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Semisimple Lie Groups and Algebras 

In this chapter, unless expressly stated otherwise, by Lie algebra we mean a complex 
Lie algebra. Since every real Lie algebra can be complexified, most of our results 
also have immediate consequences for real Lie algebras. 
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1 Semisimple Lie Algebras 

1.1 5/(2, C) 

The first and most basic example, which in fact needs to be developed first, is 
5/(2, C). For this one takes the usual basis 

e := 

These elements satisfy the conmiutation relations 

(1.1.1) [̂ , / ] = K [h. e] = 2e, [h, f] = -If. 

From the theory developed in Chapter 9, we know that the symmetric powers S^iV) 
of the 2-dimensional vector space V are the list of rational irreducible representations 
for SL{V). Hence they are irreducible representations of 5-/(2, C). To prove that they 
are also all the irreducible representations of 5/(2, C) we start with 

Lemma. Let M be a representation of si{2, C), v e M a vector such that hv = 
kv, k eC. 

(i) For all i we have that he^ v = {k -\- 2i)e^ v, hf^ v = (k — 2 / ) / ' v. 
(ii) If furthermore ev = Q, then ef^v = i(k — i + l)/'~^i;. 

(Hi) Finally if ev = 0, f^v ^ 0, f^^^v = 0, we have k = m and the elements 
f^v.i = 0 , . . . , m, are a basis of an irreducible representation of si (2, C). 
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Proof, (i) We have lev = (he — eh)v = hev — kev = ^ hev = (k + 2)ev, Hence 
ev is an eigenvector for h of weight k-\-2. Similarly hfv = (k-2)fv. Then the first 
statement follows by induction. 

(ii) From [e, f] = hv/Q see that efv = (k - 2/ + 2)f~^v-\- fef~^v and thus, 
recursively, we check that ef^v = i{k — i -\- \)f^~^v. 

(iii) If we assume f^'^^ f = 0 for some minimal m, then by the previous identity 
we have 0 = ef^^^v = (m + l)(k — m)f^v. This implies m = k and the vectors 
Vi := j^f^vj = 0 , . . . , A:, span a submodule Â  with the explicit action 

(1.1.2) hvi = (k - 2i)Vi, fvi = (i + l)vi+u evi = {k - i -\- \)Vi-i. 

The fact that Â  is irreducible is clear from these formulas. D 

Theorem. The representations S^{V)form the list of irreducible finite-dimensional 
representations of si (2, C). 

Proof Let TV be a finite-dimensional irreducible representation. Since h has at least 
one eigenvector, by the previous lemma, if we choose one i;o with maximal eigen­
value, we have evo = 0. Since Â  is finite dimensional, /'"^^ i; = 0 for some minimal 
m, and we have the module given by formula 1.1.1. Call this representation Vk. No­
tice that V = Vi. We identify Vj, with S'^iV) since, if V has basis x, y, the elements 
{^)x^~^y^ behave as the elements vt under the action of the elements e, f, h. D 

Remark. It is useful to distinguish among the even and odd representations,^^ ac­
cording to the parity of A:. In an even representation all weights for h are even, and 
there is a unique weight vector for h of weight 0. In the odd case, all weights are odd 
and there is a unique weight vector of weight 1. 

It is natural to call a vector v with ^f = 0 a highest weight vector. This idea 
carries over to all semisimple Lie algebras with the appropriate modifications (§5). 

There is one expository difficulty in the theory. We have proved that rational 
representations of SL{2, C) are completely reducible and we have seen that its ir­
reducible representations correspond exactly to the irreducible representations of 
5/(2, C). It is not clear though why representations of the Lie algebra sl{2,C) 
are completely reducible, nor why they correspond to rational representations of 
SL{2, C). There are in fact several ways to prove this which then extend to all 
semisimple Lie algebras and their corresponding groups. 

1. One proves by algebraic means that all finite-dimensional representations of the 
Lie algebra 5*/(2, C) are completely reducible. 

2. One integrates a finite-dimensional representation of 5w(2, C) to SU(2,C). 
Since SU(2, C) is compact, the representation under the group is completely 
reducible. 

3. One integrates a finite-dimensional representation of sl(2, C) to 5L(2, C) and 
then proves that it is rational. 

^̂  In physics it is usual to divide the highest weight by 2 and talk of integral or half-integral 
spin. 
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1.2 Complete Reducibility 

Let us discuss the algebraic approach to complete reducibility.̂ "* First, we remark 
that a representation of a 1-dimensional Lie algebra is just a linear operator. Since 
not all linear operators are semisimple it follows that if a Lie algebra L D [L, L], 
then it has representations which are not completely reducible. 

If L = [L, L] we have that a 1-dimensional representation is necessarily trivial, 
and we denote it by C. 

Theorem 1. For a Lie algebra L = [L,L\ the following properties are equivalent. 

(1) Every finite-dimensional representation is completely reducible. 
(2) If M is a finite-dimensional representation, N C M a submodule with M/N 

I-dimensional, then M = N ^Cas modules. 
(3) If M is a finite-dimensional representation, N C M an irreducible submodule, 

with M/N \-dimensional, then M = N ^C as modules. 

Proof. Clearly (1) =>• (2) = ^ (3). Let us show the converse. 
(3) = ^ (2) by a simple induction on dim Â . Suppose we are in the hypotheses 

of (2) assuming (3). If N is irreducible we can just apply (3). Otherwise N contains 
a nonzero irreducible submodule P and we have the new setting M' := M/P, N' := 
N/P with M'/N' 1-dimensional. Thus, by induction, there is a complement C to 
N' in M'. Consider the submodule Q of M with Q/P = C. By part (3) P has a 
1-dimensional complement in Q and this is also a 1-dimensional complement of N 
in M. 

(2) = > (1) is delicate. We check complete reducibility as in Chapter 6 and show 
that, given a module M and a submodule N, N has a complementary submodule P, 
i.e., M = N e P. 

Consider the space of linear maps hom(M, N). The formula {l(t)){m) := l((j){m)) 
— 0(/m) makes this space a module under L. It is immediately verified that a linear 
map 0 : M ^- A is an L homomorphism if and only if L0 = 0. 

Since A is a submodule, the restriction n : hom(M, N) -^ hom(A, N) is a ho­
momorphism of L-modules. In hom(A, N) we have the trivial 1-dimensional sub-
module CIA^ formed by the multiples of the identity map. Thus take A := TC~^ (CIN) 
and let B := 7t~^(0). Both A, B are L modules and A/B is the trivial module. As­
suming (2) we can thus find an element (p e A.cf) ^ B with L0 = 0. In other words, 
0 : M ^- Â  is an L-homomorphism, which restricted to A, is a nonzero multiple of 
the identity. Its kernel is thus a complement to A which is a submodule. D 

The previous theorem gives us a criterion for complete reducibility which can 
be used for semisimple algebras once we develop enough of the theory, in particu­
lar after we introduce the Casimir element. Let us use it inmiediately to prove that 
all finite-dimensional representations of the Lie algebra si(2, C) are completely re­
ducible. 

84 We work over the complex numbers just for simplicity. 
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Take a finite-dimensional representation M of 5/(2, C) and identify the elements 
e, f,h with the operators they induce on M. We claim that the operator C := ef -\-
h{h — 2)/4= f e -\-h(h -\-2)/A commutes with e, f,h. For instance, 

[C, e] = e[f, e] + [/i, e](h - 2)/4 + h[h, e]/4 

= -eh + e(h - 2)/2 + he/2 = [/i, e]/2 -e = 0. 

Let us show that 5/(2, C) satisfies (3) of the previous theorem. Consider N C 
M, M/N = C with Â  irreducible of highest weight /:. On C the operator C acts 
as 0 and on Â  as a scalar by Schur's lemma. To compute which scalar, we find its 
value on the highest weight vector, getting k(k-\-2)/4. So if/: > 0, we have a nonzero 
scalar. On the other hand, on the trivial module, it acts as 0. If dim Â  > 1, we have 
that C has the two eigenvalues k(k -\- 2)/4 on Â  and 0 necessarily on a complement 
of Â . It remains to understand the case dim Â  = 1. In this case the matrices that 

represent L are a priori 2 x 2 matrices of type L J. The commutators of these 

matrices are all 0. Since 5/(2, C) is spanned by commutators, the representation is 
trivial. From Theorem 1 we have proved: 

Theorem 2, All finite-dimensional representations of si{2, C) are completely re­
ducible. 

Occasionally one has to deal with infinite-dimensional representations of the fol­
lowing type: 

Definition 1. We say that a representation of 5/(2, C) is rational if it is a sum of 
finite-dimensional representations. 

A way to study special infinite-dimensional representations is through the notion: 

Definition 2. We say that an operator 7 : V ^- V is locally nilpotent if, given any 
vector i; € V, we have T^v = 0 for some positive k. 

Proposition. The following properties are equivalent for a representation M of 
5/(2, C).-

(1) M integrates to a rational representation of the group SL(2, C). 
(2) M is a direct sum of finite-dimensional irreducible representations of si (2, C). 
(3) M has a basis of eigenvectors for h and the operators e, f are locally nilpotent. 

Proof. (1) implies (2), since from Chapter 7, §3.2 SL(2, C) is linearly reductive. 
(2) implies (1) and (3) from Theorem 2 of 1.2 and the fact, proved in 1.1 that the 
finite-dimensional irreducible representations of 5/(2, C) integrate to rational repre­
sentations of the group SL{2, C). 

Assume (3). Start from a weight vector v for h. Since e is locally nilpotent, we 
find some nonzero power k for which w = e^v ^ 0 and ew = 0. Since / is lo­
cally nilpotent, we have again, for some m, that f^w ^ 0, f^^^w = 0. Apply 
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Lemma LI to get that w generates a finite-dimensional irreducible representation of 
si(2, C). Now take the sum P of all the finite-dimensional irreducible representa­
tions of sl(2, C) contained in M; we claim that P = M.lf not, by the same dis­
cussion we can find a finite-dimensional irreducible 5/(2, C) module in M/P. Take 
vectors vt e M which, modulo P, verify the equations LL2. Thus the elements 
hvi — (k — 2i)vi, f^i — 0 + l)i^/+i, evi — (k — i -\- l)u/-i lie in P. Clearly, we 
can construct a finite-dimensional subspace V of P stable under si(2, C) containing 
these elements. Therefore, adding to V the vectors vt we have an si{2, C) submodule 
Â . Since N is finite dimensional, it is a sum of irreducibles. So N c P, a contra­
diction, n 

1.3 Semisimple Algebras and Groups 

We are now going to take a very long detour into the general theory of semisimple 
algebras. In particular we want to explain how one classifies irreducible representa­
tions in terms of certain objects called dominant weights. The theory we are referring 
to is part of the theory of representations of complex semisimple Lie algebras and we 
shall give a short survey of its main features and illustrate it for classical groups.^^ 

Semisimple Lie algebras are closely related to linearly reductive algebraic groups 
and compact groups. We have already seen in Chapter 7 the definition of a semi-
simple algebraic group as a reductive group with finite center. For compact groups 
we have a similar definition. 

Definition. A connected compact group is called semisimple if it has a finite center. 

Example. U{n,C) is not semisimple. SUin,C) is semisimple. 
Let L be a complex semisimple Lie algebra. In this chapter we shall explain the 

following facts: 

(a) L is the Lie algebra of a semisimple algebraic group G. 
(b) L is the complexification L = K (S)RC of a real Lie algebra K with negative 

definite Killing form (Chapter 4, §4.4). K is the Lie algebra of a semisimple 
compact group, maximal compact in G. 

(c) L is a direct sum of simple Lie algebras. Simple Lie algebras are completely 
classified. The key to the classification of Killing-Cartan is the theory of roots 
Sind finite reflection groups. 

It is a quite remarkable fact that associated to a continuous group there is a finite 
group of Euclidean reflections and that the theory of the continuous group can be 
largely analyzed in terms of the combinatorics of these reflections. 

^̂  There are many more general results over fields of characterisfic 0 or just over the real 
numbers, but they do not play a specific role in the theory we shall discuss. 
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1.4 Casimir Element and Semisimplicity 

We want to see that the method used to prove the complete reducibility of 5/(2, C) 
works in general for semisimple Lie algebras. 

We first need some simple remarks. 
Let L be a simple Lie algebra. Given any nontrivial representation p : L ^^ 

gl(M) of L we can construct its trace form, (a, b) := iT(p(a)p(b)). It is then imme­
diate to verify that this form is associative in the sense that ([a, b],c) = (a, [b, c]). 
It follows that the kernel of this form is an ideal of L. Hence, unless this form is 
identically 0, it is nondegenerate. 

Remark. The form cannot be identically 0 from Cartan's criterion (Chapter 4, §6.4). 

Lemma. On a simple Lie algebra a nonzero associative form is unique up to scale. 

Proof We use the bilinear form to establish a linear isomorphism j : L -^ L*, 
through the formula 7(fl)(Z?) == (a,b). Wc hscvc j{[x,a])(b) = i[x,a],b]) = 
—{a,[x, b]) = —j{a)([x, b]). Thus j is an isomorphism of L-modules. Since L 
is irreducible as an L-module, the claim follows from Schur's lemma. D 

Remark. In particular, the trace form is a multiple of the Killing form. 

Let L be a semisimple Lie algebra, and consider dual bases w/, M' for the Killing 
form. Since the KilHng form identifies L with L*, by general principles the Killing 
form can be identified with the synmietric tensor Ci := J^i "/ <8) w' = J^i ^^ ^ "'• 
The associativity property of the form translates into invariance of C^. CL is killed 
by the action of the Lie algebra, i.e., 

(1.4.1) Xl̂ t-̂ ' "'] ^ "' ^ "' ^ t-̂ ' "']^ "̂  '̂ ^^ ̂  ^' 
i 

Then by the multiplication map it is best to identify CL with its image in the envelop­
ing algebra U(L). More concretely: 

Theorem 1. 

(1) The element Ci := ^ . M, w' does not depend on the dual bases chosen. 
(2) The element Ci := J2i "/"' commutes with all of the elements of the Lie algebra 

L. 
(3) If the Lie algebra L decomposes as a direct sum L = 0 - L, of simple algebras, 

then we have Ci = ^ - CL.. Each CLi commutes with L. 
(4) If M is an irreducible representation of L each element CLi ^^^^ on M by a 

scalar This scalar is 0 if and only if Li is in the kernel of the representation. 

Proof (l)Let5/ = Ylj^jJ^j^ ^^ = V . ^^^M^ be anotherpair of dual bases. We have 

8j = iSi,sJ) = i^dhjUh^Y^ehju^ I = Y^dhjChj. 
\ h h I h 
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If D is the matrix with entries di^j and E the one with entries etj, we thus have 
E^D = \, which impHes that also ED^ = \. Thus 

i i h k h,k i h 

(2) Denote by {a, b) the Killing form. If [c, M/] = Ylj ajjUj, [c,u^] = Y,i ^tj^^ ̂  
we have 

(1.4.2) ajj = ([c, Uil uJ) = -iui, [c, u^]) = -btj. 

Then [c, C] = ^ [ c , Ui]u' + ^ M / [ C , M'] 
/ / 

= /__] /_^ «;,/";"' + bijUjU^ = 0. 
' • ; • 

(3) The ideals L, are orthogonal under the Killing form, and the Killing form of 
L restricts to the Killing form of L, (Chapter 4, §6.2, Theorem 2). The statement is 
clear, since the L/ commute with each other. 

(4) Since C^. commutes with L and M is irreducible under L, by Schur's lemma, 
CL, must act as a scalar. We have to see that it is 0 if and only if L/ acts by 0. 

If Li does not act as 0, the trace form is nondegenerate and is a multiple of 
the Killing form by a nonzero scalar X. Then tr(p(CL,)) = Xl/ tr(p(M/)/o(M')) = 
X!/^(w/,w') = XdimL # 0 . D 

Definition. The element CL e U(L) is called the Casimir element of the semisimple 
Lie algebra L. 

We can now prove: 

Theorem 2. A finite-dimensional representation of a semisimple Lie algebra L is 
completely reducible. 

Proof. Apply the method of §1.2. Since L = [L, L], the only 1-dimensional repre­
sentations of L are trivial. Let M be a module and N an irreducible submodule with 
M/N 1-dimensional, hence trivial. If Â  is also trivial, the argument given in 1.2 for 
5-/(2, C) shows that M is trivial. Otherwise, let us compute the value on M of one 
of the Casimir elements Ct = CL. which acts on Â  by a nonzero scalar X (by the 
previous theorem). On the quotient M/N the element C, acts by 0. Therefore C, on 
M has eigenvalue X (with eigenspace N) and 0. There is thus a vector v ^ N for 
which CiV =0 such that v spans the 1-dimensional eigenspace of the eigenvalue 0. 
Since Q conmiutes with L, the space generated by v is stable under L, and Lv = 0 
satisfying the conditions of Theorem 1 of 1.2. D 
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1.5 Jordan Decomposition 

In a Lie algebra L an element jc is called semisimple if ad(jc) is a semisimple (i.e., 
diagonalizable) operator. 

As for algebraic groups we may ask if the semisimple part of the operator ad(x) 
is still of the form ad(>') for some y.ioht called the semisimple part of x. Not all Lie 
algebras have this property, as simple examples show. The ones which do are called 
splittable. 

We need a simple lemma. 

Lemma 1. Let A he any finite-dimensional algebra over C, and D a derivation. Then 
the semisimple part Ds of D is also a derivation. 

Proof One can give a direct computational proof (see [Hul]). Since we have devel­
oped some theory of algebraic groups, let us instead follow this path. The group of 
automorphisms of A is an algebraic group, and for these groups we have seen the 
Jordan-Chevalley decomposition. Hence, given an automorphism of A, its semisim­
ple part is also an automorphism. D is a derivation if and only if exp(r D) is a one pa­
rameter group of automorphisms (Chapter 3). We can conclude noticing that if D = 
Ds-\-Dn is the additive Jordan decomposition, then exp(f D) = tx^{tDs) Qxp(tDn) is 
the multiplicative decomposition. We deduce that Qxp(tDs) is a one parameter group 
of automorphisms. Hence Ds is a derivation. D 

Lemma 2. Let L be a Lie algebra, and M the Lie algebra of its derivations. The 
inner derivations ad(L) are an ideal ofM and [D, ad(fl)] = ad(Z)(a)). 

Proof. 

