
General Methods and Ideas 

Summary. In this chapter we will develop the formal language and some general methods 
and theorems. To some extent the reader is advised not to read it too systematically since most 
of the interesting examples will appear only in the next chapters. The exposition here is quite 
far from the classical point of view since we are forced to establish the language in a rather 
thin general setting. Hopefully this will be repaid in the chapters in which we will treat the 
interesting results of Invariant Theory. 

1 Groups and Their Actions 

1.1 Symmetric Group 

In our treatment groups will always appear as transformation groups, the main point 
being that, given a set X, the set of all bijective mappings of X into Z is a group 
under composition. We will denote this group S{X) and call it the symmetric group 
ofX. 

In practice, the full symmetric group is used only for X a finite set. In this case it 
is usually more convenient to identify X with the discrete interval { 1 , . . . , AX} formed 
by the first n integers (for a given value of n). The corresponding symmetric group 
has nl elements and it is denoted by 5'„. Its elements are cMtdpermutations. 

In general, the groups which appear are subgroups of the full symmetric group, 
defined by special properties of the set X arising from some extra structure (such as 
from a topology or the structure of a linear space, etc.). The groups of interest to us 
will usually be symmetry groups of the structure under consideration. To illustrate 
this concept we start with a definition: 

Definition. A partition of a set X is a family of nonempty disjoint subsets A, such 
thatX = U/A/. 

A partition of a number n is a (non-increasing) sequence of positive numbers: 

k 

fn\ > m2 > " • > mk > 0 with T^ mj = n. 
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Remark. To a partition of the set [1,2, 
given by the cardinalities of the sets A,. 

.. ,n] we can associate the partition of n 

rrik We will usually denote a partition by a greek letter X := mi > m2 > • • 
and write X\- nio mean that it is a partition of n. 

We represent graphically such a partition by a Young diagram. The numbers m/ 
appear then as the lengths of the rows (cf. Chapter 9, 2.1), e.g., A = (8, 5, 5, 2): 

X = X = 

Sometimes it is useful to relax the condition and call a partition ofn any sequence 
fni > m2 > " ' > mjc > 0 with X!)=i ^j — ^- ^ ^ then call the height of A, denoted 
by ht(X), the number of nonzero elements in the sequence m/, i.e., the number or 
rows of the diagram. 

We can also consider the colunms of the diagram which will be thought of as 
rows of the dual partition. The dual partition of X will be denoted by X. For instance, 
for X = (8, 5, 5, 2) we have X = (4, 4, 3, 3, 3, 1, 1, 1). 

If X = UA/ is a partition, the set 

G:={aeSn\aiAi)^Ai, V/}, 

is a subgroup of S(X), isomorphic to the product Y\ S(Ai) of the symmetric groups 
on the sets A/. There is also another group associated to the partition, the group of 
permutations which preserves the partition without necessarily preserving the indi
vidual subsets (but possibly permuting them). 

1.2 Group Actions 

It is useful at this stage to proceed in a formal way. 

Definition 1. An action of a group G on a set X is a mapping 7t : G x X ^^ X, 
denoted by ĵc := 7T(g,x), satisfying the following conditions: 

(1.2.1) 1JC=JC, h(kx) = (hk)x 

for all h,k e G and x e X. 

The reader will note that the above definition can be reformulated as follows: 

(i) The map Q(h) := x \-> hx from X to X is bijective for all h e G. 
(ii) The map Q : G ^^ S(X) is a group homomorphism. 
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In our theory we will usually fix our attention on a given group G and consider 
different actions of the group. It is then convenient to refer to a given action on a set 
X as a G-set. 

Examples. 

(a) The action of G by left multiplication on itself. 
(b) For a given subgroup H of G, the action of G on the set G/H := {gH\g e G} 

of left cosets is given by 

(1.2.2) a(bH) :=abH. 

(c) The action of G x G on G given by left and right translations: (a, b)c := acb~^. 
(d) The action of G by conjugation on itself. 
(e) The action of a subgroup of G induced by restricting an action of G. 

It is immediately useful to use categorical language: 

Definition 2. Given two G-sets X, Y, a G-equivariant mapping, or more simply a 
morphism, is a map f : X -^ Y such that for all g G G and x € X we have 

figx) = gf{x). 

In this case we also say that / intertwines the two actions. Of course if / is 
bijective we speak of an isomorphism of the two actions. If X = F the isomorphisms 
of the G-action X also form a group called the symmetries of the action. 

The class of G-sets and equivariant maps is clearly a category.^ 

Remark. This is particularly important when G is the homotopy group of a space X 
and the G-sets correspond to covering spaces of X. 

