie algebra of a Lie subgroup of GL(n,C). A
representation of g is a pair (ψ, V ), where V is a finite-dimensional complex
vector space and ψ is a linear map ψ : g → End(V ), satisfying ψ([X, Y ]) =
ψ(X) ◦ ψ(Y )− ψ(Y ) ◦ ψ(X) for X, Y ∈ g.
(b) The representation (ψ, V ) is said to be irreducible if there are no proper ψ(g)-
invariant subspaces, i.e., the only ψ(g)-invariant subspaces are {0} and V . Otherwise
(ψ, V ) is called reducible.

As with group representations, a Lie algebra representation (ψ, V ) may simply
be written as ψ or as V when no ambiguity can arise. Also similar to the group case,
ψ(X)v, v ∈ V , may be denoted by X · v or by Xv.

It should be noted that if V is m-dimensional, a choice of basis allows us to
view a representation of g as a homomorphism ψ : g → gl(m,C), i.e., ψ is linear
and satisfies ψ[X, Y ] = [ψX, ψY ]. We will often make this identification without
comment.

Theorem 6.2. (a) Let G be a Lie subgroup of GL(n,C) and (π, V ) a finite-dimen-
sional representation of G. Then (dπ, V ) is a representation of g satisfying edπX =
π(eX ), where the differential of π is given by dπ(X) = d

dt π(e
t X )|t=0 for X ∈ g. If G

is connected, π is completely determined by dπ .
(b) For connected G, a subspace W ⊆ V is π(G)-invariant if and only if it is dπ(g)-
invariant. In particular, V is irreducible under G if and only if it is irreducible un-
der g.
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(c) For connected compact G, V is irreducible if and only if the only endomorphisms
of V commuting with all the operators dπ(g) are scalar multiples of the identity
map.

Proof. Part (a) follows immediately from Theorem 4.8 by looking at the homomor-
phism π : G → GL(V ) and choosing a basis for V . Part (b) follows from the
relation edπX = π(eX ), the definition of dπ , and the fact that exp g generates G. For
part (c), let T ∈ End(V ) and embed G in GL(n,C). Observe that [T, dπX ] = 0 if
and only if et ad(dπX)T = T , t ∈ R, if and only if Ad(etdπX )T = T if and only if T
commutes with etdπX = π(et X ). Using the fact that G is connected, part (c) follows
from part (b) and Schur’s Lemma. �

As an example, let G be a Lie subgroup of GL(n,C) and let (π,C) be the trivial
representation of G. Then dπ = 0. This representation of g is called the trivial
representation.

As a second example, let G be a Lie subgroup of GL(n,C) and let (π,Cn) be
the standard representation. Then dπ(X)v = Xv for v ∈ Cn . This representation is
called the standard representation. In the cases of G equal to GL(n,F), SL(n,F),
U (n), SU (n), or SO(n), the standard representation is known to be irreducible on
the Lie group level (§2.2.2), so that each is irreducible on the Lie algebra level.

As a last example, consider the representation Vn(C2) of SU (2) from §2.1.2.2
given by (

a −b
b a

)
· zk

1zn−k
2 = (az1 + bz2)

k(−bz1 + az2)
n−k .

From §4.1.3, su(2) = {X =
(

i x −w

w −i x

)
| x ∈ R, w ∈ C}. Using either power series

calculations or Corollary 4.9, exp t X = (cos λt) I + (
1
λ

sin λt
)

X where λ = √
det X

(Exercise 6.2). It follows that the Lie algebra acts by

X · (zk
1zn−k

2 ) = d

dt

((
cos λt + i x

λ
sin λt −w

λ
sin λt

w
λ

sin λt cos λt − i x
λ

sin λt

)
· zk

1zn−k
2

)
|t=0

= k (−i xz1 + wz2) zk−1
1 zn−k

2 + (n − k) (−wz1 + i xz2) zk
1zn−k−1

2

= kw zk−1
1 zn−k+1

2 + i (n − 2k) x zk
1zn−k

2 + (k − n)w zk+1
1 zn−k−1

2 .(6.3)

It is easy to use Equation 6.3 and Theorem 6.2 to show that Vn(C2) is irreducible. In
fact, this is the idea underpinning the argument given in §2.1.2.2.

As in the case of representations of Lie groups, new Lie algebra representations
can be created using linear algebra. It is straightforward to verify (Exercise 6.1) that
differentials of the Lie group representations listed in Definition 2.10 yield the fol-
lowing Lie algebra representations.

Definition 6.4. Let V and W be representations of a Lie algebra g of a Lie subgroup
of GL(n,C).
(1) g acts on V ⊕ W by X (v,w) = (Xv, Xw).
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(2) g acts on V ⊗ W by X
∑

vi ⊗ w j =
∑

Xvi ⊗ w j +
∑

vi ⊗ Xw j .
(3) g acts on Hom(V, W ) by (XT ) (v) = XT (v)− T (Xv).
(4) g acts on

⊗k V by X
∑

vi1⊗· · · vik =
∑(

Xvi1

)⊗· · · vik+· · ·
∑

vi1⊗· · ·
(
Xvik

)
.

(5) g acts on
∧k V by X

∑
vi1 ∧· · · vik =

∑(
Xvi1

)∧· · · vik +· · ·
∑

vi1 ∧· · ·
(
Xvik

)
.

(6) g acts on Sk(V ) by X
∑

vi1 · · · vik =
∑(

Xvi1

) · · · vik + · · ·
∑

vi1 · · ·
(
Xvik

)
.

(7) g acts on V ∗ by (XT ) (v) = −T (Xv).
(8) g acts on V by the same action as it does on V .

6.1.2 Complexification of Lie Algebras

Definition 6.5. (a) Let g be the Lie algebra of a Lie subgroup of GL(n,C). The
complexification of g, gC, is defined as gC = g⊗RC. The Lie bracket on g is extended
to gC by C-linearity.
(b) If (ψ, V ) is a representation of g, extend the domain of ψ to gC by C-linearity.
Then (ψ, V ) is said to be irreducible under gC if there are no proper ψ(gC)-invariant
subspaces.

Writing a matrix in terms of its skew-Hermitian and Hermitian parts, observe
that gl(n,C) = u(n) ⊕ iu(n). It follows that if g is the Lie algebra of a compact
Lie group G realized with G ⊆ U (n), gC may be identified with g ⊕ ig equipped
with the standard Lie bracket inherited from gl(n,C) (Exercise 6.3). We will often
make this identification without comment. In particular, u(n)C = gl(n,C). Similarly,
su(n)C = sl(n,C), so(n)C is realized by

so(n,C) = {X ∈ sl(n,C) | Xt = −X},

and, realizing sp(n) as u(2n) ∩ sp(n,C) as in §4.1.3, sp(n)C is realized by sp(n,C)

(Exercise 6.3).

Lemma 6.6. Let g be the Lie algebra of a Lie subgroup of GL(n,C) and let (ψ, V )

be a representation of g. Then V is irreducible under g if and only if it is irreducible
under gC.

Proof. Simply observe that since a subspace W ⊆ V is a complex subspace, W is
ψ(g)-invariant if and only if it is ψ(gC)-invariant. �

For example, su(2)C = sl(2,C) is equipped with the standard basis

E =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)

(c.f. Exercise 4.21). Since E = 1
2

(
0 1
−1 0

)
− i

2

(
0 i
i 0

)
, Equation 6.3 shows that

the resulting action of E on Vn(C2) is given by
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E · (zk
1zn−k

2 ) = 1

2

[−k zk−1
1 zn−k+1

2 − (k − n) zk+1
1 zn−k−1

2

]
− i

2

[−ik zk−1
1 zn−k+1

2 + i(k − n) zk+1
1 zn−k−1

2

]
= −k zk−1

1 zn−k+1
2 .

Similarly (Exercise 6.4), the action of H and F on Vn(C2) is given by

H · (zk
1zn−k

2 ) = (n − 2k) zk
1zn−k

2(6.7)

F · (zk
1zn−k

2 ) = (k − n) zk+1
1 zn−k−1

2 .

Irreducibility of Vn(C2) is immediately apparent from these formulas (Exercise 6.7).

6.1.3 Weights

Let G be a compact Lie group and (π, V ) a finite-dimensional representation of G.
Fix a Cartan subalgebra t of g and write tC for its complexification. By Theorem
5.6, there exists an inner product, (·, ·), on V that is G-invariant and for which dπ
is skew-Hermitian on g and is Hermitian on ig. Thus tC acts on V as a family of
commuting normal operators and so V is simultaneously diagonalizable under the
action of tC. In particular, the following definition is well defined.

Definition 6.8. Let G be a compact Lie group, (π, V ) a finite-dimensional represen-
tation of G, and t a Cartan subalgebra of g. There is a finite set �(V ) = �(V, tC) ⊆
t∗
C

, called the weights of V , so that

V =
⊕

α∈�(V )

Vα,

where

Vα = {v ∈ V | dπ(H)v = α(H)v, H ∈ tC}

is nonzero. The above displayed equation is called the weight space decomposition
of V with respect to tC.

As an example, take G = SU (2), V = Vn(C2), and t to be the diagonal matrices
in su(2). Define αm ∈ t∗

C
by requiring αm(H) = m. Then Equation 6.7 shows that

the weight space decomposition for Vn(C2) is Vn(C2) = ⊕n
k=0 Vn(C2)αn−2k , where

Vn(C2)αn−2k = Czk
1zn−k

2 .

Theorem 6.9. (a) Let G be a compact Lie group, (π, V ) a finite-dimensional repre-
sentation of G, T a maximal torus of G, and V = ⊕

α∈�(V,tC)
Vα the weight space

decomposition. For each weight α ∈ �(V ), α is purely imaginary on t and is real
valued on it.
(b) For t ∈ T , choose H ∈ t so that eH = t . Then tvα = eα(H)vα for vα ∈ Vα .
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Proof. Part (a) follows from the facts that dπ is skew-Hermitian on t and is Her-
mitian on it. Part (b) follows from the fact that exp t = T and the relation
edπH = π(eH ). �

By C-linearity, α ∈ �(V ) is completely determined by its restriction to either t
or it. Thus we permit ourselves to interchangeably view α as an element of any of
the dual spaces t∗

C
, (it)∗ (real valued), or t∗ (purely imaginary valued). In alternate

notation (not used in this text), it is sometimes written tC(R).

6.1.4 Roots

Let G be a compact Lie group. For g ∈ G, extend the domain of Ad(g) from g to gC

by C-linearity. Then (Ad, gC) is a representation of G with differential given by ad
(extended by C-linearity). It has a weight space decomposition

gC =
⊕

α∈�(gC,tC)

gα

that is important enough to warrant its own name. Notice the zero weight space is
g0 = {Z ∈ gC | [H, Z ] = 0, H ∈ tC}. Thus

g0 = tC

since t is a maximal Abelian subspace of g. In the definition below, it turns out to be
advantageous to separate this zero weight space from the remaining nonzero weight
spaces.

Definition 6.10. Let G be a compact Lie group and t a Cartan subalgebra of g. There
is a finite set of nonzero elements �(gC) = �(gC, tC) ⊆ t∗

C
, called the roots of gC,

so that

gC = tC ⊕
⊕

α∈�(gC)

gα,

where gα = {Z ∈ gC | [H, Z ] = α(H)Z , H ∈ tC} is nonzero. The above displayed
equation is called the root space decomposition of gC with respect to tC.

Theorem 6.11. (a) Let G be a compact Lie group, (π, V ) a finite-dimensional rep-
resentation of G, and t a Cartan subalgebra of g. For α ∈ �(gC) and β ∈ �(V ),
dπ(gα)Vβ ⊆ Vα+β .
(b) In particular for α, β ∈ �(gC) ∪ {0}, [gα, gβ] ⊆ gα+β .
(c) Let (·, ·) be an Ad(G)-invariant inner product on gC. For α, β ∈ �(gC) ∪ {0},
(gα, gβ) = 0 when α + β �= 0.
(d) If g has trivial center (i.e., if g is semisimple), then �(gC) spans t∗

C
.

Proof. For part (a), let H ∈ tC, Xα ∈ gα , and vβ ∈ Vβ and calculate
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dπ(H)dπ(Xα)vβ = (dπ(Xα)dπ(H)+ [dπ(H), dπ(Xα)]) vβ
= (dπ(Xα)dπ(H)+ dπ [H, Xα]) vβ
= (dπ(Xα)dπ(H)+ α(H)dπ (Xα)) vβ

= (β(H)+ α(H)) dπ(Xα)vβ,

so that dπ(Xα)vβ ∈ Vα+β as desired. Part (b) clearly follows from part (a).
For part (c), recall that Lemma 5.6 shows that ad is skew-Hermitian. Thus

α(H)(Xα, Xβ) = ([H, Xα], Xβ) = −(Xα, [H, Xβ]) = −β(H)(Xα, Xβ).