[D, ad(a)](Z?) = D(ad(a)(Z7)) - ad(fl)(D(Z?)) = D[a, b] - [a, D(b)] 

= [D(a), b] + [a, D(b)] - [a, D(b)] = [D{a), b]. 

Thus ad(L) is an ideal in M. D 

Theorem 1. If L is a semisimple Lie algebra and D is a derivation of L, then D is 
inner 

Proof. Let M be the Lie algebra of derivations of L. It contains the inner derivations 
ad(L) as an ideal. Since L is semisimple we have a direct sum decomposition M = 
ad(L) 0 P as L modules. Since ad(L) is an ideal, [P, ad(L)] C ad(L). Since P is an 
L module, [P, ad(L)] c P. Hence [P, ad(L)] = 0. From the formula [D, ad(a)] = 
ad(D((2)), it follows that if Z) € P, we have ad(D(a)) = 0. Since the center of L is 
0, P = O a n d M = ad(L). D 

Corollary. If L is a semisimple Lie algebra, a e L, there exist unique elements 
as.an e L such that 

(1.5.1) a = as-\- an, [as, an] = 0, ad(fif,) = ad(a)s, ad(a„) = ad(fl)„. 
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Proof. By Lemma 1, the semisimple and nilpotent parts of ad(<2) are derivations. By 
the previous theorem they are inner, hence induced by elements Us.an. Since the map 
ad : L ^- ad(L) is an isomorphism the claim follows. D 

Finally we want to see that the Jordan decomposition is preserved under any 
representation. 

Theorem 2,Ifp is any linear representation of a semisimple Lie algebra and a e L, 
we have p(as) = p(a)s, pia^) = p(fl)„. 

Proof The simplest example is when we take the Lie algebra sl(V) acting on V. 
In this case we can apply the Lemma of §6.2 of Chapter 4. This lemma shows that 
the usual Jordan decomposition a = as -\- an for a linear operator a e sliV) on V 
induces, under the map a \-^ ad(fl), a Jordan decomposition ad (a) = ad(fl5)-f-ad(a„). 

In general it is clear that we can restrict our analysis to simple L, V an irreducible 
module and L c End(y). Let M := {x e End(V) | [jc, L] C L}. As before M is a 
Lie algebra and L an ideal of M. Decomposing M = L ® P with P an L-module, 
we must have [L, P] = 0. Since the module is irreducible, by Schur's lemma we 
must have that P reduces to the scalars. Since L = [L, L], the elements of L have 
all trace 0, hence L = {u £ M \ tr(w) = 0}. Take an element x e L and decompose it 
in End(y) as x = ys -{- yn the semisimple and nilpotent part. By the Lemma of §6.2, 
Chapter 4 previously recalled, ad(x) = ad(yj + ad(y„) is the Jordan decomposition 
of operators acting on End(y). Since ad(x) preserves L, also adCy^), ad(j„) preserve 
L, hence we must have ys,yn ^ M. Since tr(y„) = 0 we have yn e L, hence also 
ys G L. By the uniqueness of the Jordan decomposition Xs = ys.Xn = yn- • 

There is an immediate connection to algebraic groups. 

Theorem 3.IfL is a semisimple Lie algebra, its adjoint group is the connected com­
ponent of 1 of its automorphism group. It is an algebraic group with Lie algebra L. 

Proof. The automorphism group is clearly algebraic. Its connected component of 1 
is generated by the 1-parameter groups exp(rD) where D is a derivation. Since all 
derivations are inner, it follows that its Lie algebra is ad(L). Since L is semisimple, 
L = ad(L). D 

1.6 Levi Decomposition 

Let us first make a general construction. Given a Lie algebra L, let T>(L) be its Lie 
algebra of derivations. Given a Lie homomorphism p of a Lie algebra M into V(L), 
we can give to M 0 L a new Lie algebra structure by the formula (check it): 

(L6.1) [(mi, fl), (m2, b)] := ([mi, m2], p(mi)(b) - p{m2){a) + [a, b]). 

Definition. M ® L with the previous structure is called a semidirect product and 
denoted M K L. 
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Formula 1.6.1 implies immediately that in M x L we have that M is a subalgebra 
and L an ideal. Furthermore, if m G M, ^ € L we have [m, a] = p{m)(a). 

As an example, take F K L with M = F 1-dimensional. A homomorphism of F 
into D(L) is given by specifying a derivation D of L corresponding to 1, so we shall 
write FD K L to remind us of the action: 

Lemma 1. (/) IfL is solvable, then FD t< L is solvable. 
(ii) If N is a nilpotent Lie algebra and D is a derivation of N, then FD ix N is 

nilpotent if and only if D is nilpotent. 
(Hi) IfL is semisimple, then F t< L = L ^ F. 

Proof (i) The first part is obvious. 
(ii) Assume that D'^N = 0 and Â ' = 0. By formula 4.3.1 of Chapter 4 it is 

enough to prove that a long enough monomial in elements ad(«/), at e F \K N is 0. 
In fact it is enough to show that such an operator is 0 on Â  since then a 1-step longer 
monomial is identically 0. Consider a monomial in the operators D, ad(ny), nj G A'̂ . 
Assume the monomial is of degree > mi. 

Notice that D ad(n/) = ad(D(«,)) + ad(n/)D. We can rewrite the monomial as 
a sum of terms ad(D^i«i) 2id(D^'n2)... 2id(D^'nt)D^'+' with J2[t\ hk + t > mi. If 
t >i — \, this is 0 by the condition Â ' = 0. Otherwise, Xiltl hk > (m - l)i, and 
since r < / at least one of the exponents hk must be bigger than m — 1. So again we 
get 0 from D'" = 0. 

Conversely, if D is not nilpotent, then ad(D) = D on N, hence adCD)"" 7̂  0 for 
all m, so FD t< N is not nilpotent. 

(iii) If L is semisimple, D = ad(fl) is inner, D — a is central and F x L = 
LeF(D-a). D 

We need a criterion for identifying semidirect products.^^ Given L a Lie algebra 
and / a Lie ideal, we have 

Lemma 2. If there is a Lie subalgebra A such that as vector spaces L =^ A ® I, 
then L = A \K I where A acts by derivation on I as restriction to I of the inner 
derivations ad (a). 

The proof is straightforward. 
A trivial example is when L/I is 1-dimensional. Then any choice of an element 

a e L, a ^ I presents L = Fa 0 / as a semidirect product. 
In the general case, the existence of such an A can be treated by the cohomolog-

ical method. 
Let us define A := L/I, p : L -^ L/I the projection. We want to find a 

homomorphism f : A ^^ L with pf = 1A- If such a homomorphism exists it is 
called a splitting. We proceed in two steps. First, choose any linear map f : A -^ L 
with /?/ = 1 A. The condition to be a homomorphism is that the two-variable function 
0/((2, b) := f([a, b]) — [/(a), f{b)], which takes values in / , must be 0. Given such 

86 As in group theory 
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an / , if it does not satisfy the homomorphism property we can correct it by adding 
to it a linear mapping g \ A -^ I. Given such a map, the new condition is that 

0/+,(«, b) := f([a, b]) - [/(«), fm + gila, b]) 

- [8(a), fib)] - [/(«), g(b)] - [gia), gib)] = 0. 

In general this is not so easy to handle, but there is a special important case. When 
/ is abelian, then / is naturally an A module. Denoting this module structure by a.i, 
one has [/(a), gib)] = a.gib) (independently of / ) and the condition becomes: find 
a g with 

f([a, b]) - [/(«), fib)] = a.gib) - b.gia) - g([fl, b]). 

Notice that 0/(fl, b) = —(j)fib, a). Given a Lie algebra A, a skew-symmetric two-
variable function 0(«, ^) from A / \ A to an A module M of the form a.gib) — 
b.gia) — gi[a, b]) is called a 2-coboundary. 

The method consists in stressing a property which the element 

(t>fia,b) := fi[a,b]) -Uia), fib)] 

shares with 2-coboundaries, deduced from the Jacobi identity: 

Lemma 3. 

a.(t)fib, c) - b.(t)fia, c) + c.cp/ia, b) 

(1.6.2) - (l>fi[a, bl c) + 0 / ( b , d b) - (t>fi[b, cl a) = 0. 

Proof From the Jacobi identity 

a.cpfib, c) - b.(j)fia, c) + c.(f)fia, b) 

= [/(«), fiib, c])] - [fib), fila, c])] + [fie), fi[a, b])] 

(l)fi[a, b], c) - (Pfila, c], b) + (t)fi[b, c], a) 

= - [ / ( [ « , b]), fie)] + [fi[a, e]), fib)] - [fi[b, e]), fia)]. • 

A skew-symmetric two-variable function <pia,b) from A / \ A to an A module 
M, satisfying L6.2 is called a 2-eoeyele. Then one has to understand under which 
conditions a 2-cocycle is a 2-coboundary. 

In general this terminology comes from a cochain complex associated to Lie 
algebras. We will not need it but give it for reference. The /:-cochains are the maps 
CHA; M) := hom(A^ A, M), the coboundary 8 : C'^iA; M) -> C^+^A; M) is 
defined by the formula 

(50(^0,..., flit) = ^ ( - l ) ' f l / 0 ( f l i , ...,ai,...,ak) 

+ ^ ( - l ) '+^0( [ f l / , ay], ao,..., at, ...hj,..., ak). 
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By convention the 0-dimensional cochains are identified with M and 8(m)(a) \= 
a.m. 

The complex property means that 5 o 5 = 0 as one can check directly. Then a 
cocycle is a cochain 0 with 50 = 0, while a coboundary is a cochain 50. For all k, 
the space of /:-cocycles modulo the /:-coboundaries is an interesting object called k-
cohomology, denoted H^(A; M). This is part of a wide class of cohomology groups, 
which appear as measures of obstructions of various possible constructions. 

From now on, in this section we assume that the Lie algebras are finite-dimen­
sional over C. In our case we will again use the Casimir element to prove that: 

Proposition. For a semisimple Lie algebra L, every 2-cocycle with values in a non-
trivial irreducible module M is a 2-coboundary. 

Proof. If C is the Casimir element of L, C acts by some nonzero scalar A. on M. We 
compute it in a different way using 1.6.2 (with c = ut): 

Ui.(l){a, b) = a.(t){ui, b) — b.(l)(ui, a) -h 0([WM a], b) 

-0([W/,^],a) +0([fl,Z7],M/) = » 

u\ui.(l){a, b) = [M',a].0(w/, b) -\- a.u\(j){ui, b) — [u\ b].(j){ui, a) — b.u\(p(Ui, a) 

(1.6.3) + u\{(l)([Ui,al b) - 0([M/, Z7], a) - (t>{Ui, [a, b])}. 

Now the identity 1.4.1 implies X!/ ^(U^ " ' ] ' "/) + ^(" ' ' [ '̂ "/]) = 0, Vx G L and 
any bilinear map k{x, y). Apply it to the bilinear maps k{x, y) := x.0(y, b), and 
x.0(>', a) getting 

yj([fl, w'].0(w/, b) + w'.0([(2, M/], b)) 
i 

= J2([b, M'].0(W/, fl) + M'.0([^, Uil a)) = 0. 

Now set h(x) := Y^- u\(t){ui,x). Summing all terms of 1.6.3 one has 

(1.6.4) X0(fl, b) = a.h(b) - b.h(a) - h([a, b]). 

Dividing by X one has the required coboundary condition. D 

Cohomology in general is a deep theory with many different applications. We 
mention some as (difficult) exercises: 

Exercise (Theorem of Whitehead). Generalize the previous method to show that, 
under the hypotheses of the previous proposition we have / / ' (L; M) for all / > 0.̂ ^ 

^̂  For a semisimple Lie algebra the interesting cohomology is the cohomology of the trivial 
1-dimensional representation. This can be interpreted topologically as cohomology of the 
associated Lie group. 
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Exercise. Given a Lie algebra A and a module M for A one defines an extension as 
a Lie algebra L with an abelian ideal identified with M such that L/I = A and the 
induced action of A on M is the given module action. Define the notion of equiv­
alence of extensions and prove that equivalence classes of extensions are classified 
by H^(A; M). In this correspondence, the semidirect product corresponds to the 0 
class. 

When M = C is the trivial module, cohomology with coefficients in C is nonzero 
and has a deep geometric interpretation: 

Exercise. Let G be a connected Lie group, with Lie algebra L. In the same way 
in which we have constructed the Lie algebra as left invariant vector fields we can 
consider also the space ^ ' (G) of left invariant differential forms of degree / for 
each /. Clearly a left invariant form is determined by the value that it takes at 1; thus, 
as a vector space Q}{G) = / \ ' ( r*(G)) = /\ '(L*), the space of /-cochains on L 
with values in the trivial representation. 

Observe that the usual differential on forms commutes with the left G action so 
d maps Q^ (G) to '̂"^^ (G). Prove that we obtain exactly the algebraic cochain com­
plex previously described. Show furthermore that the condition J^ = 0 is another 
formulation of the Jacobi identity. 

By a theorem of Cartan, when G is compact: the cohomology of this complex 
computes exactly the de Rham cohomology of G as a manifold. 

We return to our main theme and can now prove the: 

Theorem (Levi decomposition). Let L, Abe Lie algebras, A semisimple, and n : 
L -> A a surjective homomorphism. Then there is a splitting i : A -^ L with 
7t o i = 1^. 

Proof Let K = Ker(7r) be the kernel; we will proceed by induction on its dimen­
sion. If L is semisimple, ^ is a direct sum of simple algebras and its only ideals are 
sums of these simple ideals, so the statement is clear. If L is not semisimple, it has an 
abelian ideal / which is necessarily in K since A has no abelian ideals. By induction 
L/I ^^ A has a spHtting j : A ^^ L/I; therefore there is a subalgebra M D I with 
M/I = A, and we are reduced to the case in which AT is a minimal abelian ideal. 
Since K is abelian, the action of L on A' vanishes on K, and K is an A-module. 
Since the A-submodules are ideals and K is minimal, it is an irreducible module. We 
have two cases: K = Cis the trivial module or AT is a nontrivial irreducible. In the 
first case we have [L, K] = 0, so A acts on L, and AT is a submodule. By semisim-
plicity we must have a stable summand L = B ® K. B is then an ideal under L and 
isomorphic under projection to A. 

Now, the case K nontrivial. In this case the action of A on AT induces a nonzero 
associative form on A, nondegenerate on the direct sum of the simple components 
which are not in the kernel of the representation K, and a corresponding Casimir 
element C = ^- u^ut. Apply now the cohomological method and construct / : 
A ^^ L and the function </>(a, b) := [/(a), f(b)] — f([a, b]). We can apply Lemma 
3, so / is a cocycle. Then by the previous proposition it is also a coboundary and 
hence we can modify / so that it is a Lie algebra homomorphism, as required. D 
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The previous theorem is usually applied to A := L/R where R is the solvable 
radical of a Lie algebra L (finite-dimensional over C). In this case a splitting L — 
A K /? is called a Levi decomposition of L. 

Lemma 4. Let L be a finite-dimensional Lie algebra over C, / its solvable radical, 
and N the nilpotent radical of I as a Lie algebra. 

(i) Then N is also the nilpotent radical ofL. 
(ii) [/, / ] C N. 

(Hi) If a e I, a ^ Ny then ad(a) acts on N by a linear operator with at least one 
nonzero eigenvalue. 

Proof (i) By definition the nilpotent radical of the Lie algebra / is the maximal 
nilpotent ideal in / . It is clearly invariant under any automorphism of / . Since we 
are in characteristic 0, if D is a derivation, Â  is also invariant under exp(rD), a 1-
parameter group of automorphisms, hence it is invariant under D. In particular it is 
invariant under the restriction to / of any inner derivation ad(fl), a e L. Thus A is a 
nilpotent ideal in L. Since conversely the nilpotent radical of L is contained in / , the 
claim follows. 

(ii) From the corollary of Lie's theorem, [/, / ] is a nilpotent ideal. 
(iii) If ad(fl) acts in a nilpotent way on A, then Ca ® N is nilpotent (Lenmia 

1, (ii)). From (ii) Ca 0 A is an ideal, and from i) it follows that Ca ® N c N, 3. 
contradiction. D 

Lemma 5. Let L = A ^ I be a Levi decomposition, N C I the nilpotent radical 
OfL. 

Since A is semisimple and /, Â  are ideals, we can decompose I = B ^ N where 
B is stable under ad(A). Then ad(A) acts trivially on B. 

Proof Assume that the action of ad(A) on B is nontrivial. Then there is a semisimple 
element a e A such that ad(fl) 7̂  0 on B. Otherwise, by Theorem 2 of 1.5, ad(A) on 
B would act by nilpotent elements and so, by Engel's Theorem, it would be nilpotent, 
which is absurd since a nonzero quotient of a semisimple algebra is semisimple. 

Since ad(a) is also semisimple (Theorem 2 of 1.5 ) we can find a nonzero vector 
V e B with ad(a)(i;) =Xv, X ^ 0. Consider the solvable Lie algebra P := Ca 0 / . 
Then v e [P, P] and [P, P] is a nilpotent ideal of P (cf. Chapter 4, Cor. 6.3). 
Hence Cv + [/, / ] is a nilpotent ideal of / . From Lemma 4 we then have v e N,3i 
contradiction. D 

Theorem 2. Given a Lie algebra L with semisimple part A, we can embed it into a 
new Lie algebra L' with the following properties: 

(i) V has the same semisimple part A as L. 
(ii) The solvable radical of L' is decomposed as B' 0 N', where N' is the nilpotent 

radical ofL', B' is an abelian Lie algebra acting by semisimple derivations, and 
[A, B'] = 0. 

(iii) A 0 5 ' is a subalgebra and L' = (A ^ B') ix N'. 
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Proof, Using the Levi decomposition we can start decomposing L — A \K I where 
A is semisimple and / is the solvable radical. Let Â  be the nilpotent radical of / . By 
Lemma 4 it is also an ideal of L. By the previous Lemma 5, decompose I = B ® N 
with [A, B] = 0. Let m := dim(B). We work by induction and construct a sequence 
of Lie algebras L, = A 0 B, 0 A/, / = 1 , . . . , m, with LQ = L, L /C L/+i and with 
the following properties: 

(i) Bi 0 Ni is the solvable radical, Ni the nilpotent radical of L/. 
(ii) [A, Bi] = 0, and Bt has a basis fli,..., ai,bi^\,... ,bm with a, inducing 

commuting semisimple derivations of L,. 
(iii) Finally [an, B/] = 0, /z = 1 , . . . , /. 