Example. The equivariant maps of the action of G on itself by left multiplication are 
the right multiplications. They form a group isomorphic to the opposite of G (but 
also to G). Note: We recall that the opposite of a multiplication {a,b) i-> ab is the 
operation (a,b) \-^ ba. One can define opposite group or opposite ring by taking the 
opposite of multiplication. 

More generally: 

Proposition. The invertible equivariant maps of the action ofG on G/H by left mul
tiplication are induced by the right multiplications with elements of the normalizer 
NG{H) := {g e G\ gHg'^ = H] of H (cf 2.2). They form a group T isomorphic 
toNG{H)/H. 

^ Our use of categories will be extremely limited to just a few basic functors and universal 
properties. 
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Proof. Let a : G/H -^ G/H be such a map. Hence, for all a,b e G, we have 
a (a bH) = aa(bH). In particular ifa{H) == w// we must have that 

criH) = uH =^ a(hH) = huH, Wh e H, =^ Hu C uH. 

If we assume cr to be invertible, we see that also Hu~^ C u~^H, hence uH = Hu 
and u G NG(H). Conversely, if u e NG(H), the map a(u) : aH -^ auH = aHu 
is well defined and an element of P. The map u -^ a(u~^) is clearly a surjective 
homomorphism from NG(H) to F with kernel H. D 

Exercise. Describe the set of equivariant maps G/H -^ G/K for 2 subgroups. 

2 Orbits, Invariants and Equivariant Maps 

2.1 Orbits 

The first important notion in this setting is given by the following: 
Consider the binary relation R in X given by xRy if and only if there exists 

g e G with gx = y. 

Proposition. R is an equivalence relation. 

Definition. The equivalence classes under the previous equivalence are called G-
orbits (or simply orbits). The orbit of a given element x is formed by the elements 
gx with g e G and is denoted by Gx. The mapping G -^ Gx given by g \-^ gx is 
called the orbit map. 

The orbit map is equivariant (with respect to the left action of G). The set X is 
partitioned into its orbits, and the set of all orbits (quotient set) is denoted by X/G. 

In particular, we say that the action of G is transitive or that Z is a homogeneous 
space if there is a unique orbit. 

More generally, we say that a subset 7 of X is G stable if it is a union of orbits. 
In this case, the action of G on X induces naturally an action of G on F. Of course, 
the complement C(Y) of F in Z is also G stable, and X is decomposed as 7 U C(Y) 
into two stable subsets. 

The finest decomposition into stable subsets is the decomposition into orbits. 

Basic examples. 

i. Let a e Sn be a. permutation and A the cyclic group which it generates. Then 
the orbits of A on the set { 1 , . . . , n} are the cycles of the permutation. 

ii. Let G be a group and let // , K be subgroups. We have the action of H x K 
on G induced by the left and right action. The orbits are the double cosets. In 
particular, if either / / or Â  is 1, we have left or right cosets. 

iii. Consider G/H, the set of left cosets gH, with the action of G given by 1.2.2. 
Given a subgroup Â  of G, it still acts on G/H. The K orbits in G/ / / are in 
bijective correspondence with the double cosets KgH. 
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iv. Consider the action of G on itself by conjugation (g, h) -> ghg~^. Its orbits are 
the conjugacy classes. 

V. An action of the additive group R+ of real numbers on a set X is called a 1-
parameter group of transformations, or in more physical language, a reversible 
dynamical system. 

In example (v) the parameter t is thought of as time, and an orbit is seen as the 
time evolution of a physical state. The hypotheses of the group action mean that 
the evolution is reversible (i.e., all the group transformations are invertible), and the 
forces do not vary with time so that the evolution of a state depends only on the time 
lapse (group homomorphism property). 

The previous examples also suggest the following general fact: 

Remark. Let G be a group and K a normal subgroup in G. If we have an action of G 
on a set X, we see that G acts also on the set of K orbits X/K, since gKx = Kgx. 
Moreover, we have (X/K)/G = X/G. 

2.2 Stabilizer 

The study of group actions should start with the elementary analysis of a single orbit. 
The next main concept is that of stabilizer. 

Definition. Given a point x e X wc set Gx := {g e G\gx = x}. G^ is called the 
stabilizer (or little group) of jc. 

Remark. The term little group is used mostly in the physics literature. 

Proposition. Gx is a subgroup, and the action of G on the orbit Gx is isomorphic 
to the action on the coset space G/Gx-

Proof. The fact that Gx is a subgroup is clear. Given two elements h,k e G WQ have 
that hx = kx if and only if k~^hx = x ov k~^h G Gx-

The mapping between G/Gx and Gx which assigns to a coset hGx the element 
hx is thus well defined and bijective. It is also clearly G-equivariant, and so the claim 
follows. D 

Example. For the action of G x G on G by left and right translations (Example (c) 
of 1.2), G is a single orbit and the stabilizer of 1 is the subgroup A := {(g, g)\g G G} 
isomorphic to G embedded in G x G diagonally. 

