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General Methods and Ideas

Summary. In this chapter we will develop the formal language and some general methods
and theorems. To some extent the reader is advised not to read it too systematically since most
of the interesting examples will appear only in the next chapters. The exposition here is quite
far from the classical point of view since we are forced to establish the language in a rather
thin general setting. Hopefully this will be repaid in the chapters in which we will treat the
interesting results of Invariant Theory.

1 Groups and Their Actions

1.1 Symmetric Group

In our treatment groups will always appear as transformation groups, the main point
being that, given a set X, the set of all bijective mappings of X into X is a group
under composition. We will denote this group S(X) and call it the symmetric group
of X.

In practice, the full symmetric group is used only for X a finite set. In this case it
is usually more convenient to identify X with the discrete interval {1, ..., n} formed
by the first »n integers (for a given value of n). The corresponding symmetric group
has n! elements and it is denoted by S,,. Its elements are called permutations.

In general, the groups which appear are subgroups of the full symmetric group,
defined by special properties of the set X arising from some extra structure (such as
from a topology or the structure of a linear space, etc.). The groups of interest to us
will usually be symmetry groups of the structure under consideration. To illustrate
this concept we start with a definition:

Definition. A partition of a set X is a family of nonempty disjoint subsets A; such
that X = UiAi.
A partition of a number #n is a (non-increasing) sequence of positive numbers:

k
m; >my > - > my > 0 with E mj = n.
J=1
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Remark. To a partition of the set [1, 2,..., n] we can associate the partition of n
given by the cardinalities of the sets A;.

We will usually denote a partition by a greek letter A :=m; > my > --- > my
and write A F n to mean that it is a partition of n.

We represent graphically such a partition by a Young diagram. The numbers m;
appear then as the lengths of the rows (cf. Chapter 9, 2.1), e.g., A = (8,5, 5,2):
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Sometimes it is useful to relax the condition and call a partition of n any sequence
my >my>--->my > 0with Zj.‘:l mj = n. We then call the height of A, denoted
by At(1), the number of nonzero elements in the sequence m;, i.e., the number or
rows of the diagram.

We can also consider the columns of the diagram which will be thought of as
rows of the dual partition. The dual partition of A will be denoted by X. For instance,
for A = (8,5,5,2) wehave A = (4,4,3,3,3,1,1, 1).

If X = UA; is a partition, the set

G = {o € S,|lo(A;) = A;, Vi},

is a subgroup of S(X), isomorphic to the product [] S(A;) of the symmetric groups
on the sets A;. There is also another group associated to the partition, the group of
permutations which preserves the partition without necessarily preserving the indi-
vidual subsets (but possibly permuting them).

1.2 Group Actions

It is useful at this stage to proceed in a formal way.

Definition 1. An action of a group G on a set X isamapping 7w : G x X — X,
denoted by gx := m(g, x), satisfying the following conditions:

(1.2.1) Ix =x, hkx) = (hk)x
forallh,k e Gand x € X.
The reader will note that the above definition can be reformulated as follows:

(i) The map g(k) := x — hx from X to X is bijective forall h € G.
(i) The map ¢ : G — S(X) is a group homomorphism.
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In our theory we will usually fix our attention on a given group G and consider
different actions of the group. It is then convenient to refer to a given action on a set
X as a G-set.

Examples.

(a) The action of G by left multiplication on itself.
(b) For a given subgroup H of G, the action of G on the set G/H = {gH|g € G}
of left cosets is given by

(1.2.2) a(bH) :=abH.

(c) The action of G x G on G given by left and right translations: (a, b)c := ach™.
(d) The action of G by conjugation on itself.
(e) The action of a subgroup of G induced by restricting an action of G.

It is immediately useful to use categorical language:

Definition 2. Given two G-sets X, Y, a G-equivariant mapping, or more simply a
morphism,isamap f : X — Y such that for all g € G and x € X we have

flgx) =gf(x).

In this case we also say that f intertwines the two actions. Of course if f is
bijective we speak of an isomorphism of the two actions. If X = Y the isomorphisms
of the G-action X also form a group called the symmetries of the action.

The class of G-sets and equivariant maps is clearly a category.!

Remark. This is particularly important when G is the homotopy group of a space X
and the G-sets correspond to covering spaces of X.

Example. The equivariant maps of the action of G on itself by left multiplication are
the right multiplications. They form a group isomorphic to the opposite of G (but
also to G). Note: We recall that the opposite of a multiplication (a, b) +— ab is the
operation (a, b) > ba. One can define opposite group or opposite ring by taking the
opposite of multiplication.