V = Lm thus satisfies the requirements of the theorem. 
Given L/ as before, we construct L^+i as follows. Consider the derivation 

ad(Z7i_|_i) of Li and denote by a/+i its semisimple part, still a derivation. By hy­
pothesis the linear map ad(Z7/+i) is 0 on A. ad(^/_|-i) preserves the ideals //, Â , and, 
since [5,, 5,] c Ni it maps Bi into A,. Therefore the same properties hold for its 
semisimple part: 

«,+i preserves //,A^/. «/+i(x) = 0, Vjc G A. a/_̂ i((2/j) = 0,/i = 1 , . . . , / and 
ai^x{Bi)cNi. 

Construct the Lie algebra Lj+i := Cfl,+i tx L/ = A 0 (C<2,>i 0 //). Let /,>i := 
Cfl/+i 0 //. Since a/+i conmiutes with A, /j+i is a solvable ideal. Since Lj+i///+i = 
A, /j+i is the solvable radical of L/+i. 

The element ad(Z7/+i — fl/+i) acts on A, as the nilpotent part of the deriva­
tion ad(Z?/+i); thus the space A/+i := C(a/+i — ^/+i) 0 A/ is nilpotent by §L6, 
Lemma 1, (ii). 

Since [5/, Bi] C A/ we have that A/+i is an ideal in //+i. By construction we 
still have //+i = Bi 0 A/+i. If Â +̂i is not the nilpotent radical, we can find a nonzero 
element c e Bi so that C 0 A/+i is a nilpotent algebra. By Lemma 1, this means that 
c induces a nilpotent derivation in Aj>i. This is not possible since it would imply 
that c also induces a nilpotent derivation in A,, so that C 0 A, is a nilpotent algebra 
and an ideal in //, contrary to the inductive assumption that A/ is the nilpotent radical 
of/,. 

The elements (2/i, /z = 1 , . . . , / + 1, induce commuting semisimple derivations 
on //+i which also commute with A. Thus, under the algebra R generated by the 
operators ad(A), adĈ /̂̂ ), the representation /z+i is completely reducible. Moreover 
R acts trivially on Ii^\/Ni^\. Thus we can find an /?-stable complement C/+i to 
A /̂+i 0)jtz\ Cfl/i in /j+i. By the previous remarks C/+i commutes with the semisim­
ple elements Uh, /z = 1 , . . . , / + 1, and with A. Choosing a basis bj for C/+i, which 
is {m — i — l)-dimensional, we complete the inductive step. 

(iii) This is just a description, in more structural terms, of the properties of the 
algebra V stated in (ii). By construction B^ is an abelian subalgebra commuting with 
A thus A 0 5Ms a subalgebra and V = {A ^ B') x A^ Furthermore, the adjoint 
action of A 0 JB̂  on A' is semisimple. • 

The reader should try to understand this construction as follows. First analyze 
the question: when is a Lie algebra over C the Lie algebra of an algebraic group? 
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By the Jordan-Chevalley decomposition this is related to the problem of when is the 
derivation ad(a)^ inner for a e L. So our construction just does this: it makes L 
closed under Jordan decomposition. 

Exercise. Prove that the new Lie algebra is the Lie algebra of an algebraic group. 

Warning. In order to do this exercise one first needs to understand Ado's Theorem. 

1.7 Ado's Theorem 

Before we state this theorem let us make a general remark: 

Lemma. Let L be a Lie algebra and D a derivation. Then D extends to a derivation 
of the universal enveloping algebra UL-

Proof.^^ First D induces a derivation on the tensor algebra by setting 

m 

D(ai (8)̂ 2 <8) • • • 0 am) = ^ « i 0^2 0 • • • 0 D(ai) (8) • • • 0 tz^• 

Given an associative algebra R, a derivation D, and an ideal / , D factors to a deriva­
tion of R/I if and only if D(I) c / and, to check this, it is enough to do it on a set 
of generators. In our case: 

D([a, b]-a(Sib + b(S)a) = [D(a), b] + [a, D{b)] - D{a) <S> b - a <S> D{b) 

-h D{b) ^a + b^ D{a) 

= [D{a), b] - D(a) 0 ^ + Z? 0 D(a) 

+ [a, Dib)] - a 0 D(b) + D(b) 0 a. D 

Ado's Theorem. A finite-dimensional Lie algebra L can be embedded in matrices. 

The main difficulty in this theorem is the fact that L can have a center; otherwise 
the adjoint representation of L on L solves the problem (Chapter 4, §4.1.1). Thus 
it suffices to find a finite-dimensional module M on which the center Z(L) acts 
faithfully, since then M 0 L is a faithful module. We will construct one on which the 
whole nilpotent radical acts faithfully. This is sufficient to solve the problem. 

We give the proof in characteristic 0 and for simplicity when the base field is C.̂ ^ 

Proof. We split the analysis into three steps. 
(1) L is nilpotent, V = 0. Let UL be its universal enveloping algebra. By the 

PBW Theorem we have L c Ui. Consider Ui as an L-module by multiplication on 
the left. Let J := U^ be the span of all monomials ai.. .ak, k > i,ah e L, Vh. J 
is a two-sided ideal of UL and M := UL/UI is clearly finite dimensional. We claim 
that M is a faithful L-module. Let dk := dim L^, k = I,... J — I, and fix a basis et 

^^ In part we follow the proof given by Neretin, cf. [Ne]. 
^̂  This restriction can be easily removed. 
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for L with the property that for each k < i the ej, j < J/̂ , are a basis of L^. For an 
element ^ 6 L we define its weight w{e) as the number h such that e e L^ — L^^^ 
if ^ / 0 and w(0) := oo. Since [L^, L^] c L̂ "̂ ^ we have for any two elements 
ŵ ([«» b]) > M;(a) + w{b). Given any monomial M := et^ei^.. .ei^ we define its 
weight as the sum of the weights of the factors: w{M) \= X!J^i yoiei-). 

Now take a monomial and rewrite it as a linear combination of monomials 
h h 

e^^ • • • ^/• Each time that we have to substitute a product enek with ekeh + [en, ek\ 
we obtain in the sum a monomial of degree 1 less, but its weight does not decrease. 
Thus, when we write an element of J in the PBW basis, we have a linear combina­
tion of elements of weight at least /. Since no monomial of degree 1 can have weight 
> / — 1, we are done. 

(2) Assume L has nilpotent radical Â  and it is a semidirect product L = 
R\K N, R = L/N. 

Then we argue as follows. The algebra R induces an algebra of derivations on 
L̂Â  and clearly the span of monomials of degree > k, for each k, is stable under these 
derivations. 

UM/U^^ is thus an /^-module, using the action by derivations and an A^-module 
by left multiplication. IfneN and D \ N ^^ N isa. derivation, D(na) = D{n)a + 
nD{a). In other words, if L„ is the operator a \-^ nav^Q have [D, L„] = L/)(„). Thus 
we have that the previously constructed module Ui^/U^^ is also ^n R K N module. 
Since restricted to Â  this module is faithful, by the initial remark we have solved the 
problem. 

(3) We want to reduce the general case to the previous case. For this it is enough 
to apply the last theorem of the previous section, embedding L = A [< I into some 
(A e BO K N\ D 

1.8 Toral Subalgebras 

The strategy to unravel the structure of semisimple algebras is similar to the strategy 
followed by Frobenius to understand characters of groups. In each case one tries to 
understand how the characteristic polynomial of a generic element (in one case of 
the Lie algebra, in the other of the group algebra) decomposes into factors. In other 
words, once we have that a generic element is semisimple, we study its eigenvalues. 

Definition. A toral subalgebra t of L is a subalgebra made only of semisimple ele­
ments. 

Lemma. A toral subalgebra i is abelian. 

Proof. If not, there is an element x ei with a nonzero eigenvalue for an eigenvector 
y e t, or [jc, j ] = a j , a ^ 0. On the space spanned by x,y the element y acts 
as [y, x] = —ay, [y, y] = 0. On this space the action of y is given by a nonzero 
nilpotent matrix. Therefore >̂  is not semisimple as assumed. n 

It follows from the lemma that the semisimple operators ad(x), x G t are simulta­
neously diagonalizable. When we speak of an eigenvector v for t we mean a nonzero 
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vector V e L such that [h, v] = a{h)v, V/z G t. a : t ^- C is then a linear form, 
called the eigenvalue. 

In a semisimple Lie algebra L a maximal toral subalgebra t is called a Cartan 
subalgebra^^ 

We decompose L into the eigenspaces, or weight spaces, relative to t. The 
nonzero eigenvalues define a set 4> C t* — {0} of nonzero linear forms on t called 
roots. If a € <I>, La := {x e L\ [h, x] = a{h)x, Vh e i} is the corresponding root 
space. The nonzero elements of La are called root vectors relative to of. L^ is also 
called a weight space. 

We need a simple remark that we will use in the next proposition. 
Consider the following 3-dimensional Lie algebra M with basis a,b,c and mul­

tiplication: 

[a, b] = c, [c, a] = [c, b] = 0. 

The element c is in the center of this Lie algebra which is nilpotent: [M, [M, M]] 
= 0. In any finite-dimensional representation of this Lie algebra, by Lie's theorem, c 
acts as a nilpotent element. 

Proposition. (1)A Cartan subalgebra iofa semisimple Lie algebra L is nonzero. 
(2) The Killing form (a, b), restricted to t, is nondegenerate. La, L^ are orthog­

onal unless (X -\- P =0. [La, L^] c La+fi. 
(3) i equals its 0 weight space, i = LQ := [x e L\[h, x] = 0, Wh e t}. 
(4) We have L = i®^^^ La. 
From (2) there is a unique element ta e i with (/z, r^) = Qf(/z), V/z G t. Then, 
(5) For each a e <^,a e La, be L_a, we have [a, b] = (a, b)ta. The subspace 

] = (Cta is I-dimensional. 
(6)(ta,ta)=a(ta)^0. 

(7) There exist elements Ca € La, fa ^ L^, ha € t which satisfy the standard 
commutation relations of si (2, C). 

Proof. (1) Every element has a Jordan decomposition. If all elements were ad nilpo­
tent, L would be nilpotent by Engel's theorem. Hence there are nontrivial semisimple 
elements. 

(2) First let us decompose L into weight spaces for t, L = LQ 0 ©^^o ^a-
If a e La,b e L^J e t we have a(0(<2, ^) = {[t,a],b) = —{a,[t,b]) = 

-P(t)(a, b).lfa-\-fi 7̂  0, this implies that (a,b) = 0. Since the Killing form is 
nondegenerate we deduce that the Killing form restricted to LQ is nondegenerate, 
and the space La is orthogonal to all L^ for p ^ —a while La and L^a are in 
perfect duality under the Killing form. This will prove (2) once we show that LQ = t. 
[La, Lp] c La+p is a simple property of derivations. \i a e La,b e L^J G t, we 
have [r, [fl, b]\ = [[t, «], b] + [a, [r, b]] = a{t)[a, b] + P{t)[a, b]. 

(3) This requires a more careful proof. 

^̂  There is a general notion of Cartan subalgebra for any Lie algebra which we will not use, 
cf. [Jl]. 
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LQ is a Lie subalgebra (from 2). Let a e LQ and decompose a = GS -\- an- Since 
ad (a) is 0 on t, we must have that also a ,̂ a„ e LQ since they commute with t. t+C^^ 
is still toral and by maximality as € t, so t contains all the semisimple parts of the 
elements of LQ. 

Next let us prove that the Killing form restricted to t is nondegenerate. 
Assume that a e t is in the kernel of the Killing form restricted to t. Take 

c = Cs + Cn e LQ. The element ad(«)ad(c„) is nilpotent (since the two elements 
commute), so it has trace 0. The value (a, Q ) = tr(ad(a) 2id{Cs)) = 0 since Q € t, 
and by assumption « G t is in the kernel of the Killing form restricted to t. It follows 
that a is also in the kernel of the Killing form restricted to LQ. This restriction is 
nondegenerate, soa = 0. 

Now decompose LQ = 1 0 t-̂ , where t-̂  is the orthogonal complement to t with 
respect to the Killing form. From the same discussion it follows that t-̂  is made 
of ad nilpotent elements, t-^ is a Lie ideal of LQ, since a e i,c e i^,b G LQ => 
(a, [b, c]) = ([a, b],c) = 0. Now we claim that t-̂  is in the kernel of the Killing form 
restricted to LQ. In fact since ad(t-^) is a Lie algebra made of nilpotent elements, it 
follows by Engel's theorem that the Killing form on t-̂  is 0. Since the Killing form 
on LQ is nondegenerate, this implies that t-̂  = 0 and so t = LQ. 

(4) follows from (2), (3) and the definitions. 
Since the Killing form on t is nondegenerate, we can use it to identify t with 

its dual t*. In particular, for each root a we have an element ta e i with (hJa) = 
a(h),h e t. 

(5) By (2) [La, L-a] is contained in t and, if h e Ua e L^.b e L-a we have 
{h,[a,b]) = i[h,a],b) = a{h){a,b) = (/z, (a, Z?)f«). This means that [a, Z?] = 
(a, b)ta Hes in the 1-dimensional space generated by ta. 

(6) Since L^, L-a are paired by the Killing form, we can find a e La,b e L-a 
with (a, b) = 1, and hence [a, b] = ta. We have [ta, a] = a{ta)a, [ta, b] = —a(ta)b. 
If a(ta) = 0 we are in the setting of the remark preceding the proposition: a,b,ta 
span a solvable Lie algebra, and in any representation r« is nilpotent. Since ta € t, it 
is semisimple in every representation, in particular in the adjoint representation. We 
deduce that Sid(ta) — 0, which is a contradiction. 

(7) We are claiming that one can choose nonzero elements ea ^ La, fa ^ L-a 
such that, setting ha := [̂ a, /«], we have the canonical commutation relations of 
5/(2, C): 

ha '= [ea, / « ] , [ha, ^a] = 2ea, [ha, / « ] = -2fa. 

In fact let ea e La, fa ^ L-a with (Ca, fa) = 2/(ta, ta) and let ha := K , /«] = 
2/(ta, ta)ta. Wc havc [ha, ̂ a] = a(2/(ta, ta)ta)ea = 2^^. The computatiou for fa is 
similar. D 

One usually identifies t with its dual t* using the Killing form. In this identifica­
tion ta corresponds to a. One can transport the Killing form to t*. In particular we 
have for two roots a, fi that 

(1.8.1) (a, P) = (ta, tp) = a(t^) = Pita) = ^^P(ha)^ 
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1.9 Root Spaces 

At this point we can make use of the powerful results we have about the representa­
tion theory of 5/(2, C). 

Lemma 1. Given a root a and the algebra sla(2, C) spanned by ea, fa^ h^, we can 
decompose L as a direct sum of irreducible representations ofslail, C) in which the 
highest weight vectors are weight vectors also for t 

Proof The space of highest weight vectors \^U \= [a e L\ [Ca, a] = 0}.lf h e i 
and [Coi, a] = 0, we have [Ca, [h, a]] = [[Ca, h], a] = —a(h)[eo(, a] = 0, so U is 
stable under t. Since t is diagonalizable we have a basis of weight vectors. D 

We have two possible types of highest weight vectors, either root vectors, or 
elements h e i with a(h) = 0. The latter are the trivial representations of 5/^(2, C). 
For the others, if e^ is a highest weight vector and a root vector relative to the root fi, 
we have that it generates under sla{2, C) an irreducible representation of dimension 
k -\- I where k is the weight of e^ under ha, i.e., P(ha). The elements ad(/a)'(^^), 
/ = 0 , . . . , /c, are all nonzero root vectors of weights fi — ia. These roots by definition 
form an a-string. 

One of these irreducible representations is the Lie algebra 5/^(2, C) itself. 
We can next use the fact that all these representations are also representations of 

the group SL{2, C). In particular, let us see how the element -̂̂  := acts. 

\i h G t is in the kernel of a, we have seen that h is killed by 5 /̂̂ (2, C) and so it 
is fixed by SLa{2, C). Instead SaQia) = —h^. We thus see that s^ induces on t the 
orthogonal reflection relative to the root hyperplane Ha '.— {x e i\a{x) = {)}. 

Lemma 2. The group SLa(2, C) acts by automorphisms of the Lie algebra. Given 
two roots a, P we have that Sa(P) = fi — T^^(^ l^ ^ ^oot, -^^ is an integer, and 
Sa(L^) = Ls^(^). 

Proof Since 5/^(2, C) acts by derivations, its exponentials, which generate 
SLa(2,C), act by automorphisms. If a e L^, h e i, v/e have [h,Sa(a)] = 
[s~^(h),a] = P{s~^{h))a = Sa{P)(h)a. The roots come in a strings ^ — ia with 
P{ha) a positive integer. We have 2(^ — ia, oi)/((x, a) = 2()S,«)/(«, a) — 2/ = 
2P(ta)/(a, a) - 2i = P(ha) - 2i. D 

Proposition. (1) For every root a we have dim La = I. 
(2) If a e ^ we have ca e <t> if and only ifc = ±1. 
(3) If a, p,a -^ P are roots, [La, L^] = La+fi. 

Proof. We want to take advantage of the fact that in each irreducible representation 
of slai2, C) there is a unique weight vector (up to scalars) of weight either 0 or 1 
(Remark 1.1). 

Let us first take the sum 

" VL/)SGCD, B=ca 
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of all the irreducible representations in which the weights are multiples of a. We 
claim that this sum coincides with t + sla{2, C). In M^ the 0 weights for ha are also 
0 weights for t by definition. By (3) of Proposition 1.8 the zero weight space of t 
is t. Hence in M« there are no other even representations apart from t + sla{2, C). 
This already implies that dim L^ = 1 and that no even multiple of a root is a root. If 
there were a weight vector of weight 1 for ha, this would correspond to the weight 
a/2 on t. This is not a root; otherwise, we contradict the previous statement since 
(X = 2(Qf/2) is a root. This proves finally that M^ = i-\- sla(2, C) which implies (1) 
and (2). 