Example. In the case of a 1 -parameter subgroup acting continuously on a topological 
space, the stabilizer is a closed subgroup of R. If it is not the full group, it is the set 
of integral multiples ma, m e Z of a positive number a. The number a is to be 
considered as the first time in which the orbit returns to the starting point. This is the 
case of a periodic orbit. 
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Remark. Given two different elements in the same orbit, their stabilizers are conju
gate. In fact, Ghx = hGxh'^. In particular when we identify an orbit with a coset 
space G/H this implicitly means that we have made the choice of a point for which 
the stabilizer is H. 

Remark. The orbit cycle decomposition of a permutation n can be interpreted in 
the previous language. Giving a permutation TT on a set S is equivalent to giving an 
action of the group of integers Zon S. 

Thus S is canonically decomposed into orbits. On each orbit the permutation n 
induces, by definition, a cycle. 

To study a single orbit, we need only remark that a finite orbit under Z is equiva
lent to the action of Z on some Z/(n), n > 0. On Z/(n) the generator 1 acts as the 
cycle jc -> jc + 1. 

Fixed point principle. Given two subgroups H,K of G we have that H is conju
gate to a subgroup of K if and only if the action of H onG/K has a fixed point. 

Proof This is essentially tautological, H c gKg~^ is equivalent to saying that gK 
is a fixed point under H. • 

Consider the set of all subgroups of a group G, with G acting on this set by 
conjugation. The orbits of this action are the conjugacy classes of subgroups. Let us 
denote by [H] the conjugacy class of a subgroup H. 

The stabilizer of a subgroup H under this action is called its normalizer. It should 
not be confused with the centralizer which, for a given subset A of G, is the stabilizer 
under conjugation of all of the elements of A. 

Given a group G and an action on X, it is useful to introduce the notion of orbit 
type. 

Observe that for an orbit in X, the conjugacy class of the stabilizers of its ele
ments is well defined. We say that two orbits are of the same orbit type if the asso
ciated stabilizer class is the same. This is equivalent to saying that the two orbits are 
isomorphic as G-spaces. It is often useful to partition the orbits according to their 
orbit types. 

Exercise. Determine the points in G/H with stabilizer H. 

Exercise. Show that the group of symmetries of a G action permutes transitively 
orbits of the same type. 

Suppose that G and X are finite and assume that we have in X, nt orbits of type 
[Hi]. Then we have, from the partition into orbits, the formula 

\X\_^^_ni_ 
\G\ VI///I 

where we denote by | A| the cardinality of a finite set A. 
The next exercise is a challenge to the reader who is already familiar with these 

notions. 
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Exercise. Let G be a group with p^n elements, p a prime number not dividing n. 
Deduce the theorems of Sylow by considering the action of G by left multiplication 
on the set of all subsets of G with /?'" elements ([Wie]). 

Exercise. Given two subgroups //, K of G, describe the orbits of H acting on G/K. 
In particular, give a criterion for G/K to be a single //-orbit. Discuss the special case 
[G : / / ] = 2. 

2.3 Invariants 

From the elements of Z, we may single out those for which the stabilizer is the full 
group G. These are the fixed points of the action or invariant points, i.e., the points 
whose orbit consists of the point alone. 

These points will usually be denoted by X^. 

X^ := {fixed points or invariant points]. 

We have thus introduced in a very general sense the notion of invariant. Its full 
meaning for the moment is completely obscure; we must first proceed with the formal 
theory. 

2.4 Basic Constructions 

One of the main features of set theory is the fact that it allows us to perform con
structions. Out of given sets we construct new ones. This is also the case of G-sets. 
Let us point out at least two constructions: 

(1) Given two G-sets Z, Y, we give the structure of a G-set to their disjoint sum 
X u y by acting separately on the two sets and to their product X x 7 by 

(2.4.1) 8ix,y):=(gx,gy), 

(i.e., once the group acts on the elements it acts also on the pairs.) 

(2) Consider now the set Y^ of all maps from X to 7. We can act with G (verify 
this) by setting 

(2.4.2) (8f)(x):=gfig-'x). 

Notice that in the second definition we have used the action of G twice. The 
particular formula given is justified by the fact that it is really the only way to get a 
group action using the two actions. 

Formula 2.4.2 reflects a general fact well known in category theory: maps be
tween two objects X, y are a covariant functor in Y and a contravariant functor in X. 

We want to immediately make explicit a rather important consequence of our 
formalism: 
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Proposition. A map f : X ^^ Y between two G-sets is equivariant (cf. 1.2) if and 
only if it is a fixed point under the G-action on the maps. 