More generally:

Proposition. The invertible equivariant maps of the action of G on G/ H by left mul-
tiplication are induced by the right multiplications with elements of the normalizer
Ng(H) :={g € G|gHg™ ! = H} of H (cf. 2.2). They form a group T isomorphic
to Ng(H)/H.

! Our use of categories will be extremely limited to just a few basic functors and universal
properties.
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Proof. Let o : G/H — G/H be such a map. Hence, for all a,b € G, we have
o(abH) = aoc(bH). In particular if o (H) = u H we must have that

o(H)=uH =o(hH) = huH, Vh € H, = Hu C uH.

If we assume o to be invertible, we see that also Hu™' C u~'H, hence uH = Hu
and u € Ng(H). Conversely, if u € Ng(H),the mapo(u) : aH — auH = aHu
is well defined and an element of T". The map u — o («™!) is clearly a surjective
homomorphism from Ng(H) to I" with kernel H. O

Exercise. Describe the set of equivariant maps G/H — G/K for 2 subgroups.

2 Orbits, Invariants and Equivariant Maps
2.1 Orbits

The first important notion in this setting is given by the following:
Consider the binary relation R in X given by xRy if and only if there exists
g€ Gwithgx =y.

Propesition. R is an equivalence relation.

Definition. The equivalence classes under the previous equivalence are called G-
orbits (or simply orbits). The orbit of a given element x is formed by the elements
gx with g € G and is denoted by Gx. The mapping G — Gx given by g +— gx is
called the orbit map.

The orbit map is equivariant (with respect to the left action of G). The set X is
partitioned into its orbits, and the set of all orbits {quotient set) is denoted by X/G.

In particular, we say that the action of G is transitive or that X is a homogeneous
space if there is a unique orbit.

More generally, we say that a subset Y of X is G stable if it is a union of orbits.
In this case, the action of G on X induces naturally an action of G on Y. Of course,
the complement C(Y) of Y in X is also G stable, and X is decomposed as ¥ U C(Y)
into two stable subsets.

The finest decomposition into stable subsets is the decomposition into orbits.

Basic examples.

i. Let o € S, be a permutation and A the cyclic group which it generates. Then
the orbits of A on the set {1, ..., n} are the cycles of the permutation.

ii. Let G be a group and let H, K be subgroups. We have the action of H x K
on G induced by the left and right action. The orbits are the double cosets. In
particular, if either H or K is 1, we have left or right cosets.

iii. Consider G/H, the set of left cosets g H, with the action of G given by 1.2.2.
Given a subgroup K of G, it still acts on G/H. The K orbits in G/H are in
bijective correspondence with the double cosets KgH.
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iv. Consider the action of G on itself by conjugation (g, h) — ghg~!. Its orbits are
the conjugacy classes.

v. An action of the additive group R of real numbers on a set X is called a 1-
parameter group of transformations, or in more physical language, a reversible
dynamical system.

In example (v) the parameter ¢ is thought of as time, and an orbit is seen as the
time evolution of a physical state. The hypotheses of the group action mean that
the evolution is reversible (i.e., all the group transformations are invertible), and the
forces do not vary with time so that the evolution of a state depends only on the time
lapse (group homomorphism property).

The previous examples also suggest the following general fact:

Remark. Let G be a group and K a normal subgroup in G. If we have an action of G
on a set X, we see that G acts also on the set of K orbits X/K, since gKx = Kgx.
Moreover, we have (X/K)/G = X/G.

2.2 Stabilizer

The study of group actions should start with the elementary analysis of a single orbit.
The next main concept is that of stabilizer:

Definition. Given a point x € X we set G, := {g € G|gx = x}. G, is called the
stabilizer (or little group) of x.

Remark. The term little group is used mostly in the physics literature.

Proposition. G, is a subgroup, and the action of G on the orbit Gx is isomorphic
to the action on the coset space G/ G,.

Proof. The fact that G, is a subgroup is clear. Given two elements 4, k € G we have
that Ax = kx ifand only if k"'hx = x or k™ 'h € G,.

The mapping between G/ G, and Gx which assigns to a coset hG, the element
hx is thus well defined and bijective. It is also clearly G-equivariant, and so the claim
follows. ]

Example. For the action of G x G on G by left and right translations (Example (c)
of 1.2), G is a single orbit and the stabilizer of 1 is the subgroup A := {(g, g)|g € G}
isomorphic to G embedded in G x G diagonally.