For (3), given a root fi let us consider all possible roots of type ^ + ia with / 
any integer. The sum P^ of the corresponding root spaces is again a representation of 
5/^(2, C). The weight under h^ of a root vector in L^^ta is P(ha) + 2i. Since these 
numbers are all distinct and all of the same parity, from the structure of representa­
tions of sla(2, C), we have that P^ is irreducible. In an irreducible representation if 
M is a weight vector for ha of weight X and A -f a is a weight, we have that ^̂ w is a 
nonzero weight vector of weight X-\-a. This proves that if a + ^ is a root, [̂ ,̂ L^ ] = 
La-^fi' n 

The integer ^ ^ appears over and over in the theory; it deserves a name and a 

symbol. It is called a Cartan integer and denoted by {P \ a) := ^ ^ - Formula 1.8.1 
becomes 

(1.9.1) P{ha)=^^^^ = {P\ct). 

(a, a) 

Warning. The symbol {p\a)\s linear in ^ but not in a. 

The next fact is that: 
Theorem. (1) The rational sub space V := ^ae<t> Q^ ^^ ^^^^ ^^^^ t* = V (8)Q C. 

(2) For the Killing form {h,k), h,k e iy we have 

(1.9.2) (h,k) = tr(ad(/z)ad()t)) = Y^a(h)a(k) = 2 ^ ot{h)a{k). 

(3) The dual of the Killing form, restricted to V, is rational and positive definite. 

Proof (1) We have already seen that the numbers 2(^, a)/(a, a) are integers. First, 
we have that the roots a span t*; otherwise there would be a nonzero element h e i 
in the center of L. Let of/, / = 1 , . . . , n, be a basis of t* extracted from the roots. If a 
is any other root, write a = ^ - a/o:/. It is enough to show that the coefficients at are 
rationals so that the «/ are a Q-basis for V. In order to compute the coefficients at 
we may take the scalar products and get (a, ay) = J^t ^t (^i' ^;)- ^ ^ ^^^ ^^en solve 
this using Cramer's rule. To see that the solution is rational we can multiply it by 
2/{aj,otj) and rewrite the system with integer coefficients (a \aj) = J2i ^t i^t l^j)-

(2) If/i, /: are in the Cartan subalgebra, the linear operators ad(/i), ad(k) commute 
and are diagonal with simultaneous eigenvalues a{h),a(k), a e 4>. Therefore the 
formula follows. 
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(3) For a root ^ apply 1.9.2 to t^ and get 

This implies 2/(P, P) = E«GCI>+(« I ^)^ ^ N- F^om 1.8.1 and the fact that (^ | a) 
is an integer, it follows that P(ta) is rational. Thus, if h is in the rational space W 
spanned by the ta, the numbers a{h) are rational, so on this space the Killing form is 
rational and positive definite. 

By duality W is identified with V since ta corresponds to a. D 

Remark. As we will see, in all of the important formulas the Killing form appears 
only through the Cartan integers which are invariant under changes of scale. 

The way in which ^ sits in the Euclidean space VR := V (8)Q M can be axiom-
atized giving rise to the abstract notion of root system. This is the topic of the next 
section. 

One has to understand that the root system is independent of the chosen toral 
subalgebra. One basic theorem states that all Cartan subalgebras are conjugate under 
the group of inner automorphisms. Thus the dimension of each of them is a well-
defined number called the rank of L. The root systems are also isomorphic (see §2.8). 

2 Root Systems 

2.1 Axioms for Root Systems 

Root systems can be viewed in several ways. In our setting they give an axiomatized 
approach to the properties of the roots of a semisimple Lie algebras, but one can also 
think more geometrically of their connection to reflection groups. 

In a Euclidean space E the reflection with respect to a hyperplane H is the or­
thogonal transformation which fixes H and sends each vector v, orthogonal to / / , to 
—V. It is explicitly computed by the formula (cf. Chapter 5, §3.9): 

(2.1.1) ry : X \-> X v. 
(v,v) 

Lemma. IfX is an orthogonal transformation and v a vector, 

(2.1.2) Xr,X-'=rxi,). 

A finite reflection group is a finite subgroup of the orthogonal group of E, gen­
erated by reflections.^^ Among finite reflection groups a special role is played by 
crystallographic groups, the groups that preserve some lattice of integral points. 

Roots are a way to construct the most important crystallographic groups, the Weyl 
groups. 

^^ There are of course many other reflecUon groups, infinite and defined on non-Euclidean 
spaces, which produce rather interesting geometry but play no role in this book. 
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Definition 1. Given a Euclidean space E (with positive scalar product (w, v)) and a 
finite set ^ of nonzero vectors in £", we say that 4> is a reduced root system if: 

(1) the elements of O span E\ 
(2) Va € <l>, c € E, we have cof 6 ^ if and only if c = ± 1 ; 
(3) the numbers 

2(a, ^) 

are integers (called Cartan integers); 
(4) For every a € O consider the reflection r^ : jc ^- JC — ^ ^ ^ a . Then ra(0) = O. 

The dimension of E is also called the rank of the root system. 

The theory developed in the previous section implies that the roots <|) G t* arising 
from a semisimple Lie algebra form a root system in the real space which they span, 
considered as a Euclidean space under the restriction of the dual of the Killing form. 

Axiom (4) implies that the subgroup generated by the orthogonal reflections r^ 
is a finite group (identified with the group of permutations that it induces on O). 
This group is usually denoted by W and called the Weyl group. It is a basic group of 
symmetries similar to the symmetric group with its canonical permutation represen­
tation. 

When the root system arises from a Lie algebra, it is in fact possible to describe 
W also in terms of the associated algebraic or compact group SLS Nj/T where Nj is 
the normalizer of the associated maximal torus (cf. 6.7 and 7.3). 

Definition 2. A root system O is called reducible if we can divide it as 0 = O^ U O^, 
into mutually orthogonal subsets; otherwise, it is irreducible. 

An isomorphism between two root systems 4>i, O2 is a 1-1 correspondence be­
tween the two sets of roots which preserves the Cartan integers. 

Exercise. It can be easily verified that any isomorphism between two irreducible 
root systems is induced by the composition of an isometry of the ambient Euclidean 
spaces and a homothety (i.e., a multiplication by a nonzero scalar). 

First examples In Euclidean space M" the standard basis is denoted by {^1,..., ^„}. 

Type An The root system is in the subspace E of E"^^ where the sum of the co­
ordinates is 0 and the roots are the vectors et — ej, i ^ j . The Weyl group is the 
symmetric group 5'„+i, which permutes the basis elements. Notice that the Weyl 
group permutes transitively the roots. The roots are the integral vectors of V with 
Euclidean norm 2. 

Type B„ Euclidean space R", roots: 

(2.1.3) ±ei, et - ej, et -f ej, -ei - ej, i ^ j < n. 



316 10 Semisimple Lie Groups and Algebras 

The Weyl group is the semidirect product 5„ K Z/{2Y of the symmetric group Sn, 
which permutes the coordinates, with the sign group Z/(2)" := ( i b l , i b l , . . . , ± l ) , 
which changes the signs of the coordinates. 

Notice that in this case we have two types of roots, with Euclidean norm 2 or 1. 
The Weyl group has two orbits and permutes transitively the two types of roots. 

Type Cn Euclidean space R", roots: 

(2.1.4) ei — ej, ei + Cj, —ei — ej, i ^ y, ±2^/, / = ! , . . . , « . 

The Weyl group is the same as for 5„. Again we have two types of roots, with Eu­
clidean norm 2 or 4, and the Weyl group permutes transitively the two types of roots. 

From the previous analysis it is in fact clear that there is a duality between roots 
of type Bn and of type C„, obtained formally by passing from roots e to coroots, 

ie,e) ' 

Type Dn Euclidean space R", roots: 

(2.1.5) a - ej, ei + ej, -ei - Cj, i ^ j < n. 

The Weyl group is a semidirect product 5^ K 5. 5'„ is the symmetric group permut­
ing the coordinates. S is the subgroup (of index 2), of the sign group Z/(2)" := 
( ± l , ± l , . . . , d i l ) which changes the signs of the coordinates, formed by only even 
number of sign changes.^^ 

The Weyl group permutes transitively the roots which all have Euclidean norm 2. 

Exercise. Verify the previous statements. 

2.2 Regular Vectors 

When dealing with root systems one should think geometrically. The hyperplanes 
Ha \=[v e E\ (u, a) = 0} orthogonal to the roots are the reflection hyperplanes for 
the reflections Sa called root hyperplanes. 

Definition 1. The complement of the union of the root hyperplanes Ha is called the 
set of regular vectors, denoted E^^^. It consists of several open connected compo­
nents called Weyl chambers. 

Examples. In type An the regular vectors are the ones with distinct coordinates x/ ^ 
Xj. For Bn, Cn we have the further conditions JC/ y^ ±Xj,Xi ^ 0, while for D„ we 
have only the condition xt 7̂  ±Xj. 

It is convenient to fix one chamber once and for all and call it the fundamental 
chamber C. In the examples we can choose: 

92 Contrary to type Bn, not all sign changes of the coordinates are possible. 
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A„ : C := {{xuX2, . . . ,x„+i) |x i > X2 . . . > Xn+u ^ - ^z = 0 } , 

Bn,Cn ' C := {(XuX2, . . . , JC„) | Xi > ^2 . . . > X„ > 0}, 

Dn'. C := {(Xi,X2,...,X„)|xi > X2... > Xn, X„_i + X„ > 0}. 

For every regular vector i; we can decompose 4> into two parts 

0+ := {a e ^\{v, a) > 0}, 4>~ := {a e ^\(v, a) < 0}. 

Weyl chambers are clearly convex cones.^^ Clearly this decomposition depends only 
on the chamber in which v lies. When we have chosen a fundamental chamber we 
drop the symbol v and write simply 4>"̂ , O". 

From the definition of regular vector it follows that 0~ = — O"̂ , O = 4>̂  U O". 
One calls ^"^, <P~ ihQ positive and negative roots. 

Notation We write a :̂  0, a ^ 0, to mean that a is a positive, resp. a negative root. 
To understand root systems one should first of all understand the 2-dimensional 

case. 
From axiom (3) and the Schwarz inequality one has 

(2.2.1) {a\P){P\a) = \'J' = 4cos(^)2 < 4, 

where 0 is the angle between the two roots. In 2.2.1 the equality is possible if and 
only if the two roots are proportional or a = ±p by axiom 2. It follows that the only 
possible convex angles between two roots are 0, Tt/6, 7r/4, 7r/3, 7r/2, 27r/3, 37r/4, 
57r/6, 7t. 

Exercise. At this point the reader should be able to prove, by simple arguments of 
Euclidean geometry, that the only possibilities are those shown in the illustration on 
p. 318, of which one is reducible. 

From the picture, it follows that: 

Lemma. If two roots a, p form an obtuse angle, i.e., (a, P) < 0, then a + ^ is a 
root. 

If two roots a, P form an acute angle, i.e., (a, P) > 0, then a — ^ is a root. 

The theory of roots is built on the two notions of decomposable and simple roots: 

Definition 2. We say that a root a G O"̂  is decomposable if a = ^ + y, ^, y G 0+. 
An indecomposable positive root is also called a simple root. 

We denote by A the set of simple roots in O^. The basic construction is given by 
the following: 

^̂  A cone is a set S of Euclidean space with the property that if jc G 5 and r > 0 is a positive 
real number, then rx e S. 
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A1*A1 - A2 

B2 G2 

Theorem, (i) Every element of^^ is a linear combination of elements of A, with 
nonnegative integer coefficients. 

(ii) If a, p e Awe have (a , P) < 0. 
(Hi) The set A of indecomposable roots in <t>^ is a basis of E. A = {a\,... ,an} 

is called the set, or basis, of simple roots (associated to <^^). 

Proof (i) We order the positive roots so that if (i;, a) > (v, P) we have a > fi. 
Since (u, p -\- y) = (v, P) + (f, y) is a sum of two positive numbers, by induction 
every positive root is a linear combination of elements of A with nonnegative integer 
coefficients. 

(ii) \ia, p € A, we must show that y := a — )S is not a root, hence (a , Ŝ) < 0 
(by the previous lemma). Suppose by contradiction that y is a positive root; then 
a = y -\- pis decomposable, contrary to the definition. If y is negative we argue in 
a similar way, reversing the role of the two roots. 

(iii)) Since O"̂  spans E by assumption, it remains only to see that the elements of 
A are linearly independent. Suppose not. Then, up to reordering, we have a relation 
Y^i=\ ^i^i = JlJ=k-\-\ ^j^j ^ith the ai.bj > 0. We deduce that 

/ k k \ / k m \ 

0 < l^atat, ^atat J = ( ^a/Of/, ^ bjaj j = '^aibj(ai,aj) < 0, 

which implies Yl'i=i^i^i — -̂ Now 0 = (v, X!f=ia/«/) = Xl/=i «/(i^,«/)- Since 
all the (i;,Qf,) > 0, this finally implies all a, = 0, for all /. In a similar way all 
bj = 0 . D 

Now assume we are given a root system 4> of rank n. Choose a set of positive 
roots <^^ and the associated simple roots A. 

The coTTtsponding fundamental chamber is 
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C :={x e E\ (jc, a,) > 0, Va,- G A}. 

In fact we could reverse the procedure, i.e., we could define a basis A as a subset 
of the roots with the property that each root is written in a unique way as a linear 
combination of elements of A with the coefficients either all nonnegative or all non-
positive integers. 

Exercise. It is easy to realize that bases and chambers are in 1-1 correspondence. 

Notice that the root hyperplanes //«. intersect the closure of C in a domain con­
taining the open (in //«.) set Ut := {x e //«. \(x,aj) > 0, Vj ^ i}. 

The hyperplanes //«. are called the walls of the chamber. We write Hi instead 
ofHar 

2.3 Reduced Expressions 

We set Si := Sc^ and call it a simple reflection. 

Lemma. Si permutes the positive roots 4>"̂  — {a,}. 

Proof. Let a e ^"^, so that Si(a) =a - («!«/)«/. Let a = ^j rijaj with rij positive 
coefficients. Passing to Si(a), only the coefficient of a, is modified. Hence if a G 
O"̂  — {a/}, then 5/(a), as a linear combination of the a,, has at least one positive 
coefficient. A root can have only positive or only negative coefficients, so Si(a) is 
positive. D 

Consider an element w e W, written as a product w — ̂ iiSi2 • • • ^ik ^^ simple 
reflections. 

Definition. We say that Si^Si^.. .Si^ is a reduced expression of w, if w cannot be 
written as a product of less than k simple reflections. In this case we write k = iiw) 
and say that w has length k. 

Remark. Assume that Si^Si^... /̂̂  is a reduced expression for w. 

(1) Si,^Si,^_^ ... 5jj is a reduced expression for w~^. 

(2) For any I < a < b < k, Si^Si^^^ ... 5,̂  is also a reduced expression. 

Proposition 1 (Exchange property). For a, e A, suppose that Si^Si^... ^/^(a,) is a 
negative root; then for some h < k we have 

( 2 . J . 1 ) '^/i'^/2 • • • ̂ ik^i ~ '^/i'^/2 • • • ̂ ih-\^ih+i^ih+2 • • • ^k' 

Proof Consider the sequence of roots Ph '•= Si^Si^^^Si^^^.. .Si^iai) = Si^(Ph+i)-
Since Pi is negative and Pk+i = «/ is positive, there is a maximum h so that ^h+i 
is positive and fih is negative. By the previous lemma it must be ^h+i = (^h ^^^^ by 
2.1.2, 

Sih = '5"/^+i'5'/;,+2 • • • ^ik^i\^ih+i^ih+2 ' ' ' ^ik^ ^^ 

^ih^ih+i^ih+2 • • • ̂ ik ~ Sih+i^ih+2 ' ' ' ^ik^i' 

which is equivalent to 2.3.1. • 
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Notice that the expression on the left-hand side of 2.3.1 is a product of /: + 1 
reflections, so it is not reduced, since the one on the right-hand side consists of ^ — 1 
reflections. 

Corollary. Ifst^si^... st^ is a reduced expression, then Sj^st^... /̂̂ (of/̂ ) < 0. 

Proof. Si^Si^... Si,^(ai,) = -Si^st^... 5/̂ _, (a/,). Since st^st^... 5/, is reduced, the pre­
vious proposition implies that st^st^... 54_, (a/J >- 0. D 

Proposition 2, If w = si^st^... Sj,^ is a reduced expression, then k is the number of 
positive roots a such that w(a) < 0. 

The set of positive roots sent into negative roots by w = /̂, Si^... /̂̂  is the set of 
elements h •= si,... /̂,̂ , (a/J, /i = 1 , . . . , /:. 

Proof Since 5*/̂ .. 'Si^_^^Si^ is reduced, the previous proposition implies that fih is 
positive. Since Sj^st^... st^ is reduced, w(Ph) = st^si^... Sj^(a/J < 0. Conversely, if 
5/j5/2... Si^iP) < 0, arguing as in the previous proposition, for some h we must have 

Exercise. Let w = st^st^.. .^4, Ay, := {yg € 0+ | w{P) < 0}. \ia, ^ e Ay, and 
Of + )S is a root, then a + yS e A ;̂. In the ordered list of the elements ^i,a-\-p always 
occurs in-between a and ^. This is called a convex ordering. 

Conversely, any convex ordering of A ;̂ is obtained from a reduced expression of 
w. This is a possible combinatorial device to compute the reduced expressions of an 
element w. 

A set L c O"̂  is closed ifa^fieL and a + )6 is a root implies a-\- ^ e L. Prove 
that L = Ayj for some w if and only if L, O^ — L are closed. 

Hint: Find a simple root a e L. Next consider -̂̂ CL — {a}). 

Remark. A permutation a sends a positive root a, — ay to a negative root if and only 
if a(i) > a(j). We thus say that in the pair / < j , the permutation has an inversion. 
Thus, the length of a permutation counts the number of inversions. We say instead 
that cr has a descent in / if cr(/) > a{i -h 1). Descents clearly correspond to simple 
roots in A^ ?^ 

One of our goals is to prove that W is generated by the simple reflections si. Let 
us temporarily define W to be the subgroup of W generated by the Si. We first prove 
some basic statements for W and only afterwards we prove that W = W'. 

Lemma. (1) W acts in a transitive way on the chambers. 
(2) W acts in a transitive way on the bases of simple roots. 
(3) If a e ^ is a root, there is an element w eW with w(a) e A. 

^̂  There is an extensive literature on counting functions on permutations. In the literature of 
combinatorics these functions are usually referred to as statistics. 
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Proof. Since bases and chambers are in 1-1 correspondence, (1) and (2) are equi­
valent. 