Proof This statement is really a tautology, but nevertheless it deserves to be clearly 
understood. The proof is trivial following the definitions. Equivariance means that 
f{gx) = gf(x). If we substitute x with g~^x, this reads f(x) = gf(g~^x), which, 
in functional language means that the function / equals the function g / , i.e., it is 
invariant. D 

Exercises. 

(i) Show that the orbits of G acting on G// / x G / A : are in canonical 1-1 correspon
dence with the double cosets HgK of G. 

(ii) Given a G equivariant map n : X ^^ G/H show that: 

(a) 7t~^{H) is stable under the action of H. 
(b) The set of G orbits of X is in 1-1 correspondence with the //-orbits of 

yT-\H). 
(c) Study the case in which X = G/K is also homogeneous. 

2.5 Permutation Representations 

We will often consider a special case of the previous section, the case of the trivial 
action of G on 7. In this case of course the action of G on the functions is simply 

(2.5.1) 'fix) = igfXx) = f(g-'x). 

Often we write 'f instead of gf for the function fig'^x). A mapping is equivariant 
if and only if it is constant on the orbits. In this case we will always speak of an 
invariant function. In view of the particular role of this idea in our treatment, we 
repeat the formal definition. 

Definition 1. A function / on a G-set X is called invariant if f(g~^x) = f(x) for 
all jc G X and^ e G. 

As we have just remarked, a function is invariant if and only if it is constant on 
the orbits. Formally we may thus say that the quotient mapping n := X ^^ X/G is 
an invariant map and any other invariant function factors as 

/ 
X/G 

We want to make explicit the previous remark in a case of importance. 
Let X be a finite G-set. Consider a field F (a ring would suffice) and the set F^ 

of functions on X with values in F. 
An element x e X can be identified with the characteristic function of {x}. In 

this way X becomes a basis of F^ as a vector space. 
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The induced group action of G on F^ is by linear transformations which permute 
the basis elements. 

F ^ is called a permutation representation, and we will see its role in the next 
sections. Since a function is invariant if and only if it is constant on orbits we deduce: 

Proposition. The invariants ofG on F^ form the subspace of F^ having as a basis 
the characteristic functions of the orbits. 

In other words given an orbit O consider UQ \= ^x^o ^- ^^^ elements UQ form 
a basis of (F^)^. 

We finish this section with two examples which will be useful in the theory of 
symmetric functions. 

Consider the set {1, 2 , . . . , n} with its canonical action of the symmetric group Sn^ 
The maps from {1, 2 , . . . , n} to the field R of real numbers form the standard vector 
space W. The symmetric group acts by permuting the coordinates, and in every orbit 
there is a unique vector {a\, ^22,..., an) with fli > ^2 ^ • • • ̂  ^n-

The set of these vectors can thus be identified with the orbit space. It is a convex 
cone with boundary, comprising the elements in which at least two coordinates are 
equal. 

Exercise. Discuss the orbit types of the previous example. 

Definition 2. A function M : {1, 2 , . . . , n} -> N (to the natural numbers) is called 
a monomial The set of monomials is a semigroup by the addition of values, and we 
indicate by xi the monomial which is the characteristic function of {/}. 

As we have already seen, the symmetric group acts on these functions by 
{af){k) := f{o~^{k)), and the action is compatible with the addition. Moreover 
o{Xi) = Xa{i). 

Remark. It is customary to write the semigroup law of monomials multiplicatively. 
Given a monomial M such that M{i) = hi, we have M = xj'JC2^ " '^n"- The number 
J2i hi is the degree of the monomial. 

Representing a monomial M as a vector (hi,h2,... ,hn), we see that every 
monomial of degree d is equivalent, under the symmetric group, to a unique vec
tor in which the coordinates are non-increasing. The nonzero coordinates of such a 
vector thus form a partition A.(M) h J, with at most n parts, of the degree of the 
monomial. 

The permutation representation associated to the monomials with coefficients in 
a commutative ring F is the polynomial ring F [ x i , . . . , x„] in the given variables. 

The invariant elements are called symmetric polynomials. 
From what we have proved, a basis of these symmetric polynomials is given by 

the sums 
mx:= ^ M 

X(M)=X 

of monomials with exponents the integers hi of the partition X.m^is called a mono
mial symmetric function. 
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Exercise. To a monomial M we can also associate a partition of the set {1, 2 , . . . , /i} 
by the equivalence / = j iff M(/) = M(j). Show that the stabilizer of M is the 
group of permutations which preserve the sets of the partition (cf. 1.1). If F is a field 
of characteristic 0, given M with X(M) = A = {/zi, /22,...,/?«}, we have 

2.6 Invariant Functions 

It is time to develop some other examples. First, consider the set { 1 , . . . , «} and a 
ring A (in most applications A will be the integers or the real or complex numbers). 