Example. In the case of a 1-parameter subgroup acting continuously on a topological
space, the stabilizer is a closed subgroup of R. If it is not the full group, it is the set
of integral multiples ma, m € Z of a positive number a. The number «a is to be
considered as the first time in which the orbit returns to the starting point. This is the
case of a periodic orbit.
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Remark. Given two different elements in the same orbit, their stabilizers are conju-
gate. In fact, G, = hG,h~ . In particular when we identify an orbit with a coset
space G/ H this implicitly means that we have made the choice of a point for which
the stabilizer is H.

Remark. The orbit cycle decomposition of a permutation 7 can be interpreted in
the previous language. Giving a permutation 7 on a set S is equivalent to giving an
action of the group of integers Z on S.

Thus S is canonically decomposed into orbits. On each orbit the permutation
induces, by definition, a cycle.

To study a single orbit, we need only remark that a finite orbit under Z is equiva-
lent to the action of Z on some Z/(n), n > 0. On Z/(n) the generator 1 acts as the
cyclex —» x + 1.

Fixed point principle. Given two subgroups H, K of G we have that H is conju-
gate to a subgroup of K if and only if the action of H on G /K has a fixed point.

Proof. This is essentially tautological, H C gKg~! is equivalent to saying that gK

is a fixed point under H. O

Consider the set of all subgroups of a group G, with G acting on this set by
conjugation. The orbits of this action are the conjugacy classes of subgroups. Let us
denote by [ H] the conjugacy class of a subgroup H.

The stabilizer of a subgroup H under this action is called its normalizer. It should
not be confused with the centralizer which, for a given subset A of G, is the stabilizer
under conjugation of all of the elements of A.

Given a group G and an action on X, it is useful to introduce the notion of orbit
type.

Observe that for an orbit in X, the conjugacy class of the stabilizers of its ele-
ments is well defined. We say that two orbits are of the same orbit type if the asso-
ciated stabilizer class is the same. This is equivalent to saying that the two orbits are
isomorphic as G-spaces. It is often useful to partition the orbits according to their
orbit types.

Exercise. Determine the points in G/H with stabilizer H.

Exercise. Show that the group of symmetries of a G action permutes transitively
orbits of the same type.

Suppose that G and X are finite and assume that we have in X, n; orbits of type
[H;]. Then we have, from the partition into orbits, the formula

Xl _ 5~
Gl ~ &= H,|’
where we denote by |A| the cardinality of a finite set A.

The next exercise is a challenge to the reader who is already familiar with these
notions.
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Exercise. Let G be a group with p™rn elements, p a prime number not dividing n.
Deduce the theorems of Sylow by considering the action of G by left multiplication
on the set of all subsets of G with p™ elements ([Wie]).

Exercise. Given two subgroups H, K of G, describe the orbits of H actingon G/K.
In particular, give a criterion for G/K to be a single H-orbit. Discuss the special case
[G:H]=2.

2.3 Invariants

From the elements of X, we may single out those for which the stabilizer is the full
group G. These are the fixed points of the action or invariant points, i.e., the points
whose orbit consists of the point alone.

These points will usuaily be denoted by X¢.

XY := {fixed points or invariant points}.

We have thus introduced in a very general sense the notion of invariant. Its full
meaning for the moment is completely obscure; we must first proceed with the formal
theory.

2.4 Basic Constructions

One of the main features of set theory is the fact that it allows us to perform con-
structions. Out of given sets we construct new ones. This is also the case of G-sets.
Let us point out at least two constructions:

(1) Given two G-sets X, Y, we give the structure of a G-set to their disjoint sum
X UY by acting separately on the two sets and to their product X x Y by

24.1) g(x,y) :==(gx,8y),
(i.e., once the group acts on the elements it acts also on the pairs.)

(2) Consider now the set Y* of all maps from X to Y. We can act with G (verify
this) by setting

(2.4.2) (8f)(x) == gf (g7 'x).

Notice that in the second definition we have used the action of G twice. The
particular formula given is justified by the fact that it is really the only way to get a
group action using the two actions.

Formula 2.4.2 reflects a general fact well known in category theory: maps be-
tween two objects X, Y are a covariant functor in Y and a contravariant functor in X.

We want to immediately make explicit a rather important consequence of our
formalism:



8 1 General Methods and Ideas

Propeosition. A map f : X — Y between two G-sets is equivariant (cf. 1.2} if and
only if it is a fixed point under the G-action on the maps.