For part (d), suppose H ∈ tC satisfies α(H) = 0 for all α ∈ �(gC). It suffices to
show that H = 0. However, the condition α(H) = 0 for all α ∈ �(gC) is equivalent
to saying that H is central in gC. Since it is easy to see that z(gC) = z(g)C (Exercise
6.5), it follows from semisimplicity and Theorem 5.18 that H = 0. �

In §6.2.3 we will further see that dim gα = 1 for α ∈ �(gC) and that the only
multiples of α in �(gC) are ±α.

6.1.5 Compact Classical Lie Group Examples

The root space decomposition for the complexification of the Lie algebra of each
compact classical Lie group is given below. The details are straightforward to verify
(Exercise 6.10).
6.1.5.1 su(n) For G = U (n) with t = {diag(iθ1, . . . , iθn) | θi ∈ R}, gC =
gl(n,C) and tC = {diag(z1, . . . , zn) | zi ∈ C}. For G = SU (n) with t =
{diag(iθ1, . . . , iθn) | θi ∈ R,

∑
i θi = 0}, gC = sl(n,C) and tC = {diag(z1, . . . , zn) |

zi ∈ C,
∑

i zi = 0}. In either case, it is straightforward to check that the set of roots
is given by

�(gC) = {±(εi − ε j ) | 1 ≤ i < j ≤ n},
where εi (diag(z1, . . . , zn)) = zi . In the theory of Lie algebras, this root system is
called An−1. The corresponding root space is

gεi−ε j = CEi, j ,

where {Ei, j } is the standard basis for n × n matrices.
6.1.5.2 sp(n) For G = Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C) with
t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn) | θi ∈ R}, gC = sp(n,C) and tC =
{diag(z1, . . . , zn,−z1, . . . ,−zn) | zi ∈ C}. Then

�(gC) = {±(εi − ε j ) | 1 ≤ i < j ≤ n} ∪ {± (
εi + ε j

) | 1 ≤ i ≤ j ≤ n},
where εi (diag(z1, . . . , zn,−z1, . . . ,−zn)) = zi . In the theory of Lie algebras, this
root system is called Cn . The corresponding root spaces are

gεi−ε j = C
(
Ei, j − E j+n,i+n

)
gεi+ε j = C

(
Ei, j+n + E j,i+n

)
, g−εi−ε j = C

(
Ei+n, j + E j+n,i

)
g2εi = CEi,i+n , g−2εi = CEi+n,i .
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6.1.5.3 so(En) For SO(n), it turns out that the root space decomposition is a bit
messy (see Exercise 6.14 for details). The results are much cleaner if we diagonalize
by making a change of variables. In other words, we will examine an isomorphic
copy of SO(n) instead of SO(n) itself. Define

T2m = 1√
2

(
Im Im

i Im −i Im

)
, E2m =

(
0 Im

Im 0

)
,

T2m+1 =
(

T2m 0
0 1

)
, E2m+1 =

(
E2m 0

0 1

)
,

SO(En) = {g ∈ SL(n,C) | g = EngEn , gt Eng = En},

so(En) = {X ∈ gl(n,C) | X = En X En , Xt En + En X = 0},

so(En,C) = {X ∈ gl(n,C) | Xt En + En X = 0}.
Notice that En = T t

n Tn and T n = T−1,t
n . The following lemma is straightforward and

left as an exercise (Exercise 6.12).

Lemma 6.12. (a) SO(En) is a compact Lie subgroup of SU (n) with Lie algebra
so(En) and with complexified Lie algebra so(En,C).
(b) The map g → T−1

n gTn induces an isomorphism of Lie groups SO(n) ∼= SO(En).
(c) The map X → T−1

n XTn induces an isomorphism of Lie algebras so(n) ∼= so(En)

and so(n,C) ∼= so(En,C).
(d) For n = 2m, a maximal torus is given by

T = {diag(eiθ1 , . . . , eiθm , e−iθ1 , . . . , e−iθm ) | θi ∈ R}
with corresponding Cartan subalgebra

t = {diag(iθ1, . . . , iθm,−iθ1, . . . ,−iθm) | θi ∈ R}
and complexification

tC = {diag(z1, . . . , zm,−z1, . . . ,−zm) | zi ∈ C}.

(e) For n = 2m + 1, a maximal torus is given by

T = {diag(eiθ1 , . . . , eiθm , e−iθ1 , . . . , e−iθm , 1) | θi ∈ R}
with corresponding Cartan subalgebra

t = {diag(iθ1, . . . , iθm,−iθ1, . . . ,−iθm, 0) | θi ∈ R}
and complexification

tC = {diag(z1, . . . , zm,−z1, . . . ,−zm, 0) | zi ∈ C}.
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6.1.5.4 so(2n) Working with G = SO(E2n) and the Cartan subalgebra from
Lemma 6.12, the set of roots is

�(gC) = {± (
εi ± ε j

) | 1 ≤ i < j ≤ n},
where εi (diag(z1, . . . , zn,−z1, . . . ,−zn)) = zi . In the theory of Lie algebras, this
root system is called Dn . The corresponding root spaces are

gεi−ε j = C
(
Ei, j − E j+n,i+n

)
, g−εi+ε j = C

(
E j,i − Ei+n, j+n

)
gεi+ε j = C

(
Ei, j+n − E j,i+n

)
, g−εi−ε j = C

(
Ei+n, j − E j+n,i

)
.

6.1.5.5 so(2n + 1) Working with G = SO(E2n+1) and with the Cartan subalgebra
from Lemma 6.12, the set of roots is

�(gC) = {± (
εi ± ε j

) | 1 ≤ i < j ≤ n} ∪ {±εi | 1 ≤ i ≤ n},
where εi (diag(z1, . . . , zn,−z1, . . . ,−zn, 0)) = zi . In the theory of Lie algebras,
this root system is called Bn . The corresponding root spaces are

gεi−ε j = C
(
Ei, j − E j+n,i+n

)
, g−εi+ε j = C

(
E j,i − Ei+n, j+n

)
gεi+ε j = C

(
Ei, j+n − E j,i+n

)
, g−εi−ε j = C

(
Ei+n, j − E j+n,i

)
.

gεi = C
(
Ei,2n+1 − E2n+1,i+n

)
, g−εi = C

(
Ei+n,2n+1 − E2n+1,i

)
.

6.1.6 Exercises

Exercise 6.1 Verify that the differentials of the actions given in Definition 2.10 give
rise to the actions given in Definition 6.4.

Exercise 6.2 For X =
(

i x z
−z −i x

)
, x ∈ R and z ∈ C, let λ =

√
x2 + |z|2. Show

that exp X = (cos λ) I + sin λ
λ

X .

Exercise 6.3 (1) Show that gl(n,C) = u(n)⊕ iu(n).
(2) Suppose g is the Lie algebra of a compact Lie group G with G a Lie subgroup
of U (n). Show that there is an isomorphism of algebras g⊗R C ∼=g⊕ ig induced by
mapping X ⊗ (a + ib) to aX + ibX for X ∈ g and a, b ∈ R.
(3) Show that su(n)C = sl(n,C) and that so(n)C = so(n,C).
(4) Show that sp(n)C ∼= sp(n,C) and that

sp(n,C) = {
(

X Y
Z −Xt

)
| X, Y, Z ∈ gl(n,C), Y t = Y , Zt = Z}.

(5) Show that so(E2n)C = so(E2n,C) and that
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so(E2n,C) = {
(

X Y
Z −Xt

)
| X, Y, Z ∈ gl(n,C), Y t = −Y , Zt = −Z}.

(6) Show thatso(E2n+1)C = so(E2n+1,C) and that

so(E2n+1,C)

= {
⎛⎝ X Y u

Z −Xt v

−vt −ut 0

⎞⎠ | X, Y, Z ∈ gl(n,C), Y t = −Y , Zt = −Z , u, v ∈ Cn}.

Exercise 6.4 Verify Equation 6.7.

Exercise 6.5 Let G be a compact Lie group. Show that z(gC) = z(g)C.

Exercise 6.6 (1) Let G be a Lie subgroup of GL(n,C) and assume g is semisimple.
Show that any one-dimensional representation of g is trivial, i.e., g acts by 0.
(2) Show that any one-dimensional representation of G is trivial.

Exercise 6.7 Use Equation 6.7 to verify that Vn(C2) is an irreducible representation
of SU (2).

Exercise 6.8 This exercise gives an algebraic proof of the classification of irre-
ducible representations of SU (2) (c.f. Theorem 3.32).
(1) Given any irreducible representation V of SU (2), show that there is a nonzero
v0 ∈ V , so that Hv0 = λv0, λ ∈ C, and so that Ev0 = 0.
(2) Let vi = Fiv0. Show that Hvi = (λ− 2i)vi and Evi = i(λ− i + 1)vi−1.
(3) Let m be the smallest natural number satisfying vm+1 = 0. Show that {vi }mi=0 is a
basis for V .
(4) Show that the trace of the H action on V is zero.
(5) Show that λ = m and use this to show that V ∼= Vm(C2).

Exercise 6.9 (1) Find the weight space decomposition for the standard representa-
tion of SU (n) on Cn .
(2) Find the weight space decomposition for the standard representation of SO(n)
on Cn .

Exercise 6.10 Verify that the roots and root spaces listed in §6.1.5 are correct (c.f.,
Exercise 6.3).

Exercise 6.11 Let G be a compact Lie group and t a Cartan subalgebra of g. Use root
theory to show directly that there exists X ∈ t, so that t = zg(X) (c.f. Lemma 5.7).

Exercise 6.12 Prove Lemma 6.12.

Exercise 6.13 (1) Let g be the Lie algebra of a Lie subgroup of a linear group. Then
gC is called simple if gC has no (complex) proper ideals and if dimC g > 1, i.e., if
the only ideals of gC are {0} and gC and if gC is non-Abelian. Show that g is simple
if and only if gC is simple.
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(2) Use the root decomposition to show that sl(n,C) is simple, n ≥ 2.
(3) Show that sp(n,C) is simple, n ≥ 1.
(4) Show that s0(2n,C) is simple for n ≥ 3, but that so(4,C) ∼= sl(2,C)⊕ sl(2,C).
(5) Show that so(2n + 1,C) is simple, n ≥ 1.

Exercise 6.14 (1) For G = SO(2n) and

t = {blockdiag

((
0 θ1

−θ1 0

)
, . . . ,

(
0 θn

−θn 0

))
| θi ∈ R}

as in §5.1.2, gC = so(2n,C) and

tC = {blockdiag

((
0 z1

−z1 0

)
, . . . ,

(
0 zn

−zn 0

))
| zi ∈ C}.

Show that

�(gC, tC) = {± (
εi − ε j

)
, ± (

εi + ε j
) | 1 ≤ i < j ≤ n},

where ε j (blockdiag

((
0 z1

−z1 0

)
, . . . ,

(
0 zn

−zn 0

))
) = −i z j . Partition each 2n ×

2n matrix into n2 blocks of size 2× 2. For α = ±εi ± ε j , show that the root space is
gα = CEα , where Eα is 0 on all 2 × 2 blocks except for the i j th block and the j i th

block. Show that Eα is given by the matrix Xα on the i j th block and by −Xt
α on the

j i th block, where

Xεi−ε j =
(

1 i
−i 1

)
, X−εi+ε j =

(
1 −i
i 1

)
Xεi+ε j =

(
1 −i
−i −1

)
, X−εi−ε j =

(
1 i
i −1

)
.

(2) For G = SO(2n + 1) and

t = {blockdiag

((
0 θ1

−θ1 0

)
, . . . ,

(
0 θn

−θn 0

)
, 0

)
| θi ∈ R}

as in §5.1.2, gC = so(2n + 1,C) and

tC = {blockdiag

((
0 z1

−z1 0

)
, . . . ,

(
0 zn

−zn 0

)
, 0

)
| zi ∈ C}.

Show that

�(gC, tC) = {± (
εi ± ε j

) | 1 ≤ i < j ≤ n} ∪ {±εi | 1 ≤ i ≤ n},
where

ε j (blockdiag

((
0 z1

−z1 0

)
, . . . ,

(
0 zn

−zn 0

)
, 0

)
) = −i z j .
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For α = ± (
εi ± ε j

)
, show that the root space is obtained by embedding the corre-

sponding root space from so(2n,C) into so(2n + 1,C) via the map X →
(

X 0
0 0

)
.

For α = ±ε j , show that the root space is gα = CEα , where Eα is 0 except on the
last column and last row. Writing v ∈ C2n+1 for the last column, show the last row
of Eα is given by −vt , where v is given in terms of the standard basis vectors by
v = e2 j−1 ∓ ie2 j .