A function / from {I,... ,n} to A may be thought of as a vector, and displayed, 
for instance, as a row with the notation (ai,a2, •.. ,an) where at := / ( / ) . The set 
of all functions is thus denoted by A'^. The symmetric group acts on such functions 
according to the general formula 2.5.1: 

a(fli,<32, ...,an) = {aa-\\.aa-\2, . . . ,a^-i„) . 

In this simple example, we already see that the group action is linear. We will refer 
to this action as the standard permutation action. 

We remark that if -̂ denotes the canonical basis vector with coordinates 0 except 
1 in the i^^ position, we have a(^-) = e^^^-y This formula allows us to describe the 
matrix of a in the given basis: it is the matrix ^a-^{j),i' These matrices are called 
permutation matrices. 

If we consider a G-set X and a ring A, the set of functions on X with values in 
A also forms a ring under pointwise sum and multiplication, and we have: 

Remark. The group G acts on the functions with values in A as a group of ring 
automorphisms. 

In this particular example it is important to proceed further. Once we have the 
action of Sn on A" we may continue and act on the functions on A"! In fact let us 
consider the coordinate functions: xt : («i, ^ 2 , . . . , ««) -^ fl/. It is clear from the 
general formulas that the symmetric group permutes the coordinate functions and 
a(xi) = Xa(i). The reader may note the fact that the inverse has now disappeared. 

If we have a ring R and an action of a group G on /? as ring automorphisms it is 
clear that: 

Proposition. The invariant elements form a subring of R. 

Thus we can speak of the ring of invariants R^. 
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2.7 Commuting Actions 

We need another generality. Suppose that we have two group actions on the same set 
X, i.e., assume that we have two groups G and H acting on the same set X. 

We say that the two actions commute if gh{x) = hg{x) for allx e X, g e G and 
he H. 

This means that every element of G gives rise to an H equivariant map (or we 
can reverse the roles of G and / / ) . It also means that we really have an action of the 
product group G x H onX given by (g, h)x = ghx. 

In this case, we easily see that if a function / is G-invariant and h e H, then hf 
is also G-invariant. Hence H acts on the set of G-invariant functions. 

More generally, suppose that we are given a G action on X and a normal sub
group ^ of G. It is easily seen that the quotient group G/K acts on the set of K-
invariant functions and a function is G-invariant if and only if it is K and G/K-
invariant. 

Example. The right and left actions of G on itself commute (Example 1.2c). 

3 Linear Actions, Groups of Automorphisms, Commuting 
Groups 

3.1 Linear Actions 

In §2.5, given an action of a group G on a set X and a field F, we deduced an 
action over the set F^ of functions from X to F, which is linear, i.e., given by linear 
operators. 

In general, the groups G and the sets X on which they act may have further 
structures, as in the case of a topological, or differentiable, or algebraic action. In 
these cases it will be important to restrict the set of functions to the ones compatible 
with the structure under consideration. We will do it systematically. 

If X is finite, the vector space of functions on X with values in F has, as a 
possible basis, the characteristic functions of the elements. It is convenient to identify 
an element x with its characteristic function and thus say that our vector space has X 
as a basis (cf. §2.5). 

A function / is thus written as J^xex fM^- The linear action of G on F^ 
induces on this basis the action from which we started. We call such an action a 
permutation representation. 

In the algebraic theory we may in any case consider the set of all functions which 
are finite sums of the characteristic functions of points, i.e., the functions which are 
0 outside a finite set. 

These are usually cailQd functions with finite support. We will often denote these 
functions by the symbol F[X], which is supposed to remind us that its elements are 
linear combinations of elements of X. 
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In particular, for the left action of G on itself we have the algebraic regular 
representation of G on F[G]. We shall see that this representation is particularly 
important. 

Let us stress a feature of this representation. 
We have two actions of G on G, the left and the right action, which com

mute with each other. In other words we have an action of G x G on G, given 
by (/z, k)g = hgk~^ (for which G = G x G/A where A = G embedded diagonally; 
cf. 1.2c and 2.2). 

Thus we have the corresponding two actions on F[G] by (h, k)f(g) = f(h~^gk) 
and we may view the right action as symmetries of the left action and conversely. 
Sometimes it is convenient to write ^f^ = (h,k)f to stress the left and right actions. 

After these basic examples we give a general definition: 

Definition 1. Given a vector space V over a field F (or more generally a module), we 
say that an action of a group G on V is linear if every element of G induces a linear 
transformation on V. A linear action of a group is also called a linear representation;^ 
a vector space V that has a G-action is called a G-module. 