(1) Let i; G C be in the fundamental chamber and x a regular vector in some 
chamber C. Take, in the W orbit of jc, a vector y = wx with the scalar product 
{y, v) as big as possible (so the angle between j , f is as small as possible). We claim 
that y e C, this proves that w{C) = C as required. 

If J ^ C, for some / we have (>',«,) < 0. This gives a contradiction, since 
{v, SiW) = {v,y- 2(j , «/)/(«/, a/)Q:/) = (u, y) - 2(y, «/)/(«/, a/) (i;, a/) > (f, y), 

(3) Take a root a. In the root hyperplane //« choose a relatively regular vector M, 
i.e., a vector u with the property that (M, a) — 0, (M, yS) / 0, V)6 G ̂ , ^ 7̂  iba. 
Next take a regular vector j G £" with (a, y) > 0. If 6 > 0 is sufficiently small, since 
the regular vectors are an open cone, M + 6j is regular. (̂ 6, u) +€(P, y) can be made 
as close to (^,u) as we wish. At this point we see that a is a positive root for the 
regular vector u -\- ey and, provided we take e sufficiently small, the scalar product 
(a, u + ey) is strictly less than the scalar product of u -\- ey with any other positive 
root. This implies readily that a is indecomposable and thus a simple root for the 
basis Â  determined by the vector u+^y. Since we have already proved that W^ acts 
transitively on bases we can find w e W with u;(AO = A, hence w{a) e A. D 

The next theorem collects most of the basic geometry: 

Theorem. (1) The group W is generated by the simple reflections st. 
(2) W acts in a simply transitive way on the chambers. 
(3) W acts in a simply transitive way on the bases of simple roots. 
(4) Every vector in E is in the W-orbit of a unique vector in the closure C of the 

fundamental chamber 
(5) The stabilizer of a vector x in C is generated by the simple reflections st with 

respect to the walls which contain x. 

Proof. (1) We have to prove that W = W\ Since W is generated by the reflections s^ 
for the roots a, it is sufficient to see that Sa G W for every root a. From the previous 
lemma, there isaw e W and a simple root a, with a = w(ai). From 2.1.2 we have 
Sa = wsiw-^ eW =^ W = W\ 

(2), (3) Suppose now that an element w fixes the fundamental chamber C and its 
associated basis. Write w = Si^st^... si^ as a reduced expression. If it; / 1, we have 
k > I and if (a,-̂ ) -< 0 by the previous corollary, a contradiction. So the action is 
simply transitive. 

(4), (5) Since every vector is in the closure of some chamber, from (2) it follows 
that every vector in Euclidean space is in the orbit of a vector in C. We prove (4), (5) 
at the same time. Take x,y e C and w e W with wx = y. We want to show that 
X = y and w; is a product of the simple reflections 5, with respect to the walls Hi 
containing JC. Write w; as a reduced product si^st^... 5/̂  and work by induction on k. 
If /: > 0, by the previous propositions w~^ maps some simple root «/ to a negative 
root, hence 0 < (y, a,) = (wx, o?/) = (JC, w'^at) < 0 implies that x, wx are in the 
wall Hi. By the exchange property 2.3.1, i(wsi) < i(w) and x = SiX, y = wsiX. 
We can now apply induction since wsi has shorter length. 

We deduce that x = y and w is generated by the given reflections. D 
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Remark. If C is the fundamental chamber, then also - C is a chamber with corre­
sponding basis —A. We thus have a unique element WQ e W with the property that 
wo{^^) = ^~. 

Wo is the longest element of W, its length is Â  = |<I)"̂ |, the number of positive 
roots. 

Let us choose a reduced expression WQ — st^st^... st^. 

Proposition. We obtain the list of positive roots in the form 

(2.3.2) Ph:=Si,,..Si,^,iai,), h = h....N. 

Proof Apply Proposition 2 of §2.3 to WQ. • 

Example. In 5„ the longest element is the permutation reversing the order wo(i) := 
n + l-i. 

The previous theorem implies that every element w e W has a reduced expres­
sion as a product of simple reflections, hence a length l(w). 

Exercise. Given w e W and a simple reflection st, prove that l(wsi) = l(w) ± 1. 
Moreover l(wsi) = l(w) + 1 if and only if if (a,) > 0. 

Given any vector v e E, its stabilizer in W is generated by the reflections Sa for 
the roots a which satisfy a{v) = 0. 

2.4 Weights 

First, let us discuss the coroots O^ where e^ := -r^. 

Proposition 1. (1) 4>̂  is a root system in E having the same regular vectors as 4>. 
(2) If A is a basis of simple roots for ^, then A^ is a basis of simple roots for 4> .̂ 

Proof. (1) is clear. For (2) we need a simple remark. Given a basis e\,... ,en of 
a real space and the quadrant C := {^. aiei^ai > 0}, we have that the elements 
aet G C are characterized as those vectors in C which cannot be written as sum of 
two linearly independent vectors in C. 

If C is the fundamental Weyl chamber, a vector i; G £" is such that {x,v) > 0, 
Wv G C, if and only if jc is a linear combination with positive coefficients of the 
elements A^ or of the elements in A^ the simple roots for 4> .̂ The previous remark 
implies that the elements of A^ are multiples of those of A^ hence A^ = A' from 
axiom (2). • 

Given the set of simple roots « ! , . . . , «„ (of rank n), the matrix C := (c/y) with 
entries the Cartan integers c/y := (a, | aj) is called the Cartan matrix of the root 
system. 

One can also characterize root systems by the properties of the Cartan matrix. 
This is an integral matrix A, which satisfies the following properties: 
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(1) Cii = 2, Cij < 0, if/ / j . If Cij = 0, then Cjt = 0. 
(2) A is symmetrizable, i.e., there is a diagonal matrix D with positive integers en­

tries di, (= (at, at)) such that A := CD is symmetric. 
(3) A := CD is positive definite. 

If the root system is irreducible, we have a corresponding irrreducibility property for 
C: one cannot reorder the rows and columns (with the same permutation) and make 

C in block form C <'o 1} 
We introduce now, for a given root system, an associated lattice called the weight 

lattice. Its introduction has a full justification in the representation theory of semi-
simple Lie algebras (see §5). For now the weight lattice A will be introduced geo­
metrically, as follows: 

(2.4.1) A:={XeE \{k\a) G Z, Va G O } . 

From proposition (1) it follows that we also have 

A:={Xe E\(X\a) G Z, Va € A}. 

One also sets 

A+ : = { A G A|(X,a) > 0 , Va G O"^}. 

A"̂  is called the set of dominant weights. 

In particular we have the elements cot G A with (cot \aj) = {coi \aj) = 8ij, 
Vofj G A, which are the basis dual to A^. Then if A = ^ - mtOJi we have 

(2.4.2) mi = {X\ai), X = J2(X\ai)a)i, A+ = |^m,ct>/, m/ G N | . 

(coi, 0)2,..., (On) is called the set of fundamental weights (relative to ^^). 

Exercise. Draw the picture of the simple roots and the fundamental weights for root 
systems of rank 2. 

Let us define the root lattice to be the abelian group generated by the roots. We 
have: 

Proposition 2. The wot lattice is a sublattice of the weight lattice of index the deter­
minant of the Cartan matrix. 

Proof By the theory developed, a basis of the root lattice is given by the simple roots 
Of,. From the formula 2.4.2, it follows that aj = J2i(^j I ^i)^i = Ylt ^jj^t- Since 
the Cjj are integers, the root lattice is a sublattice. Since the Cjj express a base of the 
root lattice in terms of a basis of the weight lattice, from the theory of elementary 
divisors the index is the absolute value of the determinant of the base change. In our 
case the determinant is positive. D 
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Theorem, (a) A is stable under the Weyl group. 
(b) Every element of A is conjugate to a unique element in A"̂ . 
(c) The stabilizer of a dominant weight Y^i=\ ^i^i ^^ generated by the reflections 

Si for the values ofi such that mi = 0 . 

Proof Take A G A, M; G W. We have {w{X)\a) = (A | w'^a)) G Z, Va G O, 
proving (a). 

A~̂  is the intersection of X with the closure of the fundamental Weyl chamber, 
and a dominant weight k = Yll=\ ^i^t has m, = 0 if and only if A G ///, from the 
formula 2.4.2. Hence (b), (c) follow from (6) and (5) of Theorem 2.3. D 

It is also finally useful to introduce 

(2.4.3) A++ := {A G A|(A|a) > 0, Vof G 4)+}. 

A"̂ "̂  is called the set of regular dominant weights or strongly dominant. It is the 
intersection of A with the (open) Weyl chamber. We have A"̂ "̂  = A"̂  + p, where 
p ''=^i (Oi is the smallest element of A"̂ "̂ . p plays a special role in the theory, as 
we will see when we discuss the Weyl character formula. Let us remark: 

Proposition 3. We have {p \ a,) = 1, V/. Then p = 1/2 (X!aecD+ ̂ ) ^^^> f^^ ^^y 
simple reflection st, we have Si(p) = p — a/. 

Proof, (p I«/) = 1, V/ follows from the definition. We have st (p) = p — {p\ «/)«/ = 
p - Of/. Also the element 1/2 {J2ae<P+ ^) satisfies the same property with respect to 
a simple reflection 5,, since such a reflection permutes all positive roots different 
from otj sending a, to —a/. Hence p — 1/2 (X]ae<i>+ )̂ ^̂  ^^^^ under all simple 
reflections and the Weyl group. An element fixed by the Weyl group is in all the root 
hyperplanes, hence it is 0, and we have the claim. • 

For examples see Section 5.1. 

2.5 Classification 

The basic result of classification is that it is equivalent to classify simple Lie algebras 
or irreducible root systems up to isomorphism, or irreducible Cartan matrices up to 
reordering rows and columns. 

The final result is usually expressed by Dynkin diagrams of the types illustrated 
on p. 325 (see [Hu],[B2]). 

The Dynkin diagram is constructed by assigning to each simple root a node o and 
joining two nodes, corresponding to two simple roots a, fi, with {a\ P){fi,a) edges. 
Finally the arrow points towards the shorter root. The classification is in two steps. 
First we see that the only possible Dynkin diagrams are the ones exhibited. Next we 
see that each of them corresponds to a uniquely determined root system.^^ 

^̂  There are by now several generalizations of this theory, first to characteristic p > 0, then to 
infinite-dimensional Lie algebras as Kac-Moody algebras. For these one considers Cartan 
matrices which satisfy only the first property: there is a rich theory which we shall not 
discuss. 
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Proposition. A connected Dynkin diagram determines the root system up to scale. 

Proof. The Dynkin diagram determines the Cartan integers. If we fix the length of 
one of the simple roots, the other lengths are determined for all other nodes connected 
to the chosen one. In fact, if a, ^ are connected by an edge we can use the formula 
(^, p) = 7 ^ (a, a). Since the scalar products of the simple roots are expressed by 
the Cartan integers and the lengths, the Euclidean space structure on the span of the 
simple roots is determined. 

Next the Cartan integers determine the simple reflections, which generate the 
Weyl group. Hence the statement follows from Theorem 2.3. D 

Let us thus start formally from an irreducible Cartan matrix C = (ctj), i, j = 
1 , . . . , n, (we do not know yet that it is associated to a root system). We can define 
for C the associated Dynkin diagram as before, with n nodes / and /, j connected by 
CijCjj edges. If C is irreducible we have a connected diagram. 
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By assumption A := CD is a positive symmetric matrix and set atj = cijdj to 
be the entries of A. We next construct a vector space E with basis wi, / = 1 , . . . , «, 
and scalar product given by A in this basis. Thus £" is a Euclidean space. 

Theorem. The Dynkin diagrams associated to irreducible Cartan matrices are those 
of the list An, Bn, Cfi, Dn, Ee, Ej, Es, F4, G2 displayed as above. 

Proof. It is convenient to pass to a simplified form of the Dynkin diagram in which 
the lengths of the roots play no role. So we replace the vectors Wi of norm 2J/, by 
the vectors vt := Wi/\wi\ of norm 1. Thus (i;,, Vj) = i ^ | j ^ = M^\' ^^^^^ ^^^" 
ditions we still have that the vi are linearly independent, (vt, Vj) < 0, cijCjj := 
4(vi, Vj)^ = 0, 1, 2, 3 for distinct vectors. Moreover, by assumption the quadratic 
form Y^-j aiajivi, Vj) is positive. Call such a list of vectors admissible. The Dynkin 
diagram is the same as before except that we have no arrow. In particular the dia­
gram is connected. We deduce various restrictions on the diagram, observing that 
any subset of an admissible set is admissible. 

1. The diagram has no loops. In fact, consider k vectors vt. out of our list. 
We have 

\y = l 7 = 1 / h,s 

Since for all atj 7̂  0, we have laij < —1, we must have that the total number of 
aij present is strictly less than k. This implies that the vi cannot be in a loop. 

2. No more than 3 edges can exit a vertex. In fact, if f i , . . . , û  are vertices 
connected to UQ, we have that they are not connected to each other since there 
are no loops. Since they are also linearly independent, we can find a unit vector 
w orthogonal to the u/, / = 1 , . . . , s, in the span oi VQ,V\, ... ,Vs. We have that 
w,Vi, i = 1 , . . . , 5*, are orthonormal, so VQ = (VQ, W)W + X!/=i(w;, Vi)vi and 
1 = (uo, w)^ + E L i ( ^ ' ^i)^' Since (i;o, w) i^ 0, we have X!/(^o, ^if < 1 =^ 
4 J2i(vo, f/)^ < 4, which gives the desired inequality. 

3. If we have a triple edge, then the system is G2. Otherwise one of the two 
nodes of this subgraph is connected to another node. Then out of this at least 4 edges 
originate. 

Suppose that some vectors f i , . . . , û  in the diagram form a simple chain as in 
type A„; in other words (f,, i;/+i) = - 1 / 2 , / = 1 , . . . , / : - 1 (i.e., they are linked 
by a single edge) and no u/, 1 < / <k is linked to any other node. Then: 

4. Replacing all these vectors by v = J^- Vj, creates a new admissible list. In fact, 
first of all (v,v) = k—(k—I) = 1 is a unit vector. Next, if Vj is a vector different from 
the given ones, it can connect only to vi or v^. In the first case (Vj, v) = (vj, ui), and 
similarly for the second. The diagram associated to this new list is the one in which 
the simple chain has been contracted to a node. We deduce then that the diagram 
cannot contain any of the following subdiagrams; otherwise contracting a simple 
chain we obtain a node to which 4 edges are connected: 
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5. V^e are thus left with the possible following types: 

(i) A single simple chain, this is type A„. 
(ii) Two nodes a, b connected by two edges, from each one starts a simple chain 

a = ao,au...,ak\ b = bo,bu ... ,bh. 
(iii) One node from which three simple chains start. 
In case (ii) we must show that it is not possible that both h,k > 1. In other words. 

is not admissible. In fact consider € := vo-i- 2v\ + ?>V2 + 1\Pivi + sflv^. Computing 
we have (6,6) = 0, which is impossible. 

In the last case assume we have the three simple chains 

fli,. . . , a p _ i , f l p = J ; b\, ,..,bq-\,bq—d\ c\, 

from the node d. Consider the three orthogonal vectors 

V-\ q-\ 

^Cr-\,Cr = d, 

:=Y^iai, y:=^ibi, Z : = ^ / Q . 
= 1 i = l i=l 

d is not in their span and (jc, x) = p(p — l)/2, (y, y) = q{q — l)/2, (z, z) = 
r{r - l)/2. 

Expanding d in an orthonormal basis of the space {d,x,y,z) "WQ have 
(d, xf/ix, x) + (d, yfliy. y) + (J, z?/{z. z) < 1. We deduce that 

( /7- l )2 2 (q-lf 2 
1 > 

(2.5.1) + 

4 pip 

(r - I? 2 

1) + 4 q(q - 1) 

rir - 1) 4(-(rr')) 
It remains for us to discuss the basic inequality 2.5.1, which is just ^ + ^ + f > 1-
We can assume p < q < r.We cannot have p > 2 since otherwise the three terms 
are < 1/3. So p = 2 and we have ^ + 7 > 1/2. We must have q <3.lfq = 2,r 
can be arbitrary and we have the diagram of type D„. Otherwise if ^ = 3, we still 
have 1/r > 1/6 or r < 5. 

For r = 3, 4, 5, we have £"5, £7, £"8. n 

We will presently exhibit for each An, Bn, Cn, Dn, E^, Ej, E^, F4, G2 a corre­
sponding root system. For the moment let us make explicit the corresponding Cartan 
matrices (see the table on p. 328). 
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TABLE OF CARTAN MATRICES 
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2.6 Existence of Root Systems 

The classical root systems of types A, B,C, D have already been exhibited as well 
as G2. We leave to the reader the simple exercise: 

Exercise. Given a root system O with Dynkin diagram A and a subset S of the 
simple roots, let Es be the subspace spanned by S. Then 0 Pi £ is a root system, with 
simple roots S and Dynkin diagram the subdiagram with nodes S. 

Given the previous exercise, we start by exhibiting F4, Es and deduce E^, Ej 
from Es. 

F4. Consider the 4-dimensional Euclidean space with the usual basis ^1, ^2, ^3, ̂ 4-
Let a := (ei + 2̂ + 3̂ + ^4)/2 and let A be the lattice of vectors of type 
J2i=i ^i^i + ^^^ ^i^ m e Z. Let 4> := {w G A | (u, u) = 1, or (M, M) = 2}. We 
easily see that <t> consists of the 24 vectors ±ei ± Cj of norm 2 and the 24 vectors of 
norm 1: ±^/, (±ei ± 2̂ ± 3̂ ± ^4)/2. 

One verifies directly that the numbers {a\P) are integers Wa, p € 4>. Hence A 
is stable under the reflections Sa,(x e <l>, so clearly O must also be stable under the 
Weyl group. The remaining properties of root systems are also clear. 

It is easy to see that a choice of simple roots is 

e2 - e3, 63 - 64, 64, (e\ - e^- e^- 64)/!. 

Es. We start, as for F4, from the 8-dimensional space and the vector a = 
{J2,i=\ ^i)l'^' Now it turns out that we cannot just take the lattice 

8 

/=i 

but we have to impose a further constraint. For this, we remark that although the 
expression of an element of A as XlLi ^t^t + ^ ^ î  ^^^ unique, the value of J^t ^t 
is unique mod 2. In fact, XlLi ^i^i + ^ « = 0 implies m = 2k even, n, = —k, V/ 
and J2i ^i = 0' niod 2. 