6.2 The Standard sl(2, C) Triple

6.2.1 Cartan Involution

Definition 6.13. Let G be a compact Lie group. The Cartan involution, θ , of gC with
respect to g is the Lie algebra involution of gC given by θ(X ⊗ z) = X ⊗ z for
X ∈ g and z ∈ C. In other words, if Z ∈ gC is uniquely written as Z = X + iY for
X, Y ∈ g⊗ 1, then θ Z = X − iY .

It must be verified that θ is a Lie algebra involution, but this follows from a
simple calculation (Exercise 6.15). Under the natural embedding of g in gC, notice
that the +1 eigenspace of θ on gC is g and that the −1 eigenspace is ig. Notice also
that when g ⊆ u(n), then θ Z = −Z∗ for Z ∈ gC since X∗ = −X for X ∈ u(n). In
particular,

θ Z = −Z∗

when g is u(n), su(n), sp(n), so(n), or so(En).

Lemma 6.14. Let G be a compact Lie group and t be a Cartan subalgebra of g.
(a) If α ∈ �(gC), then −α ∈ �(gC) and g−α = θgα .
(b) θ tC = tC.

Proof. Let α ∈ �(gC) ∪ {0}. Recalling that θ is an involution, it suffices to show
θgα ⊆ g−α . Write Z ∈ gα uniquely as Z = X + iY for X, Y ∈ g ⊗ 1. Then for
H ∈ t,

α(H)(X + iY ) = [H, X + iY ] = [H, X ]+ i[H, Y ].

Since α(H) ∈ iR by Theorem 6.9 and since [H, X ], [H, Y ] ∈ g⊗ 1,

α(H)X = i[H, Y ] and α(H)Y = −i[H, X ].

Thus

[H, θ Z ] = [H, X ]− i[H, Y ] = −α(H)(X − iY ) = −α(H) (θ Z) ,

so that θ Z ∈ g−α , as desired. �
In particular, notice that g is spanned by elements of the form Z+θ Z for Z ∈ gα ,

α ∈ �(gC) ∪ {0}.
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6.2.2 Killing Form

Definition 6.15. Let g be the Lie algebra of a Lie subgroup of GL(n,C). For X, Y ∈
gC, the symmetric complex bilinear form B(X, Y ) = tr(ad X ◦ ad Y ) on gC is called
the Killing form.

Theorem 6.16. Let g be the Lie algebra of a compact Lie group G.
(a) For X, Y ∈ g, B(X, Y ) = tr(ad X ◦ ad Y ) on g.
(b) B is Ad-invariant, i.e., B(X, Y ) = B(Ad(g)X,Ad(g)Y ) for g ∈ G and X, Y ∈
gC.
(c) B is skew ad-invariant, i.e., B(ad(Z)X, Y ) = −B(X, ad(Z)Y ) for Z , X, Y ∈ gC.
(d) B restricted to g′ × g′ is negative definite.
(e) B restricted to gα × gβ is zero when α + β �= 0 for α, β ∈ �(gC) ∪ {0}.
(f) B is nonsingular on gα×g−α . If g is semisimple with a Cartan subalgebra t, then
B is also nonsingular on tC × tC.
(g) The radical of B, rad B = {X ∈ gC | B(X, gC) = 0}, is the center of gC, z(gC).
(h) If g is semisimple, the form (X, Y ) = −B(X, θY ), X, Y ∈ gC, is an Ad-invariant
inner product on gC.
(i) Let g be simple and choose a linear realization of G, so that g ⊆ u(n). Then there
exists a positive c ∈ R, so that B(X, Y ) = c tr(XY ) for X, Y ∈ gC.

Proof. Part (a) is elementary. For part (b), recall that Ad g preserves the Lie bracket
by Theorem 4.8. Thus ad(Ad(g)X) = Ad(g) ad(X)Ad(g−1) and part (b) follows.
As usual, part (c) follows from part (b) by examining the case of g = exp t Z and
applying d

dt |t=0 when Z ∈ g. For Z ∈ gC, use the fact that B is complex bilinear.
For part (d), let X ∈ g. Using Theorem 5.9, choose a Cartan subalgebra t con-

taining X . Then the root space decomposition shows B(X, X) = ∑
α∈�(gC)

α2(X).
Since G is compact, α(X) ∈ iR by Theorem 6.9. Thus B is negative semidefinite on
g. Moreover, B(X, X) = 0 if and only if α(X) = 0 for all α ∈ �(gC), i.e., if and
only if X ∈ z(g). Thus the decomposition g = z(g)⊕ g′ from Theorem 5.18 finishes
part (d).

For part (e), let Xα ∈ gα and H ∈ t. Use part (c) to see that

0 = B(ad(H)Xα, Xβ)+ B(Xα, ad(H)Xβ) = [(α + β)(H)] (Xα, Xβ).

In particular (e) follows.
For part (f), recall that g−α = θgα . Thus if Xα = Uα+ iVα with Uα, Vα ∈ g, then

Uα − i Vα ∈ g−α and

B(Uα + iVα,Uα − iVα) = B(Uα,Uα)+ B(Vα, Vα).(6.17)

In light of part (d), the above expression is zero if and only if Xα ∈ Cz(g) = z(gC)

(Exercise 6.5). Since gα ⊆
(
g′
)
C

for α �= 0, part (f) is complete.
For part (g), first observe that z(gC) ⊆ rad B since ad Z = 0 for Z ∈ z(gC). On

the other hand, since gC = z(gC)⊕
(
g′
)
C

, the root space decomposition and part (f)
finishes part (g).
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Except for verifying positive definiteness, the assertion in part (h) follows from
the definitions. To check positive definiteness, use the root space decomposition, the
relation g−α = θgα , parts (d), (e) and (f), and Equation 6.17.

For part (i), first note that the trace form mapping X, Y ∈ gC to tr(XY ) is Ad-
invariant since Ad(g)X = gXg−1. For X ∈ u(n), X is diagonalizable with eigen-
values in iR. In particular, the trace form is negative definite on g. Arguing as in
Equation 6.17, this shows the trace form is nondegenerate on gC. In particular, both
−B(X, θY ) and − tr(XθY ) are Ad-invariant inner products on gC. However, since
g is simple, gC is an irreducible representation of g under ad (Exercise 6.17) and
therefore an irreducible representation of G under Ad by Lemma 6.6 and Theorem
6.2. Corollary 2.20 finishes the argument. �

6.2.3 The Standard sl(2, C) and su(2) Triples

Let G be a compact Lie algebra and t a Cartan subalgebra of g. When g is semisimple,
recall that B is negative definite on t by Theorem 6.16. It follows that B restricts to
a real inner product on the real vector space it. Continuing to write (it)∗ for the
set of R-linear functionals on it, B induces an isomorphism between it and (it)∗ as
follows.

Definition 6.18. Let G be a compact Lie group with semisimple Lie algebra, t a
Cartan subalgebra of g, and α ∈ (it)∗. Let uα ∈ it be uniquely determined by the
equation

α(H) = B(H, uα)

for all H ∈ it and, when α �= 0, let

hα = 2uα

B(uα, uα)
.

In case g is not semisimple, define uα ∈ it′ ⊆ it ⊆ t by first restricting B to
it′. For α ∈ �(gC), recall that α is determined by its restriction to it. On it, α is
a real-valued linear functional by Theorem 6.9. Viewing α as an element of (it)∗,
define uα and hα via Definition 6.18. Note that the equation α(H) = B(H, uα) now
holds for all H ∈ tC by C-linear extension. An alternate notation for hα is α∨, and
so we write

�(gC)
∨ = {hα | α ∈ �(gC)}.

When g ⊆ u(n) is simple, Theorem 6.16 shows that there exists a positive c ∈ R,
so that B(X, Y ) = c tr(XY ) for X, Y ∈ gC. Thus if α ∈ (it)∗ and u′α, h′α ∈ it

are determined by the equations α(H) = tr(Hu′α) and h′α = 2u′α
tr(u′αu′α)

, it follows that
u′α = cuα but that h′α = hα . In particular, hα can be computed with respect to the
trace form instead of the Killing form.

For the classical compact groups, this calculation is straightforward (see §6.1.5
and Exercise 6.21). Notice also that h−α = −hα .
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For SU (n) with t = {diag(iθ1, . . . , iθn) | θi ∈ R,
∑

i θi = 0}, that is the An−1

root system,

hεi−ε j = Ei − E j ,

where Ei = diag(0, . . . , 0, 1, 0, . . . , 0) with the 1 in the i th position
For Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C) with

t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn) | θi ∈ R},
that is the Cn root system,

hεi−ε j =
(
Ei − E j

)− (
Ei+n − E j+n

)
hεi+ε j =

(
Ei + E j

)− (
Ei+n + E j+n

)
h2εi = Ei − Ei+n .

For SO(E2n) with t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn) | θi ∈ R}, that is
the Dn root system,

hεi−ε j =
(
Ei − E j

)− (
Ei+n − E j+n

)
hεi+ε j =

(
Ei + E j

)− (
Ei+n + E j+n

)
.

For SO(E2n+1) with t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn, 0) | θi ∈ R}, that
is the Bn root system,

hεi−ε j =
(
Ei − E j

)− (
Ei+n − E j+n

)
hεi+ε j =

(
Ei + E j

)− (
Ei+n + E j+n

)
hεi = 2Ei − 2Ei+n .

Lemma 6.19. Let G be a compact Lie group, t a Cartan subalgebra of g, and
α ∈ �(gC).
(a) Then α(hα) = 2.
(b) For E ∈ gα and F ∈ g−α ,

[E, F] = B(E, F)uα = 1

2
B(E, F)B(uα, uα)hα .

(c) Given a nonzero E ∈ gα , E may be rescaled by an element of R, so that [E, F] =
hα , where F = −θE.

Proof. For part (a) simply use the definitions

α(hα) = 2α(uα)

B(uα, uα)
= 2B(uα, uα)

B(uα, uα)
= 2.

For part (b), first note that [E, F] ⊆ tC by Theorem 6.11. Given any H ∈ tC,
calculate
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B([E, F], H) = B(E, [F, H ]) = α(H)B(E, F) = B(uα, H)B(E, F)

= B(B(E, F)uα, H).

Since B is nonsingular on tC by Theorem 6.16, part (b) is finished. For part (c),
replace E by cE , where

c2 = 2

−B(E, θE)B(uα, uα)
,

and use Theorem 6.16 to check that −B(E, θE) > 0 and B(uα, uα) > 0. �
For the next theorem, recall that B is nonsingular on gα × g−α by Theorem 6.16

and that −B(X, θY ) is an Ad-invariant inner product on g′
C

for X, Y ∈ gC.

Theorem 6.20. Let G be a compact Lie group, t a Cartan subalgebra of g, and
α ∈ �(gC). Fix a nonzero Eα ∈ gα and let Fα = −θEα . Using Lemma 6.19,
rescale Eα (and therefore Fα), so that [Eα, Fα] = Hα where Hα = hα .
(a) Then sl(2,C) ∼= spanC{Eα, Hα, Fα} with {Eα, Hα, Fα} corresponding to the
standard basis

E =
(

0 1
0 0

)
, H =

(
1 0
0 −1

)
, F =

(
0 0
1 0

)
of sl(2,C).
(b) Let Iα = i Hα , Jα = −Eα + Fα , and Kα = −i(Eα + Fα). Then Iα,Jα,Kα ∈ g
and su(2) ∼= spanR{Iα,Jα,Kα} with {Iα,Jα,Kα} corresponding to the basis(

i 0
0 −i

)
,

(
0 −1
1 0

)
,

(
0 −i
−i 0

)
of su(2) (c.f. Exercise 4.2 for the isomorphism Im(H) ∼= su(2)).
(c) There exists a Lie algebra homomorphism ϕα : SU (2) → G, so that dϕ :
su(2) → g implements the isomorphism in part (b) and whose complexification
dϕ : sl(2,C)→ gC implements the isomorphism in part (a).
(d) The image of ϕα in G is a Lie subgroup of G isomorphic to either SU(2) or
SO(3) depending on whether the kernel of ϕα is {I } or {±I }.
Proof. For part (a), Lemma 6.19 and the definitions show that [Hα, Eα] = 2Eα ,
[Hα, Fα] = −2Fα , and [Eα, Fα] = Hα . Since these are the bracket relations for
the standard basis of sl(2,C), part (a) is finished (c.f. Exercise 4.21). For part (b),
observe that θ fixes Iα , Jα , and Kα by construction, so that Iα,Jα,Kα ∈ g. The
bracket relations for sl(2,C) then quickly show that [Iα,Jα] = 2Kα , [Jα,Kα] =
2Iα , and [Kα, Iα] = 2Jα , so that su(2) ∼= spanR{Iα,Jα,Kα} (Exercise 4.2). For
part (c), recall that SU (2) is simply connected since, topologically, it is isomorphic
to S3. Thus, Theorem 4.16 provides the existence of ϕα . For part (d), observe that
dϕα is an isomorphism by definition. Thus, the kernel of ϕα is discrete and normal
and therefore central by Lemma 1.21. Since the center of SU (2) is ±I and since
SO(3) ∼= SU (2)/{±I } by Lemma 1.23, the proof is complete. �
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Definition 6.21. Let G be a compact Lie group, t a Cartan subalgebra of g, and
α ∈ �(gC). Continuing the notation from Theorem 6.20, the set {Eα, Hα, Fα} is
called a standard sl(2,C)-triple associated to α and the set {Iα,Jα,Kα} is called a
standard su(2)-triple associated to α.