In different language, let us consider the set of all linear invertible transforma
tions of V. This is a group under composition (i.e., it is a subgroup of the group of all 
invertible transformations) and will be called the general linear group of V, denoted 
by the symbol GL(V). 

If we take V = F^ (or equivalently, if V is finite dimensional and we identify 
V with F" by choosing a basis), we can identify GL(V) with the group ofnxn 
invertible matrices with coefficients in F, denoted by GL{n, F). 

According to our general principles, a linear action is thus a homomorphism Q 
from G to GL(V) (or to GLin, F)). 

When we are dealing with linear representations we usually also consider equiv-
ariant linear maps between them, thus obtaining a category and a notion of isomor
phism. 

Exercise. Two linear representations pi, p2 : G -^ GL{n, F) are isomorphic if and 
only if there is an invertible matrix X e GL{n, F) such that Xpi(g)X~^ = P2(g) 
for all g G G. 

Before we proceed any further, we should remark on an important feature of the 
theory. 

Given two linear representations U, V, we can form their direct sum U ^ V, 
which is a representation by setting giu,v) = (gu, gv).lf X = AuBissi G-set, 
where A and B are two disjoint G stable subsets, we clearly have F^^^ = F^^F^. 
Thus the decomposition into a direct sum is a generalization of the decomposition of 
a space into G-stable sets. 

If X is an orbit it cannot be further decomposed as a set, while F^ might be 
decomposable. The simplest example is G = {1, r = (12)} the group with two 
elements of permutations of [1, 2]. The space F^ decomposes (charF ^ 2), setting 

-̂  Somefimes we drop the term linear and just speak of a representation. 
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ei -\- 62 e\ — 62 

we have TU\ = MI, T{U2) = —W2. 
We have implicitly used the following ideas: 

Definition 2. 

(i) Given a linear representation V, a subspace L̂  of V is a subr6pr6S6ntation if it 
is stable under G. 

(ii) y is a d6composabl6 r6presentation if we can find a decomposition V = f/i 0 f/2 
with the Ui proper subrepresentations. Otherwise it is called ind6composabl6. 

(iii) V is an irr6ducibl6 representation if the only subrepresentations of V are V 
andO. 

We will study in detail some of the deep connections between these notions. 
We will stress in a moment the analogy with the abstract theory of modules over 

a ring A. First we consider two basic examples: 

Exampk. Let A be the group of all invertible n x n matrices over a field F. 
Consider B^ and B~, the subgroups of all upper (resp., lower) triangular invert

ible matrices. Here "upper triangular" means "with 0 below the diagonal." 

Exercise. The vector space F" is irreducible as an A module, indecomposable but 
not irreducible as a 5 ^ or B~ module. 

Definition 3. Given two linear representations L̂ , V of a group G, the space of G-
equivariant linear maps is denoted by home (U,V) and called the space of int6rtwin-
ing operators. 

In this book we will almost always treat finite-dimensional representations. Thus, 
unless specified otherwise, our vector spaces will always be assumed to be finite 
dimensional. 

3.2 The Group Algebra 

It is quite useful to rephrase the theory of linear representations in a different way. 
Consider the space F[G\. 

Theorem. 

(i) Th6 group multiplication 6xtends to a bilin6ar product on F[G] und6r which 
F[G\ is an associative algebra with 1 called the group algebra. 

(ii) Linear representations ofG are the same as F[G]-modules. 

Proof. The first part is inmiediate. As for the second, given a linear representation 
of G we have the module action (J^gec ^g^)^ '-— ^gec ^g(S^)- The converse is 
clear. • 
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It is useful to view the product of elements a,b e F[G] as a convolution of 
functions: 

(ab)(g) = ^ aih)b(k) = ^a(/z)Z7(/z-ig) = Y,a{gh)b{h-'). 
hMG\hk=g heG heG 

Remark. Convolution can also be defined for special classes of functions on infinite 
groups which do not have finite support. One such extension comes from functional 
analysis and it applies to L^-functions on locally compact groups endowed with a 
Haar measure (Chapter 8). Another extension comes in the theory of reductive alge
braic groups (cf. Chapter 7). 

Remark. (1) Consider the left and right action on the functions F[G]. 
Let h,k, g e G and identify g with the characteristic function of the set {g}. 

Then ^g^ = hgk~^ (as functions). 
The space F[G] as a G x G module is the permutation representation associated 

to G = G X G/A with its G x G action (cf. 2.2 and 3.1). Thus a space of functions 
on G is stable under left (resp. right) action if and only if it is a left (resp. right) ideal 
of the group algebra F[G]. 

(2) Notice that the direct sum of representations is the same as the direct sum as 
modules. Also a G-linear map between two representations is the same as a module 
homomorphism. 