Since the map of A to Z/(2) given by ^ - n, is a homomorphism, its kernel AQ 
is a sublattice of A of index 2. We define the root system Es as the vectors <!> in AQ 
of norm 2. 

It is now easy to verify that the set <I> consists of the 112 vectors ±^/ ib ej, and the 
128 vectors XlLi =*=̂ //2 = YlieP^i ~ ^' ^^^^ ^ ^^^ ^̂ ^ ̂ ^ indices where the signs 
are positive. The number of positive signs must be even. 

From our discussion is clear that the only point which needs to be verified is that 
the numbers {a\P) are integers. In our case this is equivalent to proving that the 
scalar products between two of these vectors is an integer. The only case requiring 
some discussion is when both a, p are of the type XlLi i^/ /2- In this case the scalar 
product is of the form (a — b)/4, where a counts the number of contributions of 
1, while b is the number of contributions of —1 in the scalar product of the two 
numerators. By definition a + b = 8, so it suffices to prove that b is even. The 
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8 terms ±1 appearing in the scalar product can be divided as follows. We have t 
minus signs in a which pair with a plus sign in fi, then u minus signs in a which pair 
with a minus sign in p. Finally we have r plus signs in a which pair with a minus 
sign in )S. By the choice of A, the numbers ^ + M, r -|- M are even, while b = t -\- r, 
henceb = t-^u + r-\-u = 0, mod 2. 

For the set Ag, of simple roots in Es, we take 

7 

1/2^^1 -\-es- X ] ^ 7 ' 2̂ 4-^1, €2 -ex, e^, - ^ 2 , 4̂ - ^ 3 , 

(2.6.1) es - ^4, ^ 6 - ^ 5 , 7̂ - ^6-

Eq, E(^. Although these root systems are implicitly constructed from E^, it is 
useful to extract some of their properties. We call JC/, / = 1 , . . . , 8, the coordinates 
in E^. The first 7 roots in Ag span the subspace E of R^ in which jcv + xg = 0. 
Intersecting E with the roots of Eg we see that of the 112 vectors ±ei ±ej, only those 
with /, 7 ^ 7, 8 and ±(^7 — ^g) appear, a total of 62. Of the 128 vectors Xl/=i =*=̂ //2 
we have 64 in which the signs of e-j, e% do not coincide, a total of 126 roots. 

For £"6 the first 6 roots in Ag span the subspace E in which X(, — xq — —x%. 
Intersecting E with the roots of £"7 we find the 40 elements ib e/ ± ^ ,̂ 1 < / < y < 5 
and the 32 elements ±1/2(^6 + 7̂ - ĝ -I- Y^i=\ ±^/) with an even number of minus 
signs, a total of 72 roots. 

2.7 Coxeter Groups 

We have seen that the Weyl group is a reflection group, generated by the simple re­
flections 5"/. There are further important points to this construction. First, the Dynkin 
diagram also determines defining relations for the generators 5/ of W. Recall that if 
5", r are two reflections whose axes form a (convex) angle d, then 5Ms a rotation of 
angle IQ. Apply this remark to the case of two simple reflections 5/, Sj (i 7̂  7) in a 
Weyl group. Then stSj is a rotation of ^ with mtj = 2, 3,4, 6 according to whether 
/ and j are connected by 0, 1, 2, 3 edges in the Dynkin diagram. In particular, 

{s^sjr' = 1. 

It turns out that these relations, together with sf = \, afford a presentation of W. 

Theorem 1. [Hu3, 1.9] The elements (called Coxeter relations): 

(2.7.1) sf, [siSj)"^''^ Coxeter relations 

generate the normal subgroup of defining relations for W. 

In general, one defines a Coxeter system (W, S) as the group W with generators 
S and defining relations 

{str^'' = 1, s,t e S, 



2 Root Systems 331 

where ms,s = 1 and nisj = rrit^s > 2 for >s / r. If there is no relation between s and 
r, we set rusj = oo. 

The presentation can be completely encoded by a weighted graph (the Coxeter 
graph) r . The vertices of T are the elements of S, and s,t G 5 are connected by an 
edge (with weight nts^t) if i^s^t > 2, i.e., if they do not commute. For instance, the 
group corresponding to the graph consisting of two vertices and one edge labeled by 
oo is the free product of two cyclic groups of order 2 (hence it is infinite). There is a 
natural notion of irreducibility for Coxeter groups which corresponds exactly to the 
connectedness of the associated Coxeter graphs. 

When drawing Coxeter graphs, it is customary to draw an edge with no label if 
nisj = 3. With this notation, to obtain the Coxeter graph from the Dynkin diagram 
of a Weyl group just forget about the arrows and replace a double (resp. triple) edge 
by an edge labeled by 4 (resp. 6). 

Several questions arise naturally at this point: classify finite Coxeter groups, and 
single out the relationships between finite Coxeter groups, finite reflection groups and 
Weyl groups. In the following we give a brief outline of the answer to the previous 
problems, referring the reader to [Hu3, Chapters 1, 2] and [Bl], [B2], [B3] for a 
thorough treatment of the theory. 

We start from the latter problem. For any Coxeter group G, one builds up the 
space V generated by vectors as, s e S and the symmetric bilinear form 

Bciois^ott) = -COS . 
rrisj 

We can now define a "reflection", setting 

a(5)(X) = A - 2 5 G ( A , «,)«,. 

Proposition. [Ti] The map s \-^ GS extends uniquely to a representation a : G -^ 
GL(V). cr(G) preserves the form BQ onV. The order ofst in G is exactly m(s,t). 

Hence Coxeter groups admit a "reflection representation" (note however that V 
is not in general a EucUdean space). The main result is the following: 

Theorem 2. [Hu3, Theorem 6.4] The following conditions are equivalent: 

(1) G is a finite Coxeter group. 
(2) EG is positive definite. 
(3) G is a finite reflection group. 

The classification problem can be reduced to determining the Coxeter graphs for 
which the form EG is positive definite. Finally, the graphs of the irreducible Coxeter 
groups are those obtained from the Weyl groups and three more cases: the dihedral 
groups Dfi, of symmetries of a regular n-gon, and two reflection groups, H^ and 
H4, which are 3-dimensional and 4-dimensional, respectively, given by the Coxeter 
graphs 

D„ : o O H^ : o O O H4: o O O O 
1 2 3 1 2 3 4 
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An explicit construction of the reflection group for the latter cases can be found 
in [Gb] or [Hu3,2.13]. Finally, remark that Weyl groups are exactly the finite Coxeter 
groups for which rusj e {2, 3, 4, 6}. This condition can be shown to be equivalent to 
the following: G stabilizes a lattice in V. 

3 Construction of Semisimple Lie Algebras 

3.1 Existence of Lie Algebras 

We now pass to the applications to Lie algebras. Let L be a simple Lie algebra, 
t a Cartan subalgebra, 0 the associated root system, and choose the simple roots 
Qfi,..., a„. We have seen in Proposition 1.8 (7) that one can choose ei e L^., 
fi 6 L_a. SO that et, ft, hi := [et, ft] are sl{2, C) triples, and hi = 2/(rc .̂, fa,)?a,. 
Call sliil, C) and 5L/(2, C) the corresponding Lie algebra and group. 

The previous generators are normalized so that, for each element A, of t*, 

(3.1.1) A(/z,) =M2/(/«,,^«,K,) = ^ ^ ^ ^ = (Ale.,). 

Then one obtains [hi,ej] := {aj \ai)ej, [hi, fj] := - ( a , \oij)fj and one can 
deduce a fundamental theorem of Chevalley and Serre (using the notation aij := 
{aj I a/)). Before stating it, let us make some remarks. From Proposition 1.2 it fol­
lows that, for each /, we can integrate the adjoint action of sli (2, C) on L to a rational 
action of SLi (2, C). From Chapter 4, § 1.5, since the adjoint action is made of deriva­
tions, these groups SLi (2, C) act as automorphisms of the Lie algebra. In particular, 

€ SLi(2, C), acts. We intentionally use 

the same notation as for the simple reflections. 

Lemma. 5, preserves the Cartan subalgebra and, under the identification with the 
dual, acts as the simple reflection Si. Si(La) = Ls-(a)' 

Proof. If /z € t is such that a, (/i) = 0, we have that h commutes with ei ,hi,fi, and 
so it is fixed by the entire group SLi(2, C). On the other hand, Si(hi) = —hi, hence 
the first part. 

Since Si acts by automorphisms, if M is a root vector for the root a, we have 

let us look at how the element 5, := 

[h, SiU] = [sfh, Siu] = Si[sih, u] = Si{a(Sih)u) = Si(a)(h)SiU. D 

Exercise. Consider the group W of automorphisms of L generated by the 5/. We 
have a homomorphism n : W ^^ W.lis kernel is a finite group acting on each L^ 
w i t h i l . 

Theorem 1. The Lie algebra L is generated by the 3n elements ei,fi,hi, 
i = ! , . . . , « , called Chevalley generators. They satisfy the Serre relations: 

(3.1.2) [hi, hj] = 0, [hi, ej] = aijej [hi, fj] = -aijfj [ei, fj] = 8ijhi 

(3.1.3) ^diei^-^Hej) = 0, ad(fi)'-'Hfj) = 0. 
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Proof. Consider the Lie subalgebra L^ generated by the given elements. It is a sub-
representation of each of the groups SLi (2, C); in particular, it is stable under all the 
Si and the group they generate. Given any root a, there is a product w of si which 
sends ot to one of the simple roots a/; hence under the inverse w'^ the element ei is 
mapped into L^. This implies that L^ C L and hence L = L^. 

Let us see why these relations are valid. The first (3) are the definition and nor-
maUzation. If / / 7, the element [̂ ,, /y] has weight a, — otj. Since this is not a root 
[ei, fj] must vanish. 

This implies that fj is a highest weight vector for a representation of sit (2, C) of 
highest weight [hi, fj] = —aijfj. This representation thus has dimension —aij + 1 
and each time we apply ad(/;) starting from fj, we descend by 2 in the weight. Thus 
SLdifiY'^^'J (fj) = 0. The others are similar. D 

More difficult to prove is the converse. Given an irreducible root system 4>: 

Theorem 2 (Serre). Let L be the quotient of the free Lie algebra in the generators 
^i, fi, hi modulo the Lie ideal generated by the relations 3.L2 and 3.L3. 

L is a simple finite-dimensional Lie algebra. The hi are a basis of a Cartan 
subalgebra ofL and the associated root system is 4). 

Proof. First, some notation: on the vector space with basis the hi, we define a, to be 
the linear form given by ai(hj) := aij = {otj la,). 

We proceed in two steps. First, consider in the free Lie algebra the relations of 
type 3.L2. Call LQ the resulting Lie algebra. For LQ we prove the following state­
ments. 

(1) In Lo the images of the 3n elements ei, f, hi remain linearly independent. 
(2) Lo = UQ 0 () 0 u j , where f) is the abeUan Lie algebra with basis hi,... ,hn, 

UQ is the Lie subalgebra generated by the classes of the f, and u j is the Lie 
subalgebra generated by the classes of the ei. 

(3) UQ (resp. UQ ) has a basis of eigenvectors for the commuting operators hi with 
eigenvalues Yll=\ ^t^i fresp. — Yll=\ ^t^t) with m, nonnegative integers. 

The proof starts by noticing that by applying the commutation relations 3.L2, 
one obtains that LQ = UQ + f) -f u+, where \) is abelian. Since, for a derivation of 
an algebra, the two formulas D{a) = aa, D(b) = fib imply D{ab) = (a + ^)ab, 
an easy induction proves (3). This implies (2), except for the independence of the 
hi, since the three spaces of the decomposition belong to positive, 0, and negative 
eigenvalues for [). It remains to prove (1) and in particular exclude the possibility 
that these relations define a trivial algebra. 

Consider the free associative algebra M := C{e\,... ,en). We define linear op­
erators on M which we call ei, f, hi and prove that they satisfy the commutation 
relations 3.L2. 

Set ei to be left multiplication by ei. Set hi to be the semisimple operator 
which, on a tensor u := ei^ei^... ei^, has eigenvalue Xl)=i ^ij(^')- ^^^ ̂ ^^ simplic­
ity Yl,j=\ ^ij '-— ^u' Define f inductively as a map which decreases the degree of 
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tensors by 1 and / l = 0 , fi(eju) := ejfi(u) - 5/a„(/z/)w. It is clear that these 3n 
operators are linearly independent. It suffices to prove that they satisfy the relations 
3.1.2, since then they produce a representation of LQ on M. 

By definition, the elements hi commute and 

(hjet - eihj)u = {oii{hj) + oiu{hj))eiU - oiu{hj)eiU = ai(hj)eiU. 

For the last relations 

{fiCj - ejfi)u = fiCjU - ejfiU = -5/««(/?/)« = -SjhiU 

and (fihj — hjfi)u = au(hj)fiU - af.u(hj)fiU. So it suffices to remark that by the 
defining formula, ft maps a vector u of weight a^ into a vector of weight au — ott. 

Now we can present L as the quotient of LQ modulo the ideal / generated in LQ by 
the unused relations 3.1.3. This ideal can be described as follows. Let I^ be the ideal 
of u+ generated by the elements ad(^/)^~^'^(^y), and / " the ideal of u^ generated by 
the elements ad(/;)^~^'^ (fj). If we prove that /"^, / " are ideals in LQ, it follows that 
I = I~^ -\-1~ and that LQ/I = u j / / "^ 0 () 0 U Q / / " . We prove this statement in the 
case of the / ' s ; the case of the e's is identical. Set Rtj := ad(/;)^~^'^(/y). Observe 
first that ad(/;)^~'^'^(/y) is a weight vector under f) of weight -(ay + (1 - aij)ai). 
By the commutation formulas on the elements, it is clearly enough to prove that 
[ei. sid(fiy-'^Hfj)] = ad{ei) adifty-'^Hfj) = 0 for all /. If / is different from 
/, ad(^/) commutes with ad(/;) and ad(/;)^-^'^ ad(^/)(/y) = SJ adifty-^'^Jhj. If 
Gij = 0, fi conmiutes with hj. If 1 — atj > 1, we have [/;, [fi,hj]] = 0. In 
either case ad(^/)/?/y = 0. We are left with the case / = / . In this case we use 
the fact that ei, fi, hi generate an si(2, C). The element fj is killed by Ci and is 
of weight -{aj |«/) = -a/y. Lemma 1.1 applied to i; = fj implies that for all s, 
Sid(ei) adifiY fj = s(—aij — s -\- l)sid(fiy~^ fj. For s = I - aij, we indeed get 
adte)ad(/;)V;=0. 

At this point of the analysis we obtain that the algebra L defined by the Chevalley 
generators and Serre's relations is decomposed in the form L = u"̂  0 f) 0 u " . [) has as 
a basis the elements /z/, u"̂  (resp. u~) has a basis of eigenvectors for the commuting 
operators hi with eigenvalues Yll=\ ^i^i (resp. — J21=i ^ / ^ / ) ' with m, nonnegative 
integers. 

The next step consists of proving that the elements ad(^/), ad(/;) are locally 
nilpotent (cf. §1.2). Observe for this that, given an algebra L and a derivation D, the 
set of w G L killed by a power of D is a subalgebra since 

i=o V^/ 

Since clearly for L the elements ei, hi, f belong to this subalgebra for ad(^j), ad(/y), 
this claim is proved. 

From Proposition 1.2, for each /, L is a direct sum of finite-dimensional ir­
reducible representations of 5'L/(2, C). So we can find, for each /, an element 
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as in §1.9 Lemma 2, which on the roots acts as the simple reflec­

tion associated to a,. Arguing as in L9 we see that st transforms the subspace 
Ly relative to a weight y into the subspace Ls.(y). In particular if two weights 
can be transformed into each other by an element of W, the corresponding weight 
spaces have the same dimension. Remark that, by construction, the space L^. is 1-
dimensional with basis et, and similarly for —a,. We already know that the weights 
are of type J2i ^t^t^ with the m/ all of the same sign. We deduce, using Theorem 
2.3 (4), that if Of is a root, dimL^ = L Suppose now a is not a root. We want 
to show that L^ = 0. Let us look, for instance, at the case of positive weights, 
elements of type ad(^/j) adC^/J • • • ad(e/^_j)^/ .̂ If this monomial has degree > 1, 
the indices ik-\, ik must be different (or we have 0), so a multiple of a simple root 
never appears as a weight. By conjugation the same happens for any root. Finally, 
assume ot is not a multiple of a root. Let us show that conjugating it with an ele­
ment of W, we obtain a Hnear combination Yl,i ^i^^t ^^ which two indices m, have 
strictly opposite signs. Observe that if a is not a multiple of any root, there is a 
regular vector v in the hyperplane orthogonal to a. We can then find an element 
w e W so that wv is in the fundamental chamber. Since (wa, wv) = 0, writing 
wa = J2i^i^i we have Yli^ti^i^ ^^) = 0- Since all (a,, wv) > 0, the claim 
follows. 

Now we know that wa is not a possible weight, so also a is not a weight. 
At this point we are very close to the end. We have shown that L = (} 0 0^^$ La 

and that dim L^ = 1. Clearly, f) is a maximal toral subalgebra and ^ its root system. 
We only have to show that L is semisimple or, assuming O irreducible, that L is 
simple. Let / be a nonzero ideal of L. Let us first show that I D La for some root 
a. Since / is stable under ad([)), it contains a nonzero weight vector v. If f is a root 
vector we have achieved our first step; otherwise i; G I}. Using a root a with a(u) ^ 0 
we see that La = [v, La] C L Since / is an ideal it is stable under all the 5/(2, C) 
and the corresponding groups. In particular, it is stable under all the Si, so we deduce 
that some ei, ft, hi e / . If aij / 0, we have Uijej = [hi, ej] e / .We thus get all the 
Cj £ I for all the nodes j of the Dynkin diagram connected to /. Since the Dynkin 
diagram is connected we obtain in this way all the elements ej, and similarly for the 
fj, hj. Once we have all the generators, I — L. D 

Therefore, given a root system, we have constructed an associated semisimple 
Lie algebra, using these generators and relations, thus proving the existence theorem. 

This theorem, although quite satisfactory, leaves in the dark the explicit multipli­
cation structure of the corresponding Lie algebra. In fact with some effort one can 
prove. 