Corollary 6.22. Let G be a compact Lie group, t a Cartan subalgebra of g, and
α ∈ �(gC).
(a) The only multiple of α in �(gC) is ±α.
(b) dim gα = 1.
(c) If β ∈ �(gC), then a(hβ) ∈ ±{0, 1, 2, 3}.
(d) If (π, V ) is a representation of G and λ ∈ �(V ), then λ(hα) ∈ Z.

Proof. Let {Eα, Hα, Fα} be a standard sl(2,C)-triple associated to α and
{Iα,Jα,Kα} the standard su(2)-triple associated to α with ϕα : SU (2) → G the
corresponding embedding. Since e2π i H = I , applying Ad ◦ϕα shows that

I = Ad(ϕαe2π i H ) = Ad(e2πdϕα i H ) = Ad(e2π i Hα ) = e2π i ad Hα

on gC. Using the root decomposition, it follows that β(Hα) = 2B(uβ ,uα)

‖uα‖2 ∈ Z where
‖·‖ is the norm corresponding to the Killing form. Now if kα ∈ �(gC), then ukα =
kuα , so that 2

k = 2B(uα,kuα)

‖kuα‖2 = α(Hkα) ∈ Z and 2k = 2B(kuα,uα)

‖uα‖2 = (kα)(Hα) ∈ Z.

Thus k ∈ ±{ 1
2 , 1, 2}.

For part (a), it therefore suffices to show that α ∈ �(gC) implies ±2α /∈ �(gC).
For this, let lα = spanR{Iα,Jα,Kα} ∼= su(2), so that (lα)C = spanC{Eα, Hα, Fα} ∼=
sl(2,C). Also let V = g−2α⊕g−α⊕CHα⊕gα⊕g2α , where g±2α is possibly zero in
this case. By Lemma 6.19 and Theorem 6.11, V is invariant under (lα)C with respect
to the ad-action. In particular, V is a representation of lα . Of course, (lα)C ⊆ V is an
lα-invariant subspace. Thus V decomposes under the l-action as V = (lα)C ⊕ V ′ for
some submodule V ′ of V . To finish parts (a) and (b), it suffices to show V ′ = {0}.

From the discussion in §6.1.3, we know that Hα acts on the (n + 1)-dimensional
irreducible representation of su(2) with eigenvalues {n, n − 2, . . . ,−n + 2,−2n}.
In particular, if V ′ were nonzero, V ′ would certainly contain an eigenvector of Hα

corresponding to an eigenvalue of either 0 or 1. Now the eigenvalues of Hα on V are
contained in ±{0, 2, 4} by construction. Since the 0-eigenspace has multiplicity one
in V and is already contained in (lα)C, V ′ must be {0}.

For part (c), let β ∈ �(gC) and write B(uβ, uα) =
∥∥uβ

∥∥ ‖uα‖ cos θ , where

θ is the angle between uβ and uβ . Thus 4 cos2 θ = 2B(uα,uβ )

‖uβ‖2
2B(uβ ,uα)

‖uα‖2 ∈ Z. As

cos2 θ ≤ 1, 4 cos2 θ = α(Hβ)β(Hα) ∈ {0, 1, 2, 3, 4}. To finish part (c), it only
remains to rule out the possibility that {α(Hβ), β(Hα)} = ±{1, 4}. Clearly
α(Hβ)β(Hα) = 4 only when θ = 0, i.e., when α and β are multiples of each other.
By part (a), this occurs only when β = ±α in which case α(Hβ) = β(Hα) = ±2. In
particular, {α(Hβ), β(Hα)} �= ±{1, 4}. Thus α(Hβ), β(Hα) ∈ ±{0, 1, 2, 3}.

For part (d), simply apply π ◦ ϕα to e2π i H = I to get e2π i(dπ)Hα = I on V . As in
the first paragraph, the weight decomposition shows that λ(Hα) ∈ Z. �

It turns out that the above condition α(hβ) ∈ ±{0, 1, 2, 3} is strict. In other
words, there exist compact Lie groups for which each of these values are achieved.
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6.2.4 Exercises

Exercise 6.15 Show that θ is a Lie algebra involution of gC, i.e., that θ is R-linear,
θ2 = I , and that θ [Z1, Z2] = [θ Z1, θ Z2] for Zi ∈ gC.

Exercise 6.16 Let G be a connected compact Lie group and g ∈ G. Use the Maxi-
mal Torus Theorem, Lemma 6.14, and Theorem 6.9 to show that det Ad g = 1 on gC

and therefore on g as well.

Exercise 6.17 Let G be a compact Lie group with Lie algebra g. Show that g is
simple if and only if gC is an irreducible representation of g under ad.

Exercise 6.18 (1) Let G be a compact Lie group with simple Lie algebra g. If (·, ·)
is an Ad-invariant symmetric bilinear form on gC, show that there is a constant c ∈ C
so that (·, ·) = cB(·, ·).
(2) If (·, ·) is nonzero and B(·, ·) is replaced by (·, ·) in Definition 6.18, show that hα

is unchanged.

Exercise 6.19 Let G be a compact Lie group with a simple (c.f. Exercise 6.13)
Lie algebra g ⊆ u(n). Theorem 6.16 shows that there is a positive c ∈ R, so that
B(X, Y ) = c tr(XY ) for X, Y ∈ gC. In the special cases below, show that c is given
as stated.
(1) c = 2n for G = SU (n), n ≥ 2
(2) c = 2(n + 1) for G = Sp(n), n ≥ 1
(3) c = 2(n − 1) for G = SO(2n), n ≥ 3
(4) c = 2n − 1 for G = SO(2n + 1), n ≥ 1.

Exercise 6.20 Let G be a compact Lie group with semisimple Lie algebra g, t a
Cartan subalgebra of g, and α ∈ �(gC). If β ∈ �(gC) with β �= ±a and B(uα, uα) ≤
B(uβ, uβ), show that a(hβ) ∈ ±{0, 1}.
Exercise 6.21 For each compact classical Lie group, this section lists hα for each
root α. Verify these calculations.

Exercise 6.22 Let G be a compact Lie group with semisimple Lie algebra g, t a Car-
tan subalgebra of g, and α ∈ �(gC). Let V be a finite-dimensional representation of
G and λ ∈ �(V ). The α-string through λ is the set of all weights of the form λ+nα,
n ∈ Z.
(1) Make use of a standard sl(2)-triple {Eα, Hα, Fα} and consider the space⊕

n Vλ+nα to show the α-string through β is of the form {λ + nα | −p ≤ n ≤ q},
where p, q ∈ Z≥0 with p − q = λ(hα).
(2) If λ(hα) < 0, show show λ+ α ∈ �(V ). If λ(hα) > 0, show that λ− α ∈ �(V ).
(3) Show that dπ(Eα)

p+q Vλ−pα �= 0.
(4) If α, β, α + β ∈ �(gC), show that [gα, gβ] = gα+β .

Exercise 6.23 Show that SL(2,C) has no nontrivial finite-dimensional unitary rep-
resentations. To this end, argue by contradiction. Assume (π, V ) is such a rep-
resentation and compare the form B(X, Y ) on sl(2,C) to the form (X, Y )′ =
tr (dπ(X) ◦ dπ(Y )).
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6.3 Lattices

6.3.1 Definitions

Let G be a compact Lie group, t a Cartan subalgebra of g, and α ∈ �(gC). As noted
in §6.1.3, α may be viewed as an element of (it)∗. Use Definition 6.18 to transport
the Killing form from it to (it)∗ by setting

B(λ1, λ2) = B(uλ1 , uλ2)

for λ1, λ2 ∈ (it)∗. In particular, for λ ∈ (it)∗,

λ(hα) = 2B(λ, α)

B(α, α)
.

For the sake of symmetry, also note that

α(H) = 2B(H, hα)

B(hα, hα)

for H ∈ it.

Definition 6.23. Let G be a compact Lie group and T a maximal torus of G with
corresponding Cartan subalgebra t.
(a) The root lattice, R = R(t), is the lattice in (it)∗ given by

R = spanZ{α | α ∈ �(gC)}.

(b) The weight lattice (alternately called the set of algebraically integral weights),
P = P(t), is the lattice in (it)∗ given by

P = {λ ∈ (it)∗ | λ(hα) ∈ Z for α ∈ �(gC)},
where λ ∈ (it)∗ is extended to an element of (tC)

∗ by C-linearity.
(c) The set of analytically integral weights, A = A(T ), is the lattice in (it)∗ given by

A = {λ ∈ (it)∗ | λ(H) ∈ 2π iZ whenever exp H = I for H ∈ t}.
To the lattices R, P , and A, there are also a number of associated dual lattices.

Definition 6.24. Let G be a compact Lie group and T a maximal torus of G with
corresponding Cartan subalgebra t.
(a) The dual root lattice, R∨ = R∨(t), is the lattice in it given by

R∨ = spanZ{hα | α ∈ �(gC)}.

(b) The dual weight lattice, P∨ = P∨(t), is the lattice in it given by
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P∨ = {H ∈ it | α(H) ∈ Z for α ∈ �(gC)}.

(c) Let ker E = ker E(T ) be the lattice in it given by

ker E = {H ∈ it | exp(2π i H) = I }.

(d) In general, if �1 is a lattice in (it)∗ that spans (it)∗ and if �2 is a lattice in it that
spans it, define the dual lattices, �∗

1 and �∗
2 in it and (it)∗, respectively, by

�∗
1 = {H ∈ it | λ(H) ∈ Z for λ ∈ �1}

�∗
2 = {λ ∈ (it)∗ | λ(H) ∈ Z for H ∈ �2}.

It is well known that �∗
1 and �∗

2 are lattices and that they satisfy �∗∗
i = �i

(Exercise 6.24). Notice ker E is a lattice by the proof of Theorem 5.2.

6.3.2 Relations

Lemma 6.25. Let G be a compact connected Lie group with Cartan subalgebra t.
For H ∈ t, exp H ∈ Z(G) if and only if α(H) ∈ 2π iZ for all α ∈ �(gC).

Proof. Let g = exp H and recall from Lemma 5.11 that g ∈ Z(G) if and only if
Ad(g)X = X for all X ∈ g. Now for α ∈ �(gC) ∪ {0} and X ∈ gα , Ad(g)X =
ead H X = eα(H)X . The root decomposition finishes the proof. �
Definition 6.26. Let G be a compact Lie group and T a maximal torus. Write χ(T )

for the character group on T , i.e., χ(T ) is the set of all Lie homomorphisms ξ :
T → C\{0}.
Theorem 6.27. Let G be a compact Lie group with a maximal torus T .
(a) R ⊆ A ⊆ P.
(b) Given λ ∈ (it)∗, λ ∈ A if and only if there exists ξλ ∈ χ(T ) satisfying

ξλ(exp H) = eλ(H)(6.28)

for H ∈ t, where λ ∈ (it)∗ is extended to an element of (tC)
∗ by C-linearity. The

map λ→ ξλ establishes a bijection

A ←→ χ(T ).

(c) For semisimple g, |P/R| is finite.

Proof. Let α ∈ �(gC) and suppose H ∈ t with exp H = e. Lemma 6.25 shows that
α(H) ∈ 2π iZ, so that R ⊆ A. Next choose a standard sl(2,C)-triple {Eα, hα, Fα}
associated to α. As in the proof of Corollary 6.22, exp 2π ihα = I . Thus if λ ∈ A,
λ(2π ihα) ∈ 2π iZ, so that A ⊆ P which finishes part (a).
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For part (b), start with λ ∈ A. Using the fact that exp t = T and using Lemma
6.25, Equation 6.28 uniquely defines a well-defined function ξλ on T . It is a homo-
morphism by Theorem 5.1. Conversely, if there is a ξλ ∈ χ(T ) satisfying Equation
6.28, then clearly λ(H) ∈ 2π iZ whenever exp H = I , so that λ ∈ A. Finally, to
see that there is a bijection from A to χ(T ), it remains to see that the map λ → ξλ
is surjective. However, this requirement follows immediately by taking the differ-
ential of an element of χ(T ) and extending via C-linearity. Theorem 6.9 shows the
differential can be viewed as an element of (it)∗.