Example. Let us consider a finite group G, a subgroup K and the linear space 
F[G/K], which as we have seen is a permutation representation. 

We can identify the functions on G/K with the functions 

(3.2.1) F[Gf = {ae F[G]\ah = a, ^h £ K} 

on G which are invariant under the right action of AT. In this way the element 
gK G G/K is identified with the characteristic function of the coset gK, and 
F[G/K] is identified with the left ideal of the group algebra F[G] having as ba
sis the characteristic functions XgK of the left cosets of K. 

If we denote by u := XK the characteristic function of the subgroup K, we see 
that XgK = gu and that u generates this module over F[G]. 

Given two subgroups //, K and the linear spaces F[G/ / / ] , F[G/K} C F[G], 
we want to determine their intertwiners. We assume char F = 0. 

For an intertwiner / , and u := XH as before, let f(u) = a e F[G/K]. We have 
hu = u, Wh e H and so, since / is an intertwiner, a = f(u) = f(hu) = ha. 
Thus we must have that a is also left invariant under H. Conversely, given such an 
a, the map b \-^ | ^ is an intertwiner mapping u to a. Since u generates F[G/H] as 
a module we see that: 

Proposition. The space homG(F[G/H], F[G/K]) of intertwiners can be identified 
with the (left) H-invariants of F[G/K\ or with the H-K invariants ^F[G]^ of 
F[G\ It has as basis the characteristic functions of the double cosets HgK. 
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In particular, fovH = K we have that the functions which are biinvariants under 
H form under convolution the endomorphism algebra of F[G/H]. Since we identify 
F[G/H] with a subspace of F[G], the claim is that multiplication on the left by a 
function that is biinvariant under H maps F[G/H] into itself and identifies this space 
of functions with the full algebra of endomorphisms of F[G/H]. 

These functions have as basis the characteristic functions of the double co-
sets HgH\ one usually indicates by Tg = TugH the corresponding operator. 
End(F[G///]) and Tg are called the Hecke algebra and Hecke operators, respec
tively. The multiplication rule between such operators depends on the multiplication 
on cosets HgHHkH = UHhtH, and each double coset appearing in this product 
appears with a positive integer multiplicity so that TgTh = Y1 ^t ^ht ^ 

There are similar results when we have three subgroups H, K, L and compose 

homciFlG/Hl F[G/K]) x homG(F[G/A:], F[G/L]) 

AhomG(F[G// /] , F[G/L]), 

The notion of permutation representation is a special case of that of induced repre
sentation. If M is a representation of a subgroup / / of a group G we consider the 
space of functions f : G ^^ M with the constraint: 

(3.2.2) Indg M:={f:G^ M\f{gh-') = /i/(g), Wh e H, g e G}. 

On this space of functions we define a G-action by (gf)(x) := f(g~^x). It is easy 
to see that this is a well-defined action. Moreover, we can identify m e M with the 
function /;„ such that fm(x) = 0 if jc ^ H and fm(h) = h~^m if h e H. Now 
M C Indg M. 

Exercise. Verify that by choosing a set of representatives of the cosets G/H, we 
have the vector space decomposition 

(3.2.3) Indg M := 0 , ,^ / / / gM. 

3.3 Actions on Polynomials 

Let y be a G-module. Given a linear function f e V* on V, by definition the 
function gf is given by {gf)iv) = f(g~^v) and hence it is again a linear function. 

Thus G acts dually on the space V* of linear functions. It is clear that this is a 
linear action, which is called the contragredient action. 

In matrix notation, using dual bases, the contragredient action of an operator T 
is given by the inverse transpose of the matrix of T. 

^ It is important in fact to use these concepts in a much more general way as done by Hecke 
in the theory of modular forms. Hecke studies the action of SI{2, Z) on M2(Q) the 2 x 2 
rational matrices. In this case one has also double cosets, a product structure on M2(Q) and 
the fact that a double coset is a finite union of right or left cosets. These properties suffice 
to develop the Hecke algebra. In this case this algebra acts on a different space of functions, 
the modular forms (cf. [Ogg]). 
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We will use the notation {(p\v) for the value of a linear form on a vector, and thus 
we have (by definition) the identity 

(3.3.1) {gcp\v) = {ip\g-'v). 

Alternatively, it may be convenient to define on V * a right action by the more sym
metric formula 

(3.3.2) {cpg\v) = {ip\gv). 

Exercise. Prove that the dual of a permutation representation is isomorphic to the 
same permutation representation. In particular, one can apply this to the dual of the 
group algebra. 

In the set of all functions on a finite-dimensional vector space V, the polynomial 
functions play a special role. By definition a polynomial function is an element of the 
subalgebra (of the algebra of all functions with values in F) generated by the linear 
functions. 