Proof. This statement is really a tautology, but nevertheless it deserves to be clearly
understood. The proof is trivial following the definitions. Equivariance means that
f(gx) = gf (x). If we substitute x with g~'x, this reads f(x) = gf(g~'x), which,
in functional language means that the function f equals the function gf, i.e., it is
invariant. O

Exercises.

(1) Show that the orbits of G acting on G/H x G/K are in canonical 1-1 correspon-
dence with the double cosets HgK of G.
(i1) Given a G equivariant map 7 : X — G/H show that:
(a) w~1(H) is stable under the action of H.
(b) The set of G orbits of X is in 1-1 correspondence with the H-orbits of
7 I(H).
(c) Study the case in which X = G/K is also homogeneous.

2.5 Permutation Representations

We will often consider a special case of the previous section, the case of the trivial
action of G on Y. In this case of course the action of G on the functions is simply

2.5.1) 5f(x) = (gf)(x) = f(g~'x).

Often we write ¢ f instead of g f for the function f(g~'x). A mapping is equivariant
if and only if it is constant on the orbits. In this case we will always speak of an
invariant function. In view of the particular role of this idea in our treatment, we
repeat the formal definition.

Definition 1. A function f on a G-set X is called invariant if f (g‘lx) = f(x) for
alx e Xandg € G.

As we have just remarked, a function is invariant if and only if it is constant on
the orbits. Formally we may thus say that the quotient mapping 7 := X — X/G is
an invariant map and any other invariant function factors as

X 7 > Y
X/G

We want to make explicit the previous remark in a case of importance.

Let X be a finite G-set. Consider a field F (a ring would suffice) and the set FX
of functions on X with values in F.

An element x € X can be identified with the characteristic function of {x}. In
this way X becomes a basis of FX as a vector space.
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The induced group action of G on FX is by linear transformations which permute
the basis elements.

FX is called a permutation representation, and we will see its role in the next
sections. Since a function is invariant if and only if it is constant on orbits we deduce:

Proposition. The invariants of G on FX form the subspace of FX having as a basis
the characteristic functions of the orbits.

In other words given an orbit O consider up =) . x. The elements u o form
a basis of (FX)G.

We finish this section with two examples which will be useful in the theory of
symmetric functions.

Consider the set {1, 2, ..., n} with its canonical action of the symmetric group S,,.
The maps from {1, 2, ..., n} to the field R of real numbers form the standard vector
space R". The symmetric group acts by permuting the coordinates, and in every orbit
there is a unique vector (ay, a2, ..., a,) witha; > a, > --- > a,.

The set of these vectors can thus be identified with the orbit space. It is a convex
cone with boundary, comprising the elements in which at least two coordinates are
equal.

Exercise. Discuss the orbit types of the previous example.

Definition 2. A function M : {1,2,...,n} — N (to the natural numbers) is called
a monomial. The set of monomials is a semigroup by the addition of values, and we
indicate by x; the monomial which is the characteristic function of {i}.

As we have already seen, the symmetric group acts on these functions by
(0f)(k) := f(o~!(k)), and the action is compatible with the addition. Moreover
0 (Xi) = Xo(i)-

Remark. 1t is customary to write the semigroup law of monomials multiplicatively.
Given a monomial M such that M (i) = h;, wehave M = xi”xgz ‘e xfl'". The number
>~ hi is the degree of the monomial.

Representing a monomial M as a vector (h, A, ..., h,), we see that every
monomial of degree d is equivalent, under the symmetric group, to a unique vec-
tor in which the coordinates are non-increasing. The nonzero coordinates of such a
vector thus form a partition A(M) + d, with at most n parts, of the degree of the
monomial.

The permutation representation associated to the monomials with coefficients in
a commutative ring F is the polynomial ring F[x;, ..., x,] in the given variables.

The invariant elements are called symmetric polynomials.

From what we have proved, a basis of these symmetric polynomials is given by

the sums
m) = Z M
A(M)=

of monomials with exponents the integers #; of the partition A. m, is called a mono-
mial symmetric function.
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Exercise. To a monomial M we can also associate a partition of the set {1, 2, ..., n}
by the equivalence i = j iff M (i) = M(j). Show that the stabilizer of M is the
group of permutations which preserve the sets of the partition (cf. 1.1). If F is a field
of characteristic 0, given M with A(M) = A = {hy, ha, ..., h,}, we have

1

oS,

2.6 Invariant Functions

It is time to develop some other examples. First, consider the set {I,...,n} and a
ring A (in most applications A will be the integers or the real or complex numbers).