Next, Theorem 6.11 shows that R spans (it)∗ for semisimple g. Part (c) there-
fore follows immediately from elementary lattice theory (e.g., see [3]). In fact, it is
straightforward to show |P/R| is equal to the determinant of the so-called Cartan
matrix (Exercise 6.42). �
Theorem 6.29. Let G be a compact Lie group with a semisimple Lie algebra g and
let T be a maximal torus of G with corresponding Cartan subalgebra t.
(a) R∗ = P∨.
(b) P∗ = R∨.
(c) A∗ = ker E .
(d) P∗ ⊆ A∗ ⊆ R∗, i.e., R∨ ⊆ ker E ⊆ P∨.

Proof. The equalities R∗ = P∨,
(
R∨

)∗ = P , and (ker E)∗ = A follow immediately
from the definitions. This proves parts (a), (b), and (c) (Exercise 6.24). Part (d) fol-
lows from Theorem 6.27 (Exercise 6.24). �

6.3.3 Center and Fundamental Group

The proof of part (b) of the following theorem will be given in §7.3.6. However, for
the sake of comparison, part (b) is stated now.

Theorem 6.30. Let G be a connected compact Lie group with a semisimple Lie al-
gebra and maximal torus T .
(a) Z(G) ∼= P∨/ ker E ∼= A/R.
(b) π1(G) ∼= ker E/R∨ ∼= P/A.

Proof (part (a) only). By Theorem 5.1, Corollary 5.13, and Lemma 6.25, the expo-
nential map induces an isomorphism

Z(G) ∼= {H ∈ t | α(H) ∈ 2π iZ for α ∈ �(gC)} / {H ∈ t | exp H = I }
= (2π i P∨) / (2π i ker E),

so that Z(G) ∼= P∨/ ker E . Basic lattice theory shows R∗/A∗ ∼= A/R (Exercise
6.24) which finishes the proof. �

While the proof of part (b) of Theorem 6.30 is postponed until §7.3.6, in this
section we at least prove the simply connected covering of a compact semisimple
Lie group is still compact.
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Let G be a compact connected Lie group and let G̃ be the simply connected
covering of G. A priori, it is not known that G̃ is a linear group and thus our devel-
opment of the theory of Lie algebras and, in particular, the exponential map is not
directly applicable to G̃. Indeed for more general groups, G̃ may not be linear. As
usual though, compact groups are nicely behaved. Instead of redoing our theory in
the context of arbitrary Lie groups, we instead use the lifting property of covering
spaces. Write expG : g → G for the standard exponential map and let

expG̃ : g → G̃

be the unique smooth lift of expG satisfying expG̃(0) = ẽ and expG = π ◦ expG̃ .

Lemma 6.31. Let G be a compact connected Lie group, T a maximal torus of G, G̃
the simply connected covering of G, π : G̃ → G the associated covering homomor-
phism, and T̃ = [

π−1(T )
]0

.
(a) Restricted to t, expG̃ induces an isomorphism of Lie groups T̃ ∼= t/

(
t ∩ ker expG̃

)
.

(b) If g is semisimple, then T̃ is compact.

Proof. Elementary covering theory shows that T̃ is a covering of T . From this it
follows that T̃ is Abelian on a neighborhood of ẽ and, since T̃ is connected, T̃ is
Abelian everywhere. Since π expG̃ t = expG t = T and since expG̃ t is connected,
expG̃ t ⊆ T̃ . In particular, expG̃ : t → T̃ is the unique lift of expG : t → T satis-
fying expG̃(0) = ẽ. In turn, uniqueness of the lifting easily shows expG̃(t0 + t) =
expG̃(t0) expG̃(t). To finish part (a), it suffices to show expG̃ t contains a neighbor-
hood ẽ in T̃ . For this, it suffices to show the differential of expG̃ at 0 is invertible. But
since π is a local diffeomorphism and since expG is a local diffeomorphism near 0,
we are done.

For part (b), it suffices to show that T̃ is a finite cover of T when g is semisim-
ple. For this, first observe that ker expG̃ ⊆ ker expG = 2π i ker E since expG =
π ◦ expG̃ . As T ∼= t/ (2π i ker E), it follows that the kerπ restricted to T̃ is isomor-
phic to (2π i ker E) /

(
t ∩ ker expG̃

)
. By Theorems 6.27 and 6.29, it therefore suffices

to show that 2π i R∨ ⊆ t ∩ ker expG̃ .
Given α ∈ �(gC), let {Iα,Jα,Kα} be a standard su(2)-triple in g associated to

α. Write ϕα : SU (2) → G for the corresponding homomorphism. Since SU (2) is
simply connected, write ϕ̃α : SU (2) → G̃ for the unique lift of ϕα mapping I to ẽ.
Using the uniqueness of lifting from su(2) to G̃, if follows easily that ϕ̃α ◦expSU (2) =
expG̃ ◦dϕα . Therefore by construction,

ẽ = ϕ̃α(I ) = ϕ̃α(expSU (2) 2π i H) = expG̃ (2π i dϕα H) = expG (2π i hα) ,

which finishes the proof. �
Lemma 6.32. Let G be a compact connected Lie group, T a maximal torus of G,
G̃ the simply connected covering of of G, π : G̃ → G the associated covering
homomorphism, and T̃ = [

π−1(T )
]0

.
(a) G̃ =⋃

g̃∈G̃

(
cg̃ T̃

)
.

(b) G̃ = expG̃(g).
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Proof. The proof of this lemma is a straightforward generalization of the proof of
the Maximal Torus theorem, Theorem 5.12 (Exercise 6.26). �
Corollary 6.33. Let G be a compact connected Lie group with semisimple Lie alge-
bra g, T a maximal torus of G, G̃ the simply connected covering of of G, π : G̃ → G
the associated covering homomorphism, and T̃ = [

π−1(T )
]0

.
(a) G̃ is compact.
(b) g may be identified with the Lie algebra of G̃, so that expG̃ is the corresponding
exponential map.
(c) T̃ = π−1(T ) and T̃ is a maximal torus of G̃.
(d) kerπ ⊆ Z(G̃) ⊆ T̃ .

Proof. For part (a), observe that G̃ = ⋃
g̃∈G̃

(
cg̃ T̃

)
by Lemma 6.32. Thus G̃ is the

continuous image of the compact set G̃/Z(G̃)× T̃ ∼= G/Z(G)× T̃ (Exercise 6.26).
For part (b), recall from Corollary 4.9 that there is a one-to-one correspondence

between one-parameter subgroups of G̃ and the Lie algebra of G̃. By the uniqueness
of lifting, expG̃(t X) expG̃(s X) = expG̃((t + s)X) for X ∈ g and t, s ∈ R, so that
t → expG̃(t X) is a one-parameter subgroup of G̃. On the other hand, if γ : R →G̃ is
a one-parameter subgroup, then so is π ◦ γ : R → G. Thus there is a unique X ∈ g,
so that π(γ (t)) = expG(t X). As usual, the uniqueness property of lifting from R to
G̃ shows that γ (t) = expG̃(t X), which finishes part (b).

For parts (c) and (d), we already know from Lemma 6.31 that T̃ = expG̃(t).
Since t is a Cartan subalgebra, Theorem 5.4 shows that T̃ is a maximal torus of
G̃. By Lemma 1.21 and Corollary 5.13, kerπ ⊆ Z(G̃) ⊆ T̃ so that π−1(T ) =
T̃ (kerπ) = T̃ is, in fact, connected. �

6.3.4 Exercises

Exercise 6.24 Suppose �i is a lattice in (it)∗ that spans (it)∗.
(1) Show that �∗

i is a lattice in it.
(2) Show that �∗∗

i = �i .
(3) If �1 ⊆ �2, show that �∗

2 ⊆ �∗
1.

(4) If �1 ⊆ �2, show that �2/�1
∼= �∗

1/�
∗
2.

Exercise 6.25 (1) Use the standard root system notation from §6.1.5. In the follow-
ing table, write (θi ) for the element diag(θ1, . . . , θn) in the case of G = SU (n),
for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn) in the cases of G = Sp(n) or
SO(E2n), and for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn, 0) in the case of
G = SO(E2n+1). Verify that the following table is correct.
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G R∨ ker E P∨ P∨/R∨

SU (n)
{(θi ) | θi ∈ Z,∑n

i=1 θi = 0} R∨ {(θi + θ0
n ) | θi ∈ Z,∑n

i=0θ i = 0} Zn

Sp(n) {(θi ) | θi ∈ Z} R∨ {(θi + θ0
2 ) | θi ∈ Z} Z2

SO(E2n)
{(θi ) | θi ∈ Z,∑n

i=1 θi ∈ 2Z} {(θi ) | θi ∈ Z} {(θi + θ0
2 ) | θi ∈ Z} Z2×Z2 n even

Z4 n odd

SO(E2n+1)
{(θi ) | θi ∈ Z,∑n

i=1 θi ∈ 2Z} P∨ {(θi ) | θi ∈ Z} Z2.

(2) In the following table, write (λi ) for the element
∑

i λiεi . Verify that the follow-
ing table is correct.

G R A P P/R

SU (n)
{(λi ) | λi ∈ Z,∑n

i=1 λi = 0} P
{(λi + λ0

n ) | λi ∈ Z,∑n
i=0 λi = 0} Zn

Sp(n)
{(λi ) | λi ∈ Z,∑n

i=1 λi ∈ 2Z} P {(λi ) | λi ∈ Z} Z2

SO(E2n)
{(λi ) | λi ∈ Z,∑n

i=1 λi ∈ 2Z} {(λi ) | λi ∈ Z} {(λi + λ0
2 ) | λi ∈ Z} Z2×Z2 n even

Z4 n odd
SO(E2n+1) {(λi ) | λi ∈ Z} R {(λi + λ0

2 ) | λi ∈ Z} Z2.

Exercise 6.26 Let G be a compact connected Lie group, T a maximal torus of G, G̃
the simply connected covering of of G, π : G̃ → G the associated covering homo-
morphism, and T̃ = [

π−1(T )
]0

. This exercise generalizes the proof of the Maximal
Torus theorem, Theorem 5.12, to show that G̃ =⋃

g̃∈G̃

(
cg̃ T̃

)
and G̃ = expG̃(g).

(1) Make use of Lemma 5.11 and the fact that kerπ is discrete to show that
ker(Ad ◦π) = Z(G̃).
(2) Suppose ϕ̃ : g → G̃ is lift of a map ϕ : g → G. Use the fact that π is a local
diffeomorphism to show that ϕ̃ is a local diffeomorphism if and only if ϕ is a local
diffeomorphism.
(3) Use the uniqueness property of lifting to show that expG̃ ◦Ad(πg) = cg ◦ expG̃
for g ∈ G̃.
(4) Show that

⋃
g∈G̃ cg T̃ = expG̃(g).

(5) If dim g = 1, show that G ∼= S1 and g ∼= G̃ ∼= R with expG̃ being the identity
map. Conclude that G̃ = expG̃(g).
(6) Assume dim g > 1 and use induction on dim g to show that G̃ = expG̃(g) as
outlined in the remaining steps. First, in the case where dim g′ < dim g, show that
G ∼= [

G ′ × T k
]
/F , where F is a finite Abelian group. Conclude that G̃ ∼= G̃ss×Rk .

Use the fact that the exponential map from Rk to T k is surjective and the inductive
hypothesis to show G̃ = expG̃(g).
(7) For the remainder, assume g is semisimple, so that T̃ is compact. Use Lemma
1.21 to show that kerπ ⊆ Z(G̃). Conclude that G̃/Z(G̃) ∼= G/Z(G) and use this to
show that expG̃(g) is compact and therefore closed.
(8) It remains to show that expG̃(g) is open. Fix X0 ∈ g and write g0 = expG̃(X0).
Use Theorem 4.6 to show that it suffices to consider X0 �= 0.
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(9) As in the proof of Theorem 5.12, let a = zg(πg0) and b = a⊥. Consider the map
ϕ̃ : a⊕ b → G̃ given by ϕ̃(X, Y ) = g−1

0 expG̃(Y ) g0 expG̃(X) expG̃(−Y ). Show that
ϕ̃ is a local diffeomorphism near 0. Conclude that {expG̃(Y )g0 expG̃(X) expG̃(−Y ) |
X ∈ a, Y ∈ b} contains a neighborhood of g0 in G̃.
(10) Let Ã = (

π−1 A
)0

, a covering of the compact Lie subgroup A = ZG(πg0)
0 of

G. Show that expG̃(a) ⊆ Ã. Conclude that
⋃

g∈G̃ g−1 Ãg contains a neighborhood of

g0 in G̃.
(11) If dim a < dim g, use the inductive hypothese to show that Ã = expG̃(a).
Conclude that

⋃
g∈G̃ g−1 Ãg = ⋃

g∈G̃ expG̃ (Ad(πg)a), so that expG̃(g) contains a
neighborhood of g0.
(12) Finally, if dim a = dim g, show that g0 ∈ Z(G̃). Let t′ be a Cartan subalge-
bra containing X0 so that g = ⋃

g∈G̃ Ad(πg)t′. Show that g0 expG̃(g) ⊆ expG̃(g).
Conclude that expG̃(g) contains a neighborhood of g0.