If we choose a basis and consider the coordinate functions xi, X2,.. . , x„ with 
respect to the chosen basis, a polynomial function is a usual polynomial in the xt. If 
F is infinite, the expression as a polynomial is unique and we can consider the xi as 
given variables. 

The ring of polynomial functions on V will be denoted by P[y] and the ring of 
formal polynomials by F[jci, A:2, . . . , JC„]. 

Choosing a basis, we always have a surjective homomorphism F[x\,X2,.,. ,Xn\ 
-> P[V] which is an isomorphism if F is infinite. 

Exercise. If F is a finite field with q elements, prove that P[V] has dimension q^ 
over F, and that the kernel of the map F[xi, ;c2,.. . , x„] ^- P[y] is the ideal gener
ated by the elements jcf — xi. 

Since the linear functions are preserved under a given group action we have: 

Proposition. Given a linear action of a group G ona vector space V, G acts on the 
polynomial functions P[V] as a group of ring automorphisms by the rule (gf)(v) = 
fig-'v). 

Of course, the full linear group acts on the polynomial functions. In the language 
of coordinates we may view the action as a linear change of coordinates. 

Exercise. Show that we always have a linear action of GL(n, F) on the formal poly
nomial ring F[xi,X2,..., Xn]. 

3.4 Invariant Polynomials 

We assume the base field to be infinite for simplicity although the reader can see 
easily what happens for finite fields. One trivial but important remark is that the 
group action on P[V] preserves the degree. 
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Recall that a function / on V is homogeneous of degree k if f(av) = a^ f{v) 
for all a and v. 

The set Pq[V] of homogeneous polynomials of degree ^ is a subspace, called 
in classical language the space of quantics. If dim(V) = n, one speaks of n-ary 
quantics."^ 

In general, a direct sum of vector spaces U = ^f^QUk is called a graded vector 
space. A subspace W of L̂  is called homogeneous, if, setting Wj := WH Ui, we have 

The space of polynomials is thus a graded vector space P[V] = 0^o^^[^] -
One has immediately {gf){otv) ~ f{ag~^v) = a^{gf){v), which has an important 
consequence: 

Theorem. If a polynomial f is an invariant (under some linear group action), then 
its homogeneous components are also invariant. 

Proof. Let f = Yl fi ^^ ^̂ ^ decomposition of / into homogeneous components, 
gf = J2 Sfi is the decomposition into homogeneous components of gf If / is in
variant / = gf then // = gfi for each / since the decomposition into homogeneous 
components is unique. D 

In order to summarize the analysis done up to now, let us also recall that an 
algebra A is called a graded algebra if it is a graded vector space, A = 0 ^ Q Ajt and 
ifforall/z,i^ we have AhAj^ C A^^ic. 

Proposition. The spaces Pk[V] are subrepresentations. The set P[V]^ of invariant 
polynomials is a graded subalgebra. 

3.5 Commuting Linear Actions 

To some extent the previous theorem may be viewed as a special case of the more 
general setting of conmiuting actions. 

Given two representations ^, : G -> GLiVi), i = 1,2, consider the linear 
transformations between V\ and Vi which are G equivariant. It is clear that they 
form a linear subspace of the space of all linear maps between V\ and V2. 

The space of all linear maps will be denoted by hom(Vi, V2), while the space 
of equivariant maps will be denoted by homcCVi, ^2)- In particular, when the two 
spacescoincide we write End(V) orEndcCV) instead of hom(V, V) orhomoCV, V). 

These spaces EndG(V) C End(V) are in fact now algebras, under composition 
of operators. Choosing bases we have that EndcCV) is the set of all matrices which 
conmiute with all the matrices coming from the group G. 

Consider now the set of invertible elements of EndcCV), i.e., the group H of all 
linear operators which commute with G. 

By the remarks of §3.3, H preserves the degrees of the polynomials and maps 
the algebra of G-invariant functions into itself. Thus we have: 

^ E.g., quadratics, cubics, quartics, quintics, etc., ̂  = 2, 3, 4, 5, 
^ We are restricting to N gradings. The notion is more general: any monoid could be used as 

a set of indices for the grading. In this book we will use only N and Z/(2) in Chapter 5. 
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Remark. H induces a group of automorphisms of the graded algebra P[V]^. 

We view this remark as a generalization of Theorem 3.4 since the group of scalar 
multiplications commutes (by definition of linear transformation) with all linear op
erators. Moreover it is easy to prove: 

Exercise. Given a graded vector space U = ®^o^^' ^^fi^^ ^^ action Q of the 
multiplicative group F* of F setting Q{a){v) := a^i; if f e Uk- Prove that a subspace 
is stable under this action if and only if it is a graded subspace (F is assumed to be 
infinite). 