A function f from {1, ..., n} to A may be thought of as a vector, and displayed,
for instance, as a row with the notation (ay, a», ..., a,) where a; := f(i). The set
of all functions is thus denoted by A”. The symmetric group acts on such functions
according to the general formula 2.5.1:

U(a17 az, ..., an) = (ao’llv As-125 0+ aa*‘n)~

In this simple example, we already see that the group action is linear. We will refer
to this action as the standard permutation action.

We remark that if ¢; denotes the canonical basis vector with coordinates 0 except
1 in the i"" position, we have o(e;) = e, ;- This formula allows us to describe the
matrix of o in the given basis: it is the matrix §,-1(;) ;. These matrices are called
permutation matrices.

If we consider a G-set X and a ring A, the set of functions on X with values in
A also forms a ring under pointwise sum and multiplication, and we have:

Remark. The group G acts on the functions with values in A as a group of ring
automorphisms.

In this particular example it is important to proceed further. Once we have the
action of S, on A" we may continue and act on the functions on A”! In fact let us
consider the coordinate functions: x; : (a, a», ...,a,) — a;. It is clear from the
general formulas that the symmetric group permutes the coordinate functions and
o (x;) = Xs(;y- The reader may note the fact that the inverse has now disappeared.

If we have a ring R and an action of a group G on R as ring automorphisms it is
clear that:

Proposition. The invariant elements form a subring of R.

Thus we can speak of the ring of invariants R°.
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2.7 Commuting Actions

We need another generality. Suppose that we have two group actions on the same set
X, i.e., assume that we have two groups G and H acting on the same set X.

We say that the two actions commute if gh(x) = hg(x) forallx € X, g € G and
heH.

This means that every element of G gives rise to an H equivariant map (or we
can reverse the roles of G and H). It also means that we really have an action of the
product group G x H on X given by (g, h)x = ghx.

In this case, we easily see that if a function f is G-invariant and 7 € H, then hf
is also G-invariant. Hence H acts on the set of G-invariant functions.

More generally, suppose that we are given a G action on X and a normal sub-
group K of G. It is easily seen that the quotient group G/K acts on the set of K-
invariant functions and a function is G-invariant if and only if it is K and G/K-
invariant.

Example. The right and left actions of G on itself commute (Example 1.2¢).

3 Linear Actions, Groups of Automorphisms, Commuting
Groups

3.1 Linear Actions

In §2.5, given an action of a group G on a set X and a field F, we deduced an
action over the set F¥ of functions from X to F, which is linear, i.c., given by linear
operators.

In general, the groups G and the sets X on which they act may have further
structures, as in the case of a topological, or differentiable, or algebraic action. In
these cases it will be important to restrict the set of functions to the ones compatible
with the structure under consideration. We will do it systematically.

If X is finite, the vector space of functions on X with values in F has, as a
possible basis, the characteristic functions of the elements. It is convenient to identify
an element x with its characteristic function and thus say that our vector space has X
as a basis (cf. §2.5).

A function f is thus written as Y _, f(x)x. The linear action of G on F*
induces on this basis the action from which we started. We call such an action a
permutation representation.

In the algebraic theory we may in any case consider the set of all functions which
are finite sums of the characteristic functions of points, i.e., the functions which are
0 outside a finite set.

These are usually called functions with finite support. We will often denote these
functions by the symbol F[X], which is supposed to remind us that its elements are
linear combinations of elements of X.
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In particular, for the left action of G on itself we have the algebraic regular
representation of G on F[G]. We shall see that this representation is particularly
important.

Let us stress a feature of this representation.

We have two actions of G on G, the left and the right action, which com-
mute with each other. In other words we have an action of G x G on G, given
by (h, k)g = hgk™! (for which G = G x G/A where A = G embedded diagonally;
cf. 1.2c and 2.2).

Thus we have the corresponding two actions on F[G]by (&, k) f(g) = fh~'gk)
and we may view the right action as symmetries of the left action and conversely.
Sometimes it is convenient to write " f* = (h, k) f to stress the left and right actions.

After these basic examples we give a general definition:

Definition 1. Given a vector space V over a field F (or more generally a module), we
say that an action of a group G on V is linear if every element of G induces a linear
transformation on V. A linear action of a group is also called a linear representation;*
a vector space V that has a G-action is called a G-module.