6.4 Weyl Group

6.4.1 Group Picture

Definition 6.34. Let G be a compact connected Lie group with maximal torus T . Let
N = N (T ) be the normalizer in G of T , N = {g ∈ G | gT g−1 = T }. The Weyl
group of G, W = W (G) = W (G, T ), is defined by W = N/T .

If T ′ is another maximal torus of G, Corollary 5.10 shows that there is a g ∈ G, so
cgT = T ′. In turn, this shows that cg N (T ) = N (T ′), so that W (G, T ) ∼= W (G, T ′).
Thus, up to isomorphism, the Weyl group is independent of the choice of maximal
torus.

Given w ∈ N , H ∈ t, and λ ∈ t∗, define an action of N on t and t∗ by

w(H) = Ad(w)H(6.35)

[w(λ)] (H) = λ(w−1(H)) = λ(Ad(w−1)H).

As usual, extend this to an action of N on tC, it, t∗
C

, and (it)∗ by C-linearity. As
Ad(T ) acts trivially on t, the action of N descends to an action of W = N/T .

Theorem 6.36. Let G be a compact connected Lie group with a maximal torus T .
(a) The action of W on it and on (it)∗ is faithful, i.e., a Weyl group element acts
trivially if and only it is the identity element.
(b) For w ∈ N and α ∈ �(gC) ∪ {0}, Ad(w)gα = gwα .
(c) The action of W on (it)∗ preserves and acts faithfully on �(gC).
(d) The action of W on it preserves and acts faithfully on {hα | α ∈ �(gC)}. More-
over, whα = hwα .
(e) W is a finite group.
(f) Given ti ∈ T , there exists g ∈ G so cgt1 = t2 if and only if there exists w ∈ N, so
cwt1 = t2.
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Proof. For part (a), suppose w ∈ N acts trivially on t via Ad. Since exp t = T and
since cw ◦ exp = exp ◦Ad(w), this implies that w ∈ ZG(T ). However, Corollary
5.13 shows that ZG(T ) = T so that w ∈ T , as desired.

For part (b), let w ∈ N , H ∈ tC, and Xα ∈ gα and calculate

[H,Ad(w)Xα] = [Ad(w−1)H, Xα] = α(Ad(w−1)H)Xα = [(wα)(H)] Xα,

which shows that Ad(w)gα ⊆ gwα . Since dim gα = 1 and since Ad(w) is invertible,
Ad(w)gα = gwα and, in particular, wα ∈ �(gC). Noting that W acts trivially on
z(g) ∩ t, we may reduce to the case where g is semisimple. As �(gC) spans (it)∗,
parts (b) and (c) are therefore finished.

For part (d), calculate

B(uwα, H) = B(wα)(H) = α(w−1 H) = B(uα, w
−1 H) = B(wuα, H),

so that uwα = wuα . Since the action of w preserves the Killing form, it follows that
whα = hwα , which finishes part (d). As �(gC) is finite and the action is faithful, part
(e) is also done.

For part (f), suppose cgt1 = t2 for g ∈ G. Consider the connected compact
Lie subgroup ZG(t2)0 = {h ∈ G | ct2 h = h}0 of G with Lie algebra zg(t2) =
{X ∈ g | Ad(t2)X = X} (Exercise 4.22). Clearly t ⊆ zg(t2) and t is still a Cartan sub-
algebra of zg(t2). Therefore T ⊆ ZG(t2) and T is a maximal torus of ZG(t2). On the
other hand, Ad(t2)Ad(g)H = Ad(g)Ad(t1)H = Ad(g)H for H ∈ t. Thus Ad(g)t
is also a Cartan subalgebra in zg(t2), and so cgT is a maximal torus in ZG(t2)0. By
Corollary 5.10, there is a z ∈ ZG(t2), so that cz

(
cgT

) = T , i.e., zg ∈ N (T ). Since
czgt1 = czt2 = t2, the proof is finished. �

6.4.2 Classical Examples

Here we calculate the Weyl group for each of the compact classical Lie groups.
The details are straightforward matrix calculations and are mostly left as an exercise
(Exercise 6.27).

6.4.2.1 U (n) and SU (n) For U (n) let TU (n) = {diag(eiθ1 , . . . , eiθn ) | θi ∈ R} be
a maximal torus. Write Sn for the set of n × n permutation matrices. Recall that an
element of GL(n,C) is a permutation matrix if the entries of each row and column
consists of a single one and (n−1) zeros. Thus Sn

∼= Sn where Sn is the permutation
group on n letters. Since the set of eigenvalues is invariant under conjugation, any
w ∈ N must permute, up to scalar, the standard basis of Rn . In particular, this shows
that

N (TU (n)) = SnTU (n)

W ∼= Sn

|W | = n!.

Write (θi ) for the element diag(θ1, . . . , θn) ∈ t and (λi ) for the element
∑

i λiεi ∈
(it)∗. It follows that W acts on itU (n) = {(θi ) | θi ∈ R} and on (itU (n))

∗ =
{(λi ) | λi ∈ R} by all permutations of the coordinates.
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For SU (n), let TSU (n) = TU (n)∩SU (n) = {diag(eiθ1 , . . . , eiθn ) | θi ∈ R,
∑

i θi =
0} be a maximal torus. Note that U (n) ∼= (

SU (n)× S1
)
/Zn with S1 central, so that

W (SU (n)) ∼= W (U (n)). In particular for the An−1 root system,

N (TSU (n)) =
(
SnTU (n)

) ∩ SU (n)

W ∼= Sn

|W | = n!.

As before, W acts on itSU (n) = {(θi ) | θi ∈ R,
∑

i θi = 0} and (itSU (n))
∗ =

{(λi ) | λi ∈ R,
∑

i λi = 0} by all permutations of the coordinates.
6.4.2.2 Sp(n) For Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C), let

T = {diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn ) | θi ∈ R}.
For 1 ≤ i ≤ n, write s1,i for the matrix realizing the linear transformation that
maps ei , the i th standard basis vector of R2n , to −ei+n , maps ei+n to en , and fixes the
remaining standard basis vectors. In particular, s1,i is just the natural embedding of(

0 1
−1 0

)
into Sp(n) in the i × (n + i)th submatrix. By considering eigenvalues, it

is straightforward to check that for the Cn root system,

N (T ) =
{(

s 0
0 s

)
| s ∈ Sn

} {∏
i

ski
1,i | 1 ≤ i ≤ n, ki ∈ {0, 1}

}
T

W ∼= Sn � (Z2)
n

|W | = 2nn!.

Write (θi ) for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn) ∈ it and (λi ) for the
element

∑
i λiεi ∈ (it)∗. Then W acts on it = {(θi ) | θi ∈ R} and on (it)∗ = {(λi ) |

λi ∈ R} by all permutations and all sign changes of the coordinates.
6.4.2.3 SO(E2n) For G = SO(E2n), let

T = {diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn ) | θi ∈ R}
be a maximal torus. For 1 ≤ i ≤ n, write s2,i for the matrix realizing the linear
transformation that maps ei , the i th standard basis vector of R2n , to ei+n , maps ei+n

to en , and fixes the remaining standard basis vectors. In particular, s2,i is just the

natural embedding of

(
0 1
1 0

)
into O(E2n) in the i × (n + i)th submatrix. Then for

the Dn root system,

N (T ) = {
(

s 0
0 s

)
| s ∈ Sn} {

∏
i

ski
2,i | 1 ≤ i ≤ n, ki ∈ {0, 1},

∑
i

ki ∈ 2Z} T

W ∼= Sn � (Z2)
n−1

|W | = 2n−1n!.

Write (θi ) for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn) ∈ it and (λi ) for the
element

∑
i λiεi ∈ (it)∗. Then W acts on it = {(θi ) | θi ∈ R} and on (it)∗ = {(λi ) |

λi ∈ R} by all permutations and all even sign changes of the coordinates.
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6.4.2.4 SO(E2n+1) For G = SO(E2n+1), let

T = {diag(eiθ1 , . . . , eiθn , e−iθ1 , . . . , e−iθn , 1) | θi ∈ R}
be a maximal torus. For 1 ≤ i ≤ n, write s3,i for the matrix realizing the linear
transformation that maps ei , the i th standard basis vector of R2n+1, to ei+n , maps
ei+n to en , maps e2n+1 to −e2n+1, and fixes the remaining standard basis vectors. In

particular, s3,i is just the natural embedding of

⎛⎝ 0 1 0
1 0 0
0 0 −1

⎞⎠ into SO(E2n+1) in the

i × (n + i)× (2n + 1)th submatrix. Then for the Bn root system,

N (T ) =
⎧⎨⎩
⎛⎝ s

s
1

⎞⎠ | s ∈ Sn

⎫⎬⎭
{∏

i

ski
3,i | 1 ≤ i ≤ n, ki ∈ {0, 1}

}
T

W ∼= Sn � (Z2)
n

|W | = 2nn!.

Write (θi ) for the element diag(θ1, . . . , θn,−θ1, . . . ,−θn, 0) ∈ it and (λi ) for the
element

∑
i λiεi ∈ (it)∗. Then W acts on it = {(θi ) | θi ∈ R} and on (it)∗ = {(λi ) |

λi ∈ R} by all permutations and all sign changes of the coordinates.

6.4.3 Simple Roots and Weyl Chambers

Definition 6.37. Let G be compact Lie group with a Cartan subalgebra t. Write t′ =
g′ ∩ t.
(a) A system of simple roots, � = �(gC), is a subset of �(gC) that is a basis of

(
it′
)∗

and satisfies the property that any β ∈ �(gC) may be written as

β =
∑
α∈�

kαα

with either {kα | α ∈ �} ⊆ Z≥0 or {kα | α ∈ �} ⊆ Z≤0, where Z≥0 = {k ∈ Z | k ≥
0} and Z≤0 = {k ∈ Z | k ≤ 0}. The elements of � are called simple roots.
(b) Given a system of simple roots �, the set of positive roots with respect to � is

�+(gC) = {β ∈ �(gC) | β =
∑
α∈�

kαα with kα ∈ Z≥0}

and the set of negative roots with respect to � is

�−(gC) = {β ∈ �(gC) | β =
∑
α∈�

kαα with kα ∈ Z≤0},

so that �(gC) = �+(gC)
∐

�−(gC) and �−(gC) = −�+(gC).

As matters stand at the moment, we are not guaranteed that simple systems exist.
In Lemma 6.42 below, this shortcoming will be rectified using the following defini-
tion.
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Definition 6.38. Let G be compact Lie group with a Cartan subalgebra t.
(a) The connected components of (it′)∗\ (∪α∈�(gC)α

⊥) are called the (open) Weyl
chambers of (it)∗. The connected components of it′\ (∪α∈�(gC)h

⊥
α

)
are called the

(open) Weyl chambers of it.
(b) If C is a Weyl chamber of (it)∗, α ∈ �(gC) is called C-positive if B(C, α) > 0
and C-negative if B(C, α) < 0. If α is C-positive, it is called decomposable with
respect to C if there exist C-positive β, γ ∈ �(gC), so that α = β + γ . Otherwise α

is called indecomposable with respect to C .
(c) If C∨ is a Weyl chamber of it, α ∈ �(gC) is called C∨-positive if α(C∨) > 0 and
C-negative if α(C∨) < 0. If α is C∨-positive, it is called decomposable with respect
to C∨ if there exist C∨-positive β, γ ∈ �(gC), so that α = β + γ . Otherwise α is
called indecomposable with respect to C∨.
(d) If C is a Weyl chamber of (it)∗, let

�(C) = {α ∈ �(gC) | α is C-positive and indecomposable}.
If C∨ is a Weyl chamber of it, let

�(C∨) = {α ∈ �(gC) | α is C∨-positive and indecomposable}.
(e) If � is a system of simple roots, the associated Weyl chamber of (it)∗ is

C(�) = {λ ∈ (it)∗ | B(λ, α) > 0 for α ∈ �}
and the associated Weyl chamber of it is

C∨(�) = {H ∈ it | α(H) > 0 for α ∈ �}.
Each Weyl chamber is a polyhedral convex cone and its closure is called the

closed Weyl chamber. For the sake of symmetry, note that the condition α(H) > 0
above is equivalent to the condition B(H, hα) > 0. In Lemma 6.42 we will see that
the mapping C → �(C) establishes a one-to-one correspondence between Weyl
chambers and simple systems. For the time being, we list the standard simple sys-
tems and corresponding Weyl chamber of (it)∗ for the classical compact groups. The
details are straightforward and left to Exercise 6.30 (see §6.1.5 for the roots and
notation).