Theorem 3. One can choose nonzero elements Ca in each of the root spaces La so 
that, if a, P,a-\-p are roots, one has [Ca, ep] = diea+p- These signs can be explicitly 
determined. 

Sketch of proof Take the longest element of the Weyl group WQ and write it as 
a reduced expression WQ = Si^Si^.. .Si^. For a = Si^Si^ • • •5/^_ia,,,, define Ca := 
Si^Si^' •' Si^_^ei^. Next use Exercise 3.1 on W, which easily implies the claim. D 
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The determination of the explicit signs needs a long computation. We refer to 
Tits [Ti]. 

3.2 Uniqueness Theorem 

We need to prove that the root system of a semisimple Lie algebra L is uniquely 
determined. We will use the theory of regular elements. 

Definition. An element h e L is said to be regular semisimple if h is semisimple 
and the centralizer of /i is a maximal toral subalgebra. 

Given a maximal toral subalgebra t and an element /z G t, we see that its central­
izer is 1 0 ^ ^ ^ |̂ (;̂ )̂ o L«. So we have: 

Lemma. An element h e i is regular if and only if h ^ Uae^Ha, Ha := 
{hei\a{h) = 0}.^^ 

In particular the regular elements of t form an open dense set. We can now show: 

Theorem. Two maximal toral subalgebras i\, ii are conjugate under the adjoint 
group. 

Proof. Let G denote the adjoint group and t̂ ^̂ , ^^ the regular elements in the two 
toral subalgebras. We claim that Gtj^^, Gt̂ ^̂  contain two Zariski open sets of L and 
hence have nonempty intersection. In fact, compute at the point (l,h),h e i^^^ the 
differential of the map n : G x tĵ ^ -> L, nig, h) := gh. It is L x ti ^- [L, h] + ti. 
Since h is regular, [L,h\ = Q^^^ L^. This implies that L = [L,h] + U and the 
map is dominant. 

Once we have found an element gihi = g2^2, ^i ^ tj^^, ^2 ^ ^^, we have that 
g2^g\hi is a regular element of ti, from which it follows that for the centralizers. 

Together with the existence we now have: 

Classification. The simple Lie algebras over C are classified by the Dynkin dia­
grams. 

Proof Serre's Theorem shows that the Lie algebra is canonically determined by the 
Dynkin diagram. The previous result shows that the Dynkin diagram is identified (up 
to isomorphism) by the Lie algebra and is independent of the toral subalgebra. n 

^̂  By abuse of notation we use the symbol Ha not only for the hyperplane in the real reflection 
representation, but also as a hyperplane in t. 
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4 Classical Lie Algebras 

4.1 Classical Lie Algebras 

We want to illustrate the concepts of roots (simple and positive) and the Weyl group 
for classical groups. In these examples we can be very explicit, and the reader can 
verify all the statements directly. 

We have seen that an associative form on a simple Lie algebra is unique up to 
scale. If we are interested in the Killing form only up to scale, we can compute the 
form iT(p(a)p{b)) for any linear representation of L, not necessarily the adjoint one. 

This is in particular true for the classical Lie algebras which are presented from 
the beginning as algebras of matrices. 

In the examples we have that: 

(I) sl(n -\- l,C) = An : A Cartan algebra is formed by the space of diagonal 
matrices h := Yll=i ^i^n^ ^^^ X!/ ^i = 0- The spaces L^ are the 1-dimensional 
spaces generated by the root vectors eij, i ^ j and [h, etj] = (at — otj)eij. Thus 
the linear forms Yl^tl ^t^a ~^ ^t ~ ^j ^^ the roots of 5/(n + 1, C). We can 
consider the «/ as an orthonormal basis of a real Euclidean space R"^^. We have 
the root system A„. 
The positive roots are the elements a, — ay, i < j . The corresponding root 
vectors etj, i < j span the Lie subalgebra of strictly upper triangular matrices, 
and similarly for negative roots 

(4.1.1) u+ := 0 ^ . ^ . Ce,j, u" := 0_ .^ . Ce,„ t := 0 ; ^ , C(e„ - e,+,,,+,). 

The simple roots and the root vectors associated to simple roots are 

(4.1.2) at - a / + i , ^/,/+i 

The Chevalley generators are 

(4.1.3) et := eij+u ft := ei^ij, hi := e^ - ^/+i,/+i. 

As for the Killing form let us apply 1.9.2 to a diagonal matrix with entries xi, i = 
1 , . . . , « + 1, ^ x/ = 0 to get 

n+l 

Y,{Xi-Xjf = 2{n + \)Y,xl 

Using the remarks after 1.9.2 and in § 1.4, and the fact that sl(n-\-l,C) is simple, 
we see that for any two matrices A, B the KiUing form is 2(n + 1) tr(AB). 

( a b e\ 
c d f \ satisfies 
m n p J 

A /̂2„+i = —/2n+i A if and only if d = —a\ b, c are skew symmetric, p = 
0, n = —e\ m = —/^ 



338 10 Semisimple Lie Groups and Algebras 

A Cartan subalgebra is formed by the diagonal matrices 

n 

h := Y^otiiea - en+i,n+i)' 
1=1 

Root vectors are 

with roots 

(4.1.4) Of/ — Qfy, Of/ + Qfy, —a, — aj, i i=- j <n, ± a,, / = 1 , . . . , n. 

We have the root system of type Bn. For so{2n + 1, C) we set 

(4.1.5) 4>"̂  := Of/ — Qfy, Of/ + Qfy, i < j < n, «/. 

The simple roots and the root vectors associated to the simple roots are 

(4.1.6) a/ - a / + i , a„; e^^i - en^i+i,n-^i, ^n,2«+i -^2n+i,2«-

The Chevalley generators are 

(4.1.7) Ci := eij^i — en+i + l,n+i^ ^n := en,2n+\ — ^2n+l,2/i-

(4.1.8) fi : = Ci^ij — en+i,n+i + l, fn '•= ^2n,2n+l " ^2n+l,rt-

hi '-= eij — Ui^ij^i — en-{-i,n-\-i + ^n+/+l,n+/ + l5 

(4.1.9) hn \=en,n - ein^ln-

As for the Killing form, we apply 1.9.2 to a diagonal matrix with entries xi, i = 
1 , . . . , n, and —Xi, i = n -{-1,... ,2n and get (using 4.1.4): 

n 

J][ (x , - xjf + (Xi + xjf + 2xf] - 2(n + 1) ^ x f . 
i^j 1=1 

Using the remark after 1.9.2 and the fact that so(2n + 1, C) is simple, we see 
that for any two matrices A, 5 the Killing form is (n + 1) tr(Afi). 

""̂  := 0,.<^. C(e,7 - e„+;,„+,) 0 . ^ ^ . C(e,-,„+^ - ey.„+,) 

(4.1.10) 0"=,C(e i,2n+l — e2n+i,i), 

" " := 0,.>^. C(e,7 - e„+j,„+i) 0 . ^ ^ . C(e„+,.; - e„+;.,) 

(4.1.11) 0j^^^^C(e,-.2„+i-e2„+,,,). 
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(3) sp{2n, C) = Cn In block form a matrix A := 
a b 
c d 

satisfies A^Jin — —hn^ 

if and only \id = —a^ and Z?, c are symmetric. 
A Cartan subalgebra is formed by the diagonal matrices 

h := Y^atieu -en /). 
/ = i 

Root vectors are the elements 

etj - en+j,n+i, i ¥" J S n, Ci^n+j + ^7,n+/, ^ j < n, en+ij + en+jj /, j < n. 

with roots 

(4.1.12) Qfj — aj, Of/ + aj, —Qfj — aj, i ^ 7, ±2a/, / = 1 , . . . , n. 

We have a root system of type C„. 
For 5/7 (2n, C) we set 

(4.1.13) O^ := Of/ - ay, a, + ofy, / < 7, 2a/. 

The simple roots and the root vectors associated to simple roots are 

(4.1.14) at - a/+i, 2a„, ,̂-,/+i - ^„+/+i,„+/, en^in-

The Chevalley generators are 

fi 

hi 

hn 

= ^i,/+i - ^n+/+i,n+/, i = I,... ,n — I, en := en,2n 

= ^i+\,i — ^n+/,n+/ + l ' / = 1, . . - , « — 1, / « ' = ^2n,n 

= en,n -e2n,2n' As for the Killing form, we apply 1.9.2 to a diagonal matrix with entries xi, 
/ = 1 , . . . , n, —Xi, i = n + 1 , . . . , 2n, and get (using 4.1.14): 

n 

Y^^^i - ^7-)' + (̂ / + ^ ; ) ' + 8jcf ] = 2(n + 4) ^ x f . 

Using the usual remarks and the fact that sp(2n, C) is simple we see that for any 
two matrices A, B the Killing form is (n + 4) ir{AB). We have (/, j < n) 

(4.1.15) u+ := 0 . ^ . C{e,j - e„+;,„+,) 0 . ^ . ^^ Cte,„+; - e;,„+,), 

(4.1.16) u+ := 0 . ^ . C{eij - e„+,,„+,) 0 . .̂ ^ C(̂ ,-,„+,- + e,-,„+,), 

(4.1.17) u- := 0 . ^ . C(e,v - e„+^.„+,) 0 . ^ . C(e„+,,, + e„+,,,). 
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In this case the Lie algebra u^ in block matrix form is the matrices 

with a strictly upper triangular and b symmetric. 

(4) so(2n, C) = Dn : In block form a matrix A := I , J 

—/2„ A if and only if d = —a^ and b, c are skew symmetric. 
A Cartan subalgebra is formed by the diagonal matrices 

n 

h := 2 ^ a / t e / - en+i,n-\-i)' 
i = \ 

Root vectors are the elements 

a b 
0 -a' 

satisfies A^hn = 

^ij • en+j,n-\-i^ i i^ i :S n, et^n+j — ^j,n+i^ 

i 7^ j <n, en+ij - Cn+jj i ^ j <n 

with roots 

(4.1.18) Of/ —Uj, «/ + « ; , —Of/ —aj, i ^ j < n. 

We have the root system D„. 
For so(2n, C) we set 

(4.1.19) a>+ := at - aj, i < y, a/ + aj, i # j . 

The simple roots and the root vectors associated to simple roots are 

(4.1.20) Of/ - a / + i , a „ _ i + « „ , ^/,/ + l -en+i + \,n+i. ^n-l,2n - ^ n , 2 n - l -

The Chevalley generators are 

(4.1.21) ei := ctj^i - ^„+/+i,„+/, / = 1 , . . . , n - 1, en := ^AI-I,2« - ^«,2«-i 

fi '= ^/+l,/ - ^n+/,n+/ + l, / = 1, . . . , « - 1, fn '= ^2n,Ai-l " ^2n-l,n 

^/ • = ^/,/ — ̂ i + lj+l + ^Ai+/+l,n+/ + l — ̂ n+/,/i+/, i < « . 

^n • = en-l,n-l + ^n,n — ̂ 2/i-l,2n-l " ^2n,2n-

As for the Killing form, we apply 1.9.2 to a diagonal matrix with entries x,, / = 
! , . . . , « , —jc/, / = 1 , . . . ,n, and get (using 4.1.19): 

n 

J2[(xi - Xjf + (Xi + x,)2] = 2nJ2^l 

Using Remark 1.4 and the fact that so(2n, C) is simple (at least if w > 4), we 
see that for any two matrices A, 5 the Killing form is n tr(A^). We have 

(4.1.22) u+ := 0 ^ . ^ . Cie^j - en^j,n^i) 0 . ^ .̂ ^̂  C(e,n^j - ^,-,„+,), 

(4.1.23) u- := 0 . ^ . Cietj - ^„+,-,„+,) 0 . ^ .̂ ^̂  C(^„+/,,- - ^„4-;,/). 

In this case the Lie algebra u"̂  in block matrix form is the matrices 

with a strictly upper triangular and b skew symmetric. 

\a b 
0 -a' 
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4.2 Borel Subalgebras 

For all these (as well as for all semisimple) Lie algebras we have the direct sum 
decomposition (as vector space) 

L = u"̂  0 t 0 u " . 

One sets 

b+ := u+ 0 t, b"̂  := u~ 0 t; 

these are called two opposite Borel subalgebras. 

Theorem. The fundamental property of the Borel subalgebras is that they are max­
imal solvable. 

Proof To see that they are solvable we repeat a remark used previously. Suppose 
that a, b are two root vectors; so for r G t we have [t, a] = a(t)a, [t, b] = P{t)b. 
Then [f, [a, b]\ = [[r, a], b] + [a, [r, b]] = {a{t) +P(t))[a, b]. In other words, [a, b] 
is a weight vector (maybe 0) of weight {a{t) + ^(0)-

The next remark is that a positive root a = J^- niai (the a, simple) has a positive 
height ht{a) = ^- n/. For instance, in the case of A„, with simple roots 5, = at — 
a/+i, the positive root a, — aj = ^j^Z\ ^i+h- Hence ht{ai — aj) = j — i. 

So let bk be the subspace of b^ spanned by the root vectors relative to roots 
of height > k (visualize it for the classical groups). We get that [bk, bh] C bk+h-
Moreover, bi = u+ and [b+, b+] = [u"^0t, u+0 t ] = [u+, u+] + [t, u+] = u+ = Ui. 
From these two facts it follows inductively that the k^^ term of the derived series is 
contained in bk, and so the algebra is solvable. 

To see that it is maximal solvable, consider a proper subalgebra aD b^. Since a 
is stable under ad(0, ^ G t, a must contain a root vector /« for a negative root a. But 
then a contains the subalgebra generated by /«, e^ which is certainly not solvable, 
being isomorphic to 5/(2, C). 

5 Highest Weight Theory 

In this section we complete the work and classify the finite-dimensional irreducible 
representations of a semisimple Lie algebra, proving that they are in 1-1 correspon­
dence with dominant weights. 

5.1 Weights in Representations, Highest Weight Theory 

Let L be a semisimple Lie algebra. Theorem 2, 1.4 tells us that all finite-dimensional 
representations of L are completely reducible. 

Theorem 2, 1.5 implies that any finite-dimensional representation M of L has a 
basis formed by weight vectors under the Cartan subalgebra t. 
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Lemma. The weights that may appear are exactly the weights defined abstractly for 
the corresponding root system. 

Proof. By the representation theory of sl{2, C), each hi acts in a semisimple way 
on M. So, since the hi commute, M has a basis of weight vectors for t. Moreover, 
we know that if w is a weight vector for /?/, then we have hiU = niU, ni e Z. 
Therefore, if M is a weight vector of weight x we have x (hi) ^ Z, V/. Recall (1.8.1) 
that X(hi) = ^ ^ ^ = (x I a/). By Definition 2.4.1 we have x ^ A. D 

We should make some basic remarks in the case of the classical groups, relative 
to weights for the Cartan subalgebra and for the maximal torus. 

Start with GL(n,C): its maximal torus T consists of diagonal matrices with 
nonzero entries jc,, with Lie algebra the diagonal matrices with entries a,. Using the 
exponential and setting Xi = e^', we then have that given a rational representation of 
GL(/t, C), a vector i; is a weight vector for T if and only if it is a weight vector for t 
and the two weights are related, as they are YYi=i ^T ^ Yll=\ ^t^t-

We now treat all the classical groups as matrix groups, using the notations of 4.1, 
and make explicit the fundamental weights and the special weight p := Xl/ ̂ t-

For sl(n + 1), 
n n 

o)k\=^ai, ]~[A:/, / < n , p = ^ ( « + 1 - / ) « / , H^f"^^"'. 
i<k i<k i = \ i=\ 

For so{2n) we again consider diagonal matrices with entries of/, —a,. The weights 
are 

(5.1.1) (Dk := ̂ Qf/, i <n-2, s± := x ( X ] ^ ' ± « « ) . 
i<k ^ V / = i / 

n-l n-\ 
p = ^(n - i - \/2)oci, W^l ^n-\ll-i 

/=1 i=\ 

This shows already that the last two weights do not exponentiate to weights of the 
maximal torus of 5*0(2«, C). The reason is that there is a double covering of this 
group, the spin group, which possesses these two representations called half spin 
representations which do not factor through 5'0(2«, C). We study them in detail in 
Chapter 11, §7.2. 

For 5(9(2/1 + 1), the fundamental weights and p are 

CD], 

i<k ^ ^/=i ^ 

(5.1.2) p = £ ( n - / + l/2)a/, \\x1 ^n+\/2-i 

= 1 

The discussion of the spin group is similar (Chapter 11, §7.1) 
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For sp(2n) the fundamental weights and p are 

n n 

(5.1.3) cok := ^Qf/, i <n; p = ^ ( « + 1 - /)«,, H-^'""^^''-
i<k i = \ i=\ 

5.2 Highest Weight Theory 

Highest weight theory is a way of determining a leading term in the character of a 
representation. For this, it is convenient to introduce the dominance order of weights. 

Definition 1. Given two weights k, JJL^Q say that A ^ /x if A — /x is a linear combi­
nation of simple roots with nonnegative coefficients. 

Notice that k < JJL, called dominance order, is a partial order on weights. 

Proposition 1. Given a finite-dimensional irreducible representation M of a semi-
simple Lie algebra L. 

(1) The space of vectors M^ := {m G M| xx^m = 0} is l-dimensional and a weight 
space under i of some weight X. A is called the highest weight of M. A nonzero 
vector V e M~̂  is called a highest weight vector and denoted V),. 

(2) M~^ is the unique l-dimensional subspace ofM stable under the subalgebra b^. 
(3) X is a dominant weight. 
(4) M is spanned by the vectors obtained from M^ applying elements from u_. 
(5) All the other weights are strictly less ofk in the dominance order 

Proof From the theorem of Lie it follows that there is a nonzero eigenvector v, of 
some weight A, for the solvable Lie algebra b^. Consider the subspace of M spanned 
by the vectors fi^fi2' -- fk^ obtained from v by acting repeatedly with the elements 
fi (of weight the negative simple roots —of/). From the commutation relations, if 
hei: 

k 

hfiji2 "'fk^ = J2 f^^fi^ • • • [̂ ' A] • • • A^ + fufii • • • fiM 
j=\ 

{h)fiji,...fi,v. 

eifiJh ...fi,v = Yl, fiifh • • • fe' / / , ] . . . fkV + fiji,... fi.eiv 
7 = 1 

k 

= J2AA...s[h^...hv. 

We see that the vectors /), fi2- • • fk ^ ^^ weight vectors and span a stable submodule. 
Hence by the irreducibility of M, they span the whole of M. The weights we have 
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computed are all strictly less than A in the dominance order, except for the weight of 
V which is X. 