In different language, let us consider the set of all linear invertible transforma-
tions of V. This is a group under composition (i.e., it is a subgroup of the group of all
invertible transformations) and will be called the general linear group of V, denoted
by the symbol GL(V).

If we take V = F" (or equivalently, if V is finite dimensional and we identify
V with F”" by choosing a basis), we can identify GL(V) with the group of n x n
invertible matrices with coefficients in F, denoted by GL(n, F).

According to our general principles, a linear action is thus a homomorphism o
from G to GL(V) (or to GL(n, F)).

When we are dealing with linear representations we usually also consider equiv-
ariant linear maps between them, thus obtaining a category and a notion of isomor-
phism.

Exercise. Two linear representations p|, p; : G — GL(n, F) are isomorphic if and
only if there is an invertible matrix X € GL(n, F) such that Xp,(g)X~' = pa(g)
forallg € G.

Before we proceed any further, we should remark on an important feature of the
theory.

Given two linear representations U, V, we can form their direct sum U @ V,
which is a representation by setting g(u, v) = (gu, gv). f X = AU B is a G-set,
where A and B are two disjoint G stable subsets, we clearly have FAY8 = FA@ F5.
Thus the decomposition into a direct sum is a generalization of the decomposition of
a space into G-stable sets.

If X is an orbit it cannot be further decomposed as a set, while FX might be
decomposable. The simplest example is G = {1, t = (12)} the group with two
elements of permutations of [1, 2]. The space F X decomposes (charF # 2), setting

2 Sometimes we drop the term linear and just speak of a representation.
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el t+e e —e
= Uy = y

2 7 27

up :

we have tuy = uy, t(uy) = —us.
We have implicitly used the following ideas:

Definition 2.

(i) Given a linear representation V, a subspace U of V is a subrepresentation if it
is stable under G.
(i) V is a decomposable representation if we can find a decomposition V. = U, & U,
with the U; proper subrepresentations. Otherwise it is called indecomposable.
(iii) V is an irreducible representation if the only subrepresentations of V are V
and 0.

We will study in detail some of the deep connections between these notions.
We will stress in a moment the analogy with the abstract theory of modules over
aring A. First we consider two basic examples:

Example. Let A be the group of all invertible n x n matrices over a field F.
Consider B* and B, the subgroups of all upper (resp., lower) triangular invert-
ible matrices. Here “upper triangular” means “with 0 below the diagonal.”

Exercise. The vector space F” is irreducible as an A module, indecomposable but
not irreducible as a BT or B~ module.

Definition 3. Given two linear representations U, V of a group G, the space of G-
equivariant linear maps is denoted by homg (U, V') and called the space of intertwin-
ing operators.

In this book we will almost always treat finite-dimensional representations. Thus,
unless specified otherwise, our vector spaces will always be assumed to be finite
dimensional.

3.2 The Group Algebra

It is quite useful to rephrase the theory of linear representations in a different way.
Consider the space F[G]:

Theorem.

(i) The group multiplication extends to a bilinear product on F[G] under which
F[G] is an associative algebra with 1 called the group algebra.
(ii) Linear representations of G are the same as F[G]-modules.

Proof. The first part is immediate. As for the second, given a linear representation
of G we have the module action (Y . @,8)v = 3, @ (gv). The converse is
clear. O
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It is useful to view the product of elements a, b € F[G] as a convolution of
Sfunctions:

@)@ = Y albtk)=Y ambh'g) =Y a@hbh™").

hkeG | hk=g heG heG

Remark. Convolution can also be defined for special classes of functions on infinite
groups which do not have finite support. One such extension comes from functional
analysis and it applies to L'-functions on locally compact groups endowed with a
Haar measure (Chapter 8). Another extension comes in the theory of reductive alge-
braic groups (cf. Chapter 7).

Remark. (1) Consider the left and right action on the functions F[G].

Let h,k, g € G and identify g with the characteristic function of the set {g}.
Then #g* = hgk~! (as functions).

The space F[G] as a G x G module is the permutation representation associated
to G = G x G/A with its G x G action (cf. 2.2 and 3.1). Thus a space of functions
on G is stable under left (resp. right) action if and only if it is a left (resp. right) ideal
of the group algebra F[G].

(2) Notice that the direct sum of representations is the same as the direct sum as
modules. Also a G-linear map between two representations is the same as a module
homomorphism.