In addition to a simple system and its corresponding Weyl chamber, two other
pieces of data are given below. For the first, write the given simple system as � =
{α1, . . . , αl}. Define the fundamental weights to be the basis {π1, . . . , πl} of (it)∗

determined by 2 B(πi ,αi )

B(αi ,αi )
= δi, j and define ρ = ρ(�) ∈ (it)∗ as

ρ =
∑

i

πi(6.39)

Notice ρ(hαi ) = 2 B(ρ,αi )

B(αi ,αi )
= 1, so that ρ ∈ P (c.f. Exercise 6.34).

The second piece of data given below is called the Dynkin diagram of the sim-
ple system �. The Dynkin diagram is a graph with one vertex for each simple
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root, αi , and turns out to be independent of the choice of simple system. When-
ever B(αi , α j ) �= 0, i �= j , the vertices corresponding to αi and α j are joined by
an edge of multiplicity mi j = αi (hα j )α j (hαi ). In this case, from the proof of Corol-

lary 6.22 (c.f. Exercise 6.20), it turns out that mi j = m ji = ‖αi‖2

‖α j‖2 ∈ {1, 2, 3} when

‖αi‖2 ≥ ∥∥α j

∥∥2
. Furthermore, when two vertices corresponding to roots of unequal

length are connected by an edge, the edge is oriented by an arrow pointing towards
the vertex corresponding to the shorter root.

6.4.3.1 SU (n) For SU (n) with t = {diag(iθ1, . . . , iθn) | θi ∈ R,
∑

i θi = 0}, i.e.,
the An−1 root system,

� = {αi = εi − εi+1 | 1 ≤ i ≤ n − 1}
C = {diag(θ1, . . . , θn) | θi > θi+1, θi ∈ R}
ρ = 1

2
((n − 1)ε1 + (n − 3)ε2 + · · · + (−n + 1)εn)

and the corresponding Dynkin diagram is

An
�

α1

�

α2

�

α3

. . . �

αn−3

�

αn−2

�

αn−1

6.4.3.2 Sp(n) For Sp(n) realized as Sp(n) ∼= U (2n) ∩ Sp(n,C) with

t = {diag(iθ1, . . . , iθn, −iθ1, . . . ,−iθn) | θi ∈ R},
i.e., the Cn root system,

� = {αi = εi − εi+1 | 1 ≤ i ≤ n − 1} ∪ {αn = 2εn}
C = {diag(θ1, . . . , θn, −θ1, . . . ,−θn) | θi > θi+1 > 0, θi ∈ R}
ρ = nε1 + (n − 1)ε2 + · · · + εn

and the corresponding Dynkin diagram is

Cn
�

α1

�

α2

�

α3

. . . �

αn−2

�

αn−1

�

αn

〈

6.4.3.3 SO(E2n) For SO(E2n) with t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn) |
θi ∈ R}, i.e., the Dn root system,

� = {αi = εi − εi+1 | 1 ≤ i ≤ n − 1} ∪ {αn = εn−1 + εn}
C = {diag(θ1, . . . , θn, −θ1, . . . ,−θn, 0) | θi > θi+1, θn−1 > |θn| , θi ∈ R}
ρ = nε1 + (n − 1)ε2 + · · · + εn−1

and the corresponding Dynkin diagram is
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Dn
�

α1

�

α2

�

α3

. . . �

αn−3

�

αn−2

�
��

�
��

�αn−1

�αn

6.4.3.4 SO(E2n+1) For SO(E2n+1) with

t = {diag(iθ1, . . . , iθn,−iθ1, . . . ,−iθn, 0) | θi ∈ R},

i.e., the Bn root system,

� = {αi = εi − εi+1 | 1 ≤ i ≤ n − 1} ∪ {αn = εn}
C = {diag(θ1, . . . , θn, −θ1, . . . ,−θn, 0) | θi > θi+1 > 0, θi ∈ R}
ρ = 1

2
((2n − 1)ε1 + (2n − 3)ε2 + · · · + εn)

and the corresponding Dynkin diagram is

Bn
�

α1

�

α2

�

α3

. . . �

αn−2

�

αn−1

�

αn

〉
It is an important fact from the theory of Lie algebras that there are only five other

simple Lie algebras over C. They are called the exceptional Lie algebras and there
is a simple compact group corresponding to each one. The corresponding Dynkin
diagrams are given below (see [56] or [70] for details).

G2 �

α1

�

α2

〈

F4 �

α1

�

α2

�

α3

�

α4

〉

E6 �

α1

�

α3

�

α4

�

�

α5

�

α6

α2
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E7 �

α1

�

α3

�

α4

�

α5

�

α6

�

α7

�

α2

E8 �

α1

�

α3

�

α4

�

�

α5

�

α6

�

α7

�

α8

α2

6.4.4 The Weyl Group as a Reflection Group

Definition 6.40. Let G be compact Lie group with a Cartan subalgebra t.
(a) For α ∈ �(gC), define rα : (it)∗ → (it)∗ by

rα(λ) = λ− 2
B(λ, α)

B(α, α)
α = λ− λ(hα)α

and rhα
: it → it by

rhα
(H) = H − 2

B(H, hα)

B(hα, hα)
hα = H − α(H)hα .

(b) Write W (�(gC)) for the group generated by {rα | α ∈ �(gC)} and write
W (�(gC)

∨) for the group generated by {rhα
| α ∈ �(gC)}.

As usual, the action of W (�(gC)) and W (�(gC)
∨) on (it)∗ and it, respectively,

is extended to an action on t∗ and t, respectively, by C-linearity. Also observe that rα
acts trivially on (z(g) ∩ t)∗ and acts on (it′)∗ as the reflection across the hyperplane
perpendicular to α. Similarly, rhα

acts trivially on z(g) ∩ t and acts on it′ as the
reflection across the hyperplane perpendicular to hα (Exercise 6.28). In particular,
r2
α = I and r2

hα
= I .

Lemma 6.41. Let G be compact Lie group with a maximal torus T .
(a) For α ∈ �(gC), there exists wα ∈ N (T ), so that the action of wα on (it)∗ is given
by rα and the action of wα on it is given by rhα

.
(b) For α, β ∈ �(gC), rα (β) ∈ �(gC) and rhα

(
hβ

) = hrα(β).

Proof. Using Theorem 6.20, choose a standard su(2)-triple, {Iα,Jα,Kα}, and a
standard sl(2,C)-triple, {Eα, Hα, Fα}, corresponding to α and let ϕα : SU (2) → G
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be the corresponding homomorphism. Let w = exp( π2 J ) =
(

0 −1
1 0

)
∈ SU (2),

where J = −E + F ∈ su(2). Thus dϕα(J ) = Jα = −Eα + Fα . Define wα ∈ G by
wα = ϕα(w). For H ∈ it, calculate

ad(dϕα(
π

2
J ))H = π

2
ad(−Eα + Fα)H = α(H)

π

2
[Eα + Fα].

In particular if B(H, hα) = 0, then α(H) = 0, so that ad(dϕα(
π
2 J ))H = 0. Thus, if

B(H, hα) = 0,

Ad(wα)H = Ad(ϕα(exp(
π

2
J )))H = Ad(exp(dϕα(

π

2
J )))H

= ead(dϕα(
π
2 J ))H = H .

On the other hand, consider the case of H = hα . Since cϕα(w) ◦ ϕα = ϕα ◦ cw, the
differentials satisfy Ad(wα) ◦ dϕα = dϕα ◦ Ad(w). Observing that wHw−1 = −H
in sl(2,C), where dϕα(H) = hα , it follows that

Ad(wα)hα = Ad(wα)ϕα(H)

= dϕα (Ad(w)H) = −dϕα(H) = −hα .

Thus Ad(wα) preserves t and acts on it as the reflection across the hyperplane per-
pendicular to hα . In other words, Ad(wα) acts as rhα

on it. Since T = exp t and
cwα

(exp H) = exp(Ad(wα)H), this also shows that wα ∈ N (T ). To finish part (a),
calculate

(wαλ)(H) = λ(w−1
α H) = B(uλ,Ad(wα)

−1 H) = B(Ad(wα)uλ, H)

for λ ∈ (it)∗. Thus for λ = α, Ad(wα)uα = −uα , so wαα = −α. For λ ∈ α⊥,
uλ ∈ h⊥α , so Ad(wα)uλ = uλ and wαλ = λ. In particular, Ad(wα) acts on (it)∗ by
rα . Part (b) now follows from Theorem 6.36. �
Lemma 6.42. Let G be compact Lie group with a Cartan subalgebra t.
(a) There is a one-to-one correspondence between

{systems of simple roots} ←→ {Weyl chambers of (it)∗}.

The bijection maps a simple system � to the Weyl chamber C(�) and maps a Weyl
chamber C to the simple system �(C).
(b) There is a one-to-one correspondence between

{systems of simple roots} ←→ {Weyl chambers of it}.

The bijection maps a simple system � to the Weyl chamber C∨(�) and maps a Weyl
chamber C∨ to the simple system �(C∨).
(c) If � is a simple system with α, β ∈ �, then B(α, β) ≤ 0.
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Proof. Suppose � = {α1, . . . , αl} is a simple system. From Equation 6.39, recall
that ρ ∈ (it)∗ satisfies B(ρ, α j ) = ‖α‖2

2 > 0, so that ρ ∈ C(�). For any λ ∈ C(�),
examining the map t → B(tλ + (1 − t)ρ, α) quickly shows that the line segment
joining λ to ρ lies in C(�), so that C(�) is connected. Moreover, B(λ, α) > 0 for
α ∈ �+(gC) and B(λ, β) < 0 for β ∈ �−(gC), so that C(�) ⊆ (it)∗\ (∪α∈�(gC)α

⊥).
In particular, C(�) ⊆ C for some Weyl chamber C of (it)∗. As the sign of B(γ, α j )

is constant for γ ∈ C , the fact that ρ ∈ C forces α j (C) > 0. Thus, C ⊆ C(�), so
that C(�) = C is a Weyl chamber and the first half of part (a) is done.

Next, let C be a Weyl chamber of (it)∗ and fix λ ∈ C . If α = β1 + β2 for
C-positive roots α, βi , then B(α, λ) > B(βi , λ). Since {B(λ, α) | α ∈ �(gC) is
C-positive} is a finite (nonempty) subset of positive real numbers, it is easy to see
that �(C) is nonempty. It now follows from the definition of �(C) that any β ∈
�(gC) may be written as β = ∑

α∈� kαα with either {kα | α ∈ �} ⊆ Z≥0 or
{kα | α ∈ �} ⊆ Z≤0 depending on whether β is C-positive or C-negative. Since
�(gC) spans (it)∗, it only remains to see �(C) is an independent set.

Let α, β ∈ �(C) be distinct and, without loss of generality, assume B(α, α) ≤
B(β, β). Positivity implies α �= −β so that the proof of Corollary 6.22 (c.f. Exercise
6.20) shows that β(hα) = 2 B(α,β)

B(β,β) ∈ ±{0, 1}. If B(α, β) > 0, then rα(β) = β − α ∈
�(gC) by Lemma 6.41. If β − α is C-positive, then β = (β − α) + α. If β − α is
C-negative, then α = −(β − α) + β. Either violates the assumption that α, β are
indecomposable. Thus α, β ∈ �(C) implies that B(α, β) ≤ 0 and will finish part (c)
once part (a) is complete.

To see that �(C) is independent, suppose
∑

α∈I1
cαα =

∑
β∈I2

cββ with cα, cβ ≥
0 and I1

∐
I2 = C(�). Using the fact that B(α, β) ≤ 0, calculate

0 ≤
∥∥∥∥∥∑
α∈I1

cαα

∥∥∥∥∥
2

= B(
∑
α∈I1

cαα,
∑
β∈I2

cββ) =
∑

α∈I1, β∈I2

cαcb B(α, β) ≤ 0.

Thus 0 =∑
α∈I1

cαα. Choosing any γ ∈ C , 0 =∑
α∈I1

cα B(γ, α). Since B(γ, α) >
0, cα = 0. Similarly cβ = 0 and part (a) is finished. As the proof of part (b) can either
be done is a similar fashion or derived easily from part (a), it is omitted. �
Theorem 6.43. Let G be compact Lie group with a maximal torus T .
(a) The action of W (G) on it establishes an isomorphism W (G) ∼= W (�(gC)

∨).
(b) The action of W (G) on (it)∗ establishes an isomorphism W (G) ∼= W (�(gC)).
(c) W (G) acts simply transitively on the set of Weyl chambers.

Proof. Using the faithful action of W = W (G) on it via Ad from Theorem 6.36,
identify W with the corresponding transformation group on it for the duration of this
proof. Then Lemma 6.41 shows rhα

∈ W for each α ∈ �(gC), so that W (�(gC)
∨) ⊆

W . It remains to show that W ⊆ W (�(gC)
∨) to finish the proof of part (a).

Reduce to the case where g is semisimple. Fix a Weyl chamber C of it and fix
H ∈ C . If w ∈ W , then W preserves {hα | α ∈ �(gC)}. Since w leaves the Killing
form invariant, w preserves {h⊥α | α ∈ �(gC)}, so that wC is also a Weyl chamber.

Let � be the union of all intersections of hyperplanes of the form h⊥α for distinct
α ∈ �(gC). As this is a finite union of subspaces of codimension at least 2, (it)\�
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is path connected (Exercise 6.31). Thus there exists a piecewise linear path γ (t) :
[0, 1] → it from H to wH that does not intersect �. Modifying γ (t) if necessary
(Exercise 6.31), there is a partition {si }N

i=1 of [0, 1], Weyl chambers Ci with C0 = C
and CN = wC , and roots αi , so that γ (si−1, si ) ⊆ Ci , 1 ≤ i ≤ N , and γ (si ) ∈ h⊥αi

,
1 ≤ i ≤ N − 1.

As γ (t) does not intersect �, there is an entire ball, Bi , around γ (si ) in h⊥αi
(of

codimension 1 in it) lying on the boundary of both Ci−1 and Ci , 1 ≤ i ≤ N − 1. For
small nonzero ε, it follows that Bi + εhα lies in Ci−1 or Ci , depending on the sign
of ε. Since rhαi

(Bi + εhα) = Bi − εhα and since rhαi
preserves Weyl chambers, it

follows that rhαi
Ci−1 = Ci . In particular, rhα1

· · · rhαN
wC = C .

Now suppose w0 ∈ N (T ) satisfies Ad(w0)C = C . To finish part (a), it suffices
to show that w0 ∈ T , so that w0 acts by the identity operator on it. Let � = �(C)

and define ρ as in Equation 6.39. By Lemma 6.42, it follows that w� = �, so that
Ad(w0)ρ = ρ. Thus cw0 eituρ = eituρ , t ∈ R.

Choose a maximal torus S′ of ZG(w0)
0 containing w0. Note that S′ is also a

maximal torus of G by the Maximal Torus Theorem. Since eiRuρ is in turn contained
in some (other) maximal torus of ZG(w0)

0, Corollary 5.10 shows that there exists
g ∈ ZG(w0)

0, so cgeiRuρ ⊆ S′. Let S be the maximal torus of G given by S = cg−1 S′.
Then w0 ∈ S and eiRuρ ⊆ S (c.f. Exercise 5.12). By definition of ρ and a simple a
system, the root space decomposition of gC shows zgC

(uρ) = t so zg(iuρ) = t. But
since s ⊆ zg(iuρ) = t, maximality implies s = t, and so S = T . Thus w0 ∈ T , as
desired.

Part (b) is done in a similar fashion to part (a). Part (c) is a corollary of the proof
of part (a). �

6.4.5 Exercises

Exercise 6.27 For each compact classical group G in §6.4.2, verify that the Weyl
group and its action on t and (it)∗ is correctly calculated.

Exercise 6.28 Let G be compact Lie group with semisimple Lie algebra and t a
Cartan subalgebra. For α ∈ �(gC), show that rα is the reflection of (it)∗ across the
hyperplane perpendicular to α and rhα

is the reflection of it across the hyperplane
perpendicular to hα .

Exercise 6.29 Let G be a compact connected Lie group with a maximal torus T .
Theorem 6.36 shows that the conjugacy classes of G are parametrized by the W -
orbits in T . In fact, more is true. Show that there is a one-to-one correspondence
between continuous class functions on G and continuous W -invariant functions on
T (c.f. Exercise 7.10).

Exercise 6.30 For each compact classical Lie group in §6.4.3, verify that the given
system of simple roots and corresponding Weyl chamber is correct.

Exercise 6.31 Suppose G is compact Lie group with semisimple Lie algebra g and
a Cartan subalgebra t.



6.4 Weyl Group 147

(1) If � is the union of all intersections of distinct hyperplanes of the form h⊥α for
α ∈ �(gC), show (it)\� is path connected.
(2) Suppose γ (t) : [0, 1] → it is a piecewise linear path that does not intersect �
with γ (0) and γ (1) elements of (different) Weyl chambers. Show there is a piecewise
linear path γ ′(t) : [0, 1] → it that does not intersect �, satisfies γ ′(0) = γ (0) and
γ ′(1) = γ (1), γ (si−1, si ) ⊆ Ci , 1 ≤ i ≤ N , and γ (si ) ∈ h⊥αi

, 1 ≤ i ≤ N − 1, for
some partition {si }N

i=0 of [0, 1], some Weyl chambers Ci , and some roots αi .

Exercise 6.32 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a basis of (it)∗. With respect to this basis, the lexico-
graphic order on (it)∗ is defined by setting α > β if the first nonzero coordinate
(with respect to the given basis) of α − β is positive.
(1) Let � = {α ∈ �(gC) | α > 0 and α �= β1 + β2 for any βi ∈ �(gC) with
βi > 0}. Show � is a simple base of �(gC) with �+(gC) = {α ∈ �(gC) | α > 0}
and �−(gC) = {α ∈ �(gC) | α < 0}.
(2) Show that all simple systems arise in this fashion.
(3) Show that there is a unique δ ∈ �+(gC), so that δ > β, β ∈ �+(gC)\{δ}. The
root δ is called the highest root. For the classical compact Lie groups, show δ is given
by the following table:

G SU (n) Sp(n) SO(E2n) SO(E2n+1)

δ ε1 − εn 2ε1 ε1 + ε2 ε1 + ε2.

(4) Show that B(δ, β) ≥ 0 for all β ∈ �+(gC).
(5) For G = SO(E2n+1), n ≥ 2, show that there is another root besides δ satisfying
the condition in part (4).

Exercise 6.33 Let G be compact Lie group with semisimple Lie algebra g and
t a Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC). For any
β ∈ �+(gC), show that β can be written as β = αi1 + αi2 + · · · + αiN , where
αi1 + αi2 + · · · + αik ∈ �+(gC) for 1 ≤ k ≤ N .

Exercise 6.34 Let G be compact Lie group with a Cartan subalgebra t. Fix a simple
system � of �(gC).
(1) For α ∈ � and β ∈ �+(gC)\{α}, write rαβ = β − 2 B(β,α)

B(α,α) α to show that
β ∈ �+(gC). Conclude that rα(�+(gC)\{α}) = �+(gC)\{α}.
(2) Let

ρ ′ = 1

2

∑
β∈�+(gC)

β

and conclude from part (1) that rαρ ′ = ρ ′ − α. Use the definition of rα to show that
ρ ′ = ρ.

Exercise 6.35 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC) and let W (�(gC))

′
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be the subgroup of W (�(gC)) generated {rαi }.
(1) Given any β ∈ �(gC), choose x ∈ (±β)⊥ not lying on any other root hyperplane.
For all sufficiently small ε > 0, show that x + εβ lies in a Weyl chamber C ′ and that
β ∈ �′ = �(C ′).
(2) Write ρ� for the element of (it)∗ satisfying 2 B(ρ�,αi )

B(αi ,αi )
= 1 from Equation 6.39

(c.f. Exercise 6.34) and choose w ∈ W (�(gC))
′ so that B(wρ�′ , ρ�) is maximal. By

examining B(rαiwρ�′ , ρ�), show that wρ�′ ∈ C(�). Conclude that wβ ∈ �.
(3) Show that rβ = w−1rwβw. Conclude that W (�(gC))

′ = W (�(gC)).

Exercise 6.36 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC) and recall Exercise
6.35. For w ∈ W (�(gC)), let n(w) = ∣∣{β ∈ �+(gC) | wβ ∈ �−(gC)}

∣∣. For w �= I ,
write w = rα1 · · · rαN with N as small as possible. Then rα1 · · · rαN is called a reduced
expression for w. The length of w, with respect to �, is defined by l(w) = N . For
w = I , l(I ) = 0.
(1) Use Exercise 6.34 to show

n(wrαi ) =
{

n(w)− 1 if wαi ∈ �−(gC)

n(w)+ 1 if wαi ∈ �+(gC).

Conclude that n(w) ≤ l(w).
(2) Use Theorem 6.43 and induction on the length to show that n(w) = l(w).

Exercise 6.37 (Chevalley’s Lemma) Let G be compact Lie group with semisim-
ple Lie algebra g and t a Cartan subalgebra of g. Fix λ ∈ (it)∗ and let Wλ =
{w ∈ W (�(gC)) | wλ = λ}. Choose a Weyl chamber C , so that λ ∈ C and let
� = �(C).
(1) If β ∈ �(gC) with B(λ, β) > 0, show that β ∈ �+(gC).
(2) If α ∈ � and w ∈ Wλ with wα ∈ �−(gC), show B(λ, α) ≤ 0.
(3) Chevalley’s Lemma states Wλ is generated by W (λ) = {rα | B(λ, α) = 0}.
Use Exercise 6.36 to prove this result. To this end, argue by contradiction and let
w ∈ Wλ\ 〈W (λ)〉 be of minimal length.
(4) Show that the only reflections in W (�(gC)) are of the form rα for α ∈ W�(gC).
(5) If Wλ �= {I }, show that there exists α ∈ �(gC) so λ ∈ α⊥.

Exercise 6.38 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC). For w ∈ W (�(gC)),
let sgn(w) = (−1)l(w) (c.f. Exercise 6.36). Show that sgn(w) = det(w).

Exercise 6.39 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a Weyl chamber C and H ∈ (it)∗.
(1) Suppose H ∈ C ∩ wC for w ∈ W (�(gC)). Show that wH = H .
(2) Let H ∈ (it)∗ be arbitrary. Show that C is a fundamental chamber for the action
of W (�(gC)), i.e., show that the Weyl group orbit of H intersects C in exactly one
point.

Exercise 6.40 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � of �(gC).
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(1) Show that there is a unique w0 ∈ W (�(gC)), so that w0� = −�.
(2) Show that w0 = −I ∈ W (�(gC)) for G equal to SU (2), SO(E2n+1), Sp(n), and
SO(E4n).
(3) Show that w0 �= −I , so −I /∈ W (�(gC)) for G equal to SU (n) (n ≥ 3) and
SO(E4n+2).

Exercise 6.41 Let G be compact Lie group with simple Lie algebra g and t a Cartan
subalgebra of g. Fix a simple system � = {αi } of �(gC).
(1) If αi and α j are joined by a single edge in the Dynkin diagram, show that there
exists w ∈ W (�(gC)), so that ωαi = α j .
(2) If G is a classical compact Lie group, i.e., G is SU (n), Sp(n), SO(E2n), or
SO(E2n+1), show the set of roots of a fixed length constitutes a single Weyl group
orbit.

Exercise 6.42 Let G be compact Lie group with semisimple Lie algebra g and t a
Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC) and let πi ∈ (it)∗

be defined by the relation 2 B(πi ,α j )

B(α j ,α j )
= δi, j .

(1) Show that {αi } is a Z-basis for the root lattice R and {πi } is a Z-basis for the
weight lattice P .

(2) Show the matrix
(
B(αi , α j )

)
is positive definite. Conclude det

(
2 B(αi ,α j )

B(α j ,α j )

)
> 0.

(3) It is well known from the study of free Abelian groups ([3]) that there exists a
Z-basis {λi } of P and ki ∈ Z, so that {kiλi } is a basis for R. Thus there is a change
of basis matrix from the basis {λi } to {πi } with integral entries and determinant ±1.

Show that |P/R| = det
(

2 B(αi ,α j )

B(α j ,α j )

)
. The matrix

(
2 B(αi ,α j )

B(α j ,α j )

)
is called the Cartan

matrix of gC.

Exercise 6.43 Let G be a compact Lie group with semisimple Lie algebra g and
t a Cartan subalgebra of g. Fix a simple system � = {αi } of �(gC). For each
β ∈ �(gC), choose a standard sl(2,C)-triple associated to β, {Eβ, Hβ, Fβ}. Let h =∑

β∈�+(gC)
Hβ and define kαi ∈ Z>0, so h = ∑

αi∈� kαi Hαi . Set e = ∑
i

√
kαi Eαi ,

f =∑
i kαi Fαi , and s = spanC{e, h, f }.

(1) Show
B(h,hαi )

B(hαi ,hαi )
= 1 (c.f. Exercise 6.34).

(2) Show that s ∼= sl(2,C). The subalgebra s is called the principal three-dimensional
subalgebra of gC.

Exercise 6.44 Let G be a compact Lie group with semisimple Lie algebra g and let
T be a maximal torus of G. Fix a Weyl chamber C of it and let NG(C) = {g ∈ G |
Ad(g)C = C}. Show that the inclusion map of NG(C) → G induces an isomor-
phism NG(C)/T ∼= G0/G.