Example. Let us consider a finite group G, a subgroup K and the linear space
F[G/K], which as we have seen is a permutation representation.
We can identify the functions on G/K with the functions

(3.2.1) FIGI¥ = {a € F[Gllah = a, Vh € K}

on G which are invariant under the right action of K. In this way the element
gK € G/K is identified with the characteristic function of the coset gK, and
F[G/K] is identified with the left ideal of the group algebra F[G] having as ba-
sis the characteristic functions x,x of the left cosets of K.

If we denote by u := yx the characteristic function of the subgroup K, we see
that x,x = gu and that u generates this module over F[G].

Given two subgroups H, K and the linear spaces F[G/H], F[G/K] C F[G],
we want to determine their intertwiners. We assume char F = 0.

For an intertwiner f, and u := yxy as before, let f(u) =a € F[G/K]. We have
hu = u, Yh € H and so, since f is an intertwiner, a = f(u) = f(hu) = ha.
Thus we must have that a is also left invariant under H. Conversely, given such an
a, the map b — Ib7a| is an intertwiner mapping u to a. Since u generates F[G/H] as
a module we see that:

Proposition. The space homg(F[G/H], F[G/K]) of intertwiners can be identified
with the (left) H-invariants of F[G/K], or with the H-K invariants "F[G1X of
F[G]. It has as basis the characteristic functions of the double cosets HgK.
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In particular, for H = K we have that the functions which are biinvariants under
H form under convolution the endomorphism algebra of F[G/H]. Since we identify
F[G/H] with a subspace of F[G], the claim is that multiplication on the left by a
function that is biinvariant under H maps F[G/H] into itself and identifies this space
of functions with the full algebra of endomorphisms of F[G/H].

These functions have as basis the characteristic functions of the double co-
sets HgH; one usually indicates by T, = Ty.u the corresponding operator.
End(F[G/H]) and T, are called the Hecke algebra and Hecke operators, respec-
tively. The multiplication rule between such operators depends on the multiplication
on cosets HgHHkH = UHh; H, and each double coset appearing in this product
appears with a positive integer multiplicity so that T, T, = Y n; Ty, 2

There are similar results when we have three subgroups H, K, L and compose

homg(FIG/H], FIG/K]) x homg(F[G/K], F[G/L))
S homg (F[G/H], F[G/L)).

The notion of permutation representation is a special case of that of induced repre-
sentation. If M is a representation of a subgroup H of a group G we consider the
space of functions f : G — M with the constraint:

(3.2.2) Ind$ M :={f:G — M|f(gh™") = hf(g), Vhc H, g € G}.

On this space of functions we define a G-action by (gf)(x) := f(g " 'x). It is easy
to see that this is a well-defined action. Moreover, we can identify m € M with the
function f,, such that f,,(x) = 0if x ¢ H and f,(h) = h-'mif h € H. Now
M C Ind§; M.

Exercise. Verify that by choosing a set of representatives of the cosets G/H, we
have the vector space decomposition

(3.2.3) Ind§ M = Qg gM.

3.3 Actions on Polynomials

Let V be a G-module. Given a linear function f € V* on V, by definition the
function gf is given by (gf)(v) = f(g~'v) and hence it is again a linear function.
Thus G acts dually on the space V* of linear functions. It is clear that this is a
linear action, which is called the contragredient action.
In matrix notation, using dual bases, the contragredient action of an operator T
is given by the inverse transpose of the matrix of 7.

3 It is important in fact to use these concepts in a much more general way as done by Hecke
in the theory of modular forms. Hecke studies the action of S/(2, Z) on M>(Q) the 2 x 2
rational matrices. In this case one has also double cosets, a product structure on M»(Q) and
the fact that a double coset is a finite union of right or left cosets. These properties suffice
to develop the Hecke algebra. In this case this algebra acts on a different space of functions,
the modular forms (cf. [Ogg]).
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We will use the notation {g|v) for the value of a linear form on a vector, and thus
we have (by definition) the identity

(3.3.1) (gplv) = (plg™'v).

Alternatively, it may be convenient to define on V* a right action by the more sym-
metric formula

(332 {pglv) = (plgv).

Exercise. Prove that the dual of a permutation representation is isomorphic to the
same permutation representation. In particular, one can apply this to the dual of the
group algebra.

In the set of all functions on a finite-dimensional vector space V, the polynomial
functions play a special role. By definition a polynomial function is an element of the
subalgebra (of the algebra of all functions with values in F) generated by the linear
functions.

If we choose a basis and consider the coordinate functions xi, x2, ..., X, with
respect to the chosen basis, a polynomial function is a usual polynomial in the x;. If
F is infinite, the expression as a polynomial is unique and we can consider the x; as
given variables.

The ring of polynomial functions on V will be denoted by P[V] and the ring of
formal polynomials by F[x;, x2, ..., X,].

Choosing a basis, we always have a surjective homomorphism Flxi, X2, ..., X,]
— P[V] which is an isomorphism if F is infinite.

Exercise. If F is a finite field with g elements, prove that P{V] has dimension g"
over F, and that the kernel of the map F[x;, x2, ..., x,] = P[V]is the ideal gener-
ated by the elements x; — x;.

Since the linear functions are preserved under a given group action we have:

Proposition. Given a linear action of a group G on a vector space V, G acts on the
polynomial functions P[V] as a group of ring automorphisms by the rule (gf)(v) =
f(g7tv).

Of course, the full linear group acts on the polynomial functions. In the language
of coordinates we may view the action as a linear change of coordinates.

Exercise. Show that we always have a linear action of GL(n, F) on the formal poly-

nomial ring Fxy, x,, ..., x,].

3.4 Invariant Polynomials

We assume the base field to be infinite for simplicity although the reader can see
easily what happens for finite fields. One trivial but important remark is that the
group action on P[V] preserves the degree.
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Recall that a function f on V is homogeneous of degree k if f(av) = ok f(v)
for all @ and v.

The set P;[V] of homogeneous polynomials of degree ¢ is a subspace, called
in classical language the space of guantics. If dim(V) = n, one speaks of n-ary
quantics.*

In general, a direct sum of vector spaces U = ea,‘jiOUk is called a graded vector
space. A subspace W of U is called homogeneous, if, setting W; := WNU;, we have
W= @IZO We.

The space of polynomials is thus a graded vector space P[V] = &% P V]
One has immediately (gf)(av) = f(ag~'v) = a*(gf)(v), which has an important
consequence:

Theorem. If a polynomial f is an invariant (under some linear group action), then
its homogeneous components are also invariant.

Proof. Let f = Y f; be the decomposition of f into homogeneous components,
gf = Y gf; is the decomposition into homogeneous components of gf. If f is in-
variant f = gf, then f; = gf; for each i since the decomposition into homogeneous
components is unique. ]

In order to summarize the analysis done up to now, let us also recall that an
algebra A is called a graded algebra if it is a graded vector space, A = ®;2,Ar and
if for all &, k we have A, Ay C Api.>

Proposition. The spaces P,[V] are subrepresentations. The set P[V1° of invariant
polynomials is a graded subalgebra.

3.5 Commuting Linear Actions

To some extent the previous theorem may be viewed as a special case of the more
general setting of commuting actions.

Given two representations ¢; : G — GL(V;), i = 1,2, consider the linear
transformations between Vi and V; which are G equivariant. It is clear that they
form a linear subspace of the space of all linear maps between V; and V,.

The space of all linear maps will be denoted by hom(V,, V,), while the space
of equivariant maps will be denoted by homg(V, V»). In particular, when the two
spaces coincide we write End( V) or Endg (V) instead of hom(V, V) or homg(V, V).

These spaces Endg (V) C End(V) are in fact now algebras, under composition
of operators. Choosing bases we have that Endg (V) is the set of all matrices which
commute with all the matrices coming from the group G.

Consider now the set of invertible elements of Endg(V), i.e., the group H of all
linear operators which commute with G.

By the remarks of §3.3, H preserves the degrees of the polynomials and maps
the algebra of G-invariant functions into itself. Thus we have:

4 E.g., quadratics, cubics, quartics, quintics, etc., ¢ = 2,3,4,5,....
3 We are restricting to N gradings. The notion is more general: any monoid could be used as
a set of indices for the grading. In this book we will use only N and Z/(2) in Chapter 5.



18 1 General Methods and Ideas

Remark. H induces a group of automorphisms of the graded algebra P[V]°.

We view this remark as a generalization of Theorem 3.4 since the group of scalar
multiplications commutes (by definition of linear transformation) with all linear op-
erators. Moreover it is easy to prove:

Exercise. Given a graded vector space U = @2 U, define an action ¢ of the
multiplicative group F* of F setting o(«)(v) := a*v if v € Uy. Prove that a subspace
is stable under this action if and only if it is a graded subspace (F is assumed to be
infinite).