The set of vectors {u e M \ u'^m = 0} is clearly stable under t, and since M has a 
basis of eigenvectors for t, so must this subspace. If there were another vector u with 
this property, then there would be one which is also an eigenvector (under t) of some 
eigenvalue ji. The same argument shows that k < fi. Hence X = /JL and u eCv. This 
proves all points except for three. Then let u be a highest weight vector of weight X, 
in particular etv = 0 for all the et associated to the simple roots. This means that v is 
a highest weight vector for each sl{2, C) of type et, hf, /;. By the theory for 5/(2, C), 
§1.1, it follows that hiV = ktv for some /:/ € N a nonnegative integer, or X(hi) = kt 
for all /. This is the condition of dominance. In fact. Formula 1.9.1 states that if a, is 
the simple root corresponding to the given ^/, we have A(/z/) = T ^ ^ = (A | «/). D 

The classification of finite-dimensional irreducible modules states that each dom­
inant weight corresponds to one and only one irreducible representation. The exis­
tence can be shown in several different ways. One can take an algebraic point of view 
as in [Hul] and define the module by generators and relations in the same spirit as in 
the proof of existence of semisimple Lie algebras through Serre's relations. 

The other approach is to relate representations of semisimple Lie algebras with 
that of compact groups, and use the Weyl character formula, as in [A], [Ze]. In our 
work on classical groups we will in fact exhibit all the finite-dimensional irreducible 
representations of classical groups explicitly in tensor spaces. 

The uniqueness is much simpler. In general, for any representation M, a vector 
m G M is called a highest weight vector if u^m = 0 and m is a weight vector under t. 

Proposition 2. Let M be a finite-dimensional representation of a semisimple Lie al­
gebra L and u a highest weight vector (of weight k). The L-submodule generated by 
u is irreducible. 

Proof We can assume without loss of generality that the L-submodule generated by 
M is M. The same argument given in the proof of the previous theorem shows that u 
is the only weight vector of weight X. Decompose M = 0 - Ni into irreducible rep­
resentations. Each irreducible decomposes into weight spaces, but from the previous 
remark, u must be contained in one of the summands Â ,. Since M is the minimal 
submodule containing M, we have M = Ni is irreducible. D 

We can now prove the uniqueness of an irreducible module with a given highest 
weight. 

Theorem. Two finite-dimensional irreducible representations of a semisimple Lie 
algebra L are isomorphic if and only if they have the same highest weight. 

Proof. Suppose we have given two such modules A î, Â2 with highest weight X and 
highest weight vectors u\,U2, respectively. 

In Â i 0 Â 2, consider the vector (w i, W2); it is clearly a highest weight vector, and 
so it generates an irreducible submodule Â . Now projecting to the two summands 
we see that N is isomorphic to both Ai and A2, which are therefore isomorphic. D 
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It is quite important to observe that given two finite-dimensional representations 
M, Â , we have the following: 

Propositions. IfueM^veN are two highest weight vectors of weight A,, /x 
respectively, then u ^ v is a highest weight vector of weight k -\- fi. If all other 
weights in M (resp. N) are strictly less than X (resp. /i) in the dominance order, then 
all other weights in M <S> N are strictly less than X-\- /JL in the dominance order.^^ 

Proof By definition we have e{u^v) = eu <^ v -\- u (S) ev for every element e of the 
Lie algebra. From this the claim follows easily. D 

In particular, we will use this fact in the following forms. 

(1) Cartan multiplication Given two dominant weights A, /x we have Mx (g) M^ = 
Mx+^, + M\ where M' is a sum of irreducibles with highest weight strictly less 
than A,+/x. In particular we have the canonical projection n : M^^M^ -^ Mx^f^ 
with kernel M\ The composition M), x M^ -^ M^^ M^ -^ M),^^, (m,n) h^ 
7v(m <S> ri) is called Cartan multiplication. 

(2) Take an irreducible representation V̂  with highest weight A and highest weight 
vector vx and consider the second symmetric power S-^iVx). 

Corollary. S-^(Vx) contains the irreducible representation V2X ^ith multiplicity 1. 

Proof Vx <S> vx is di highest weight vector. By the previous proposition it generates 
the irreducible representation V2X' It is a symmetric tensor, so V2X C S-^iVx). Finally 
since all other weights are strictly less than 2A, the representation V2X appears with 
multiplicity 1. D 

5.3 Existence of Irreducible Modules 

We arrive now at the final existence theorem. It is better to use the language of as­
sociative algebras, and present irreducible L-modules as cyclic modules over the 
enveloping algebra UL. The PBW theorem and the decomposition L = u~ 0 1 0 u"̂  
imply that UL as a vector space is Ui = Uu- (S) Ut ^ Uu+ • This allows us to per­
form the following construction. If X G t*, consider the 1-dimensional representation 
Cx := Cux of t 0 u"̂ , with basis a vector ux, given by hux = X(h)ux, V/z e t, 
eiux = 0. Cx induces a module over Ui called V{X) := Ui ^Ut^u^+ CMA» called the 
Verma module. Equivalently, it is the cyclic left L'̂ /̂ -module subject to the defining 
relations 

(5.3.1) hux = X{h)ux. ^h e i, etux = 0, V/. 

We remark then that given any module M and a vector v e M subject to 5.3.1 we 
have a map j : V{X) ^^ M mapping ux to v. Such a f is also called a singular vector. 
It is easily seen from the PBW theorem that the map a \-^ aux, a e Uu- establishes 
a linear isomorphism between Uu- and V(X). Of course the extra L-module structure 
on V(X) depends on X. The module V{X) shares some basic properties of irreducible 
modules, although in general it is not irreducible and it is always infinite dimensional. 

^̂  We do not assume irreducibility. 
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(1) It is generated by a unique vector which is a weight vector under t. 
(2) It has a basis of weight vectors and the weights are all less than A in the domi­

nance order. 
(3) Moreover, each weight space is finite dimensional. For a weight y the dimension 

of its weight space is the number of ways we can write y = k — Xlae<D+ ^a^-

It follows in particular that the sum of all proper submodules is a proper sub-
module and the quotient of V{X) by the maximal proper submodule is an irreducible 
module, denoted by L(X). By construction, L(X) has a unique singular vector, the 
image of MA-

Theorem. L(X) is finite dimensional if and only ifX is dominant. 
The set of highest weights coincides with the set of dominant weights. 
The finite-dimensional irreducible representations of a semisimple Lie algebra L 

are the modules L(X) parameterized by the dominant weights. 
When X is dominant, and a weight ji appears in L(X), then /x is in the W-orbit 

of the finite set of dominant weights /x < X. 

Proof. First, let Â;̂  be a finite-dimensional irreducible module with highest weight 
vector vx and highest weight X. By Proposition 1 of §5.2, X is dominant. We clearly 
have a map of V(X) to A^ mapping ux to v^. Clearly this map induces an isomor­
phism between L(X) and N),. Thus, the theorem is proved if we see that if X is 
dominant, then L(X) is finite dimensional. We compute now in L(X). Call vx the 
class of ux. The first statement is that f^^^'^^^vx = 0. For this it suffices to see that 
f^^ '̂ "̂  ux is a singular vector in V{X). ff'^^'^^^ux is certainly a weight vector under 
t, so we need to show that Cjf^^^'^^^x for all j . If / ^. j , Cj commutes with f and 
ejf Ux — fi '^'^^CjUx = 0. Otherwise, the argument of Lemma 1.1, which we 

already used in Serre's existence theorem, shows that eif^^^'^^^ux = 0. The argu­
ment of Lemma 1.1 shows that vx generates, under the sit (2, C) given by ei, hi, f, 
an irreducible module of dimension X{hi) + 1. 

The next statement we prove is: 
For each i, L{X) is a direct sum of finite-dimensional irreducible sit (2, C) mod­

ules. 
To prove this let M be the sum of all such irreducibles. M ^ 0 from what we 

just proved. It is enough to see that M is an L-submodule or that aM c M, Wa e L. 
If A C M is a finite-dimensional ^//(2, C) submodule, consider N' := ^^^i aN. 
This is clearly a finite-dimensional subspace and we claim that it is also an sit (2, C) 
submodule. In fact, if w € sli{2, C), we have uaN C [w, a]N + auN C [M, a]N + 
aN C N\ Thus M is an L-submodule. 

Having established the previous statement we can integrate each sit (2, C) action 
to an action of the group 5'L/(2, C). As usual we find an action of the elements st 
which permutes weight spaces. From our constraint on weights, it follows that the 
only weights which can appear are those y such that w(y) < X,Ww e W. We 
know (Theorem 2.4) that each weight is W-conjugate to a dominant weight. Even 
if the simple roots are not a basis of the weight lattice, we can still write a weight 
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k = J2i ^i^i where m, are rational numbers with denominator a fixed integer d, 
for instance the index of the root lattice in the weight lattice. If A = J^t ^t^i^ M = 
Y^- piUi are two dominant weights, the condition fi < k means that Xl/(m/ — «,)«/ 
is a positive linear combination of positive roots. This implies that nt < mi for all 
/. Since also 0 < n, and drit are integers, we have that the set of dominant weights 
satisfying /JL < X is finite. We can finally deduce that L(A) is finite dimensional, since 
it is the sum of its weight spaces, each of finite dimension. The weights appearing 
are in the W-orbits of the finite set of dominant weights fi < X. D 

Modules under a Lie algebra can be composed by tensor product and also dual­
ized. In general, a tensor product L{X) (g) L(/x) is not irreducible. To determine its 
decomposition into irreducibles is a rather difficult task and the known answers are 
just algorithms. Nevertheless by Proposition 3 of §5.2, we know that L(X) 0 L(/x) 
contains the leading term L{k-\- IJL). Duality is a much easier issue: 

Proposition. L(ky = L(-wo(X)), where WQ is the longest element of W. 

Proof. The dual of an irreducible representation is also irreducible, so L(X)* = L(/x) 
for some dominant weight /x to be determined. Let M, be a basis of weight vectors 
for L(A) with weights /x/. The dual basis M' , by the basic definition of dual action, is 
a basis of weight vectors for L(A)* with weights —/x,. Thus the dual of the highest 
weight vector is a lowest weight vector with weight —A, in L(A)*. The weights of 
L(Xy are stable under the action of the Weyl group. The longest element WQ of W 
(2.3) maps negative roots into positive roots, and hence reverses the dominance order. 
We deduce that —wo(k) is the highest weight for L(X)*. D 

6 Semisimple Groups 

6.1 Dual Hopf Algebras 

At this point there is one important fact which needs clarification. We have classified 
semisimple Lie algebras and their representations and we have proved that the adjoint 
group GL associated to such a Lie algebra is an algebraic group. 

It is not true (not even for si{2, C)) that a representation of the Lie algebra in­
tegrates to a representation of GL. We can see this in two ways that have to be put 
into correspondence. The first is by inspecting the weights. We know that in general 
the weight lattice is bigger than the root lattice. On the other hand, it is clear that the 
weights of the maximal torus of the adjoint group are generated by the roots. Thus, 
whenever in a representation we have a highest weight which is not in the root lattice, 
this representation cannot be integrated to the adjoint group. The second approach 
comes from the fact that in any case a representation of the Lie algebra can be inte­
grated to the simply connected universal covering. One has to understand what this 
simply connected group is. 

A possible construction is via the method of Hopf algebras. Chapter 8, §7.2. We 
can define the simply connected group as the spectrum of its Hopf algebra of matrix 
coefficients. 
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The axioms §7.2 of that chapter have a formal duality exchanging multiplication 
and comultiplication. This suggests that, given a Hopf algebra A, we can define a 
dual Hopf algebra structure on the dual A* exchanging multiplication and comulti­
plication. This procedure works perfectly if A is finite dimensional, but in general 
we encounter the difficulty that (A 0 A)* is much bigger than A* 0 A*. The standard 
way to overcome this difficulty is to restrict the dual to: 

Definition. The finite dual A^ of an algebra A, over a field F, is the space of linear 
forms (j) : A -^ F such that the kernel of 0 contains a left ideal of finite codimension. 

On A ̂  we can define multiplication, comultiplication, antipode, unit and counit 
as dual maps of comultiplication, multiplication, antipode, counit and unit in A. 

Remark. If 7 is a left ideal and dim A/7 < oo, the homomorphism A -^ End(A/7) 
has as kernel a two-sided ideal / contained in 7. So the condition for the finite dual 
could also be replaced by the condition that the kernel of 0 contains a two-sided ideal 
of finite codimension. 

Again we can consider the elements of the finite dual as matrix coefficients for 
finite-dimensional modules. In fact, given a left ideal 7 of finite codimension, one 
has that A/7 is a finite-dimensional cyclic A-module (generated by the class T of 
1), and given a linear form 0 on A vanishing on 7, this induces a linear form 0 on 
A/7, (p(al) = <^{a). For A € A we have the formal matrix coefficient <!>(«)=: 
(0l«T). 

Conversely, let M be a finite-dimensional module, (p e M*, u G M, and con­
sider the linear form c^p^ui^) •= (0 I «")• This form vanishes on the left ideal 7 := 
{a e A\au =0} and we call it a matrix coefficient. 

Exercise. The reader should verify that on the finite dual the Hopf algebra structure 
dualizes.^^ 

Let us at least remark how one performs multiplication of matrix coefficients. By 
definition if O, \I/ e A^, we have by duality <t>^(a) := ( 0 0 ^ 1 A(a)). In other 
words, if 0 = c^^u is a matrix coefficient for a finite-dimensional module M and 
^ = c^^v 3i matrix coefficient for a finite-dimensional module Â , we have 

(D^(fl) = (0 0 i/r I A(a)u 0 v). 

The formula A{a)u 0 i; is the definition of the tensor product action; thus we have 
the basic formula 

("•I-I) ^(f),u^\l/,v = C(f>^i/,u^V' 

Since comultiplication is coassociative, A^ is associative as an algebra. It is commu­
tative if A is also cocommutative, as for enveloping algebras of Lie algebras. 

^̂  Nevertheless it may not be that A is the dual of A^. 
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As far as comultiplication is concerned, it is the dual of multiplication, and thus 
(5(0), a (g) Z?) = {^,ab). When <t> = c^p^u^ is a matrix coefficient for a finite-
dimensional module M, choose a basis w/ of M and let u^ be the dual basis. The 
identity IM = J2i "/ ^ "' ^^^ 

(C0,M, ab) = {0, alMbu) = (0, 6f T^ "/ <̂  u^bu) 
i 

= ^{(j),aui){u\bu) = ^Ccp,Ui(a)Cui,u(b)^ 
i i 

In other words, 

(6.1.2) A(c^,J = J2 
/ 

The unit element of A^ is the counit ^ : A -> F of A, which is also a matrix 
coefficient for the trivial representation. Finally for the antipode and counit we have 
S{Ccf,^u){(i) = (c^,u)(S(a)), rjic^^u) = <:*0,«(1) = (0 I «>• 

Let us apply this construction to A = (7^, the universal enveloping algebra of a 
semisimple Lie algebra. 

Recall that an enveloping algebra Ui is a cocommutative Hopf algebra with 
A(fl) = a 0 l + l(8)fl, S{a) = —a, r]{a) = 0, Wa e L. As a consequence we have 
a theorem whose proof mimics the formal properties of functions on a group. 

Proposition 1. (i) We have the Peter-Weyl decomposition, indexed by the dominant 
weights A"̂ .-

(6.1.3) U[ = 0^^^ , End(Vx)* = 0 , , , , V, ® V^. 

(ii) U[ is a finitely generated commutative Hopf algebra. One can choose as gen­
erators the matrix coefficients ofV:= 0 - V .̂, where the coi are the fundamental 
weights. 

Proof, (i) If / is a two-sided ideal of finite codimension, Ui/I is a finite-dimensional 
representation of L; hence it is completely reducible and it is the sum of some irre-
ducibles V ,̂. for finitely many distinct dominant weights A/ € A"̂ . In other words, 
UL/I is the regular representation of a semisimple algebra. From the results of Chap­
ter 6, §2 it follows that the mapping UL -^ 0 , End(Vx.) is surjective with kernel 
/ . Thus for any finite set of distinct dominant weights the dual 0 - EndCV ,̂)* maps 
injectively into the space of matrix coefficients and any matrix coefficient is sum of 
elements of End(Vx)* as X e A"̂ . 

(ii) We can use Cartan's multiplication (5.2) and formula 6.1.1 to see that 
End(Vx+/x)* C End(Vx)*End(V^)*. Since any dominant weight is a sum of fun­
damental weights, the statement follows. • 

From this proposition it follows that u[ is the coordinate ring of an algebraic 
group Gs. Our next task is to identify Gs and prove that it is semisimple and simply 
connected with Lie algebra L. We begin with: 
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Lemma. Any finite-dimensional representation V of L integrates to an action of a 
semisimple algebraic group Gy, whose irreducible representations appear all in the 
tensor powers V'^^. 

Proof In fact let us use the decomposition L = u~ 0 1 0 u"̂ . Both u~ and u"*" act as 
Lie algebras of nilpotent elements. Therefore (Chapter 7, Theorem 3.4) the map exp 
establishes a polynomial isomorphism (as varieties) of u~ and u"̂  to two unipotent 
algebraic groups U~, U^, of which they are the Lie algebras, acting on V, As for 
t we know that V is a sum of weight spaces. Set A' to be the lattice spanned by 
these weights. Thus the action of t integrates to an algebraic action of the torus T' 
having A' as a group of characters. Even more explicitly, if we fix a basis ei of V of 
weight vectors with the property that if A/, Xj are the weights of ^/, ej, respectively, 
and A/ -< Xj, then / > j we see that L "̂ is a closed subgroup of the group of strictly 
lower triangular matrices, f/"̂  is a closed subgroup of the group of strictly upper 
triangular matrices, and T' is a closed subgroup of the group of diagonal matrices. 
Then the multiplication map embeds f/~ x T' x L̂ "̂  as a closed subvariety of the 
open set of matrices which are the product of a lower triangular diagonal and an 
upper triangular matrix. On the other hand, U~TV^ is contained in the Lie group 
Gy C GL(V) which integrates L and is open in Gy. It follows (Chapter 4, Criterion 
3.3) that Gy coincides with the closure of U~TU^ and it is therefore algebraic. 
Since L is semisimple, V^^ is a semisimple representation of Gy for all m. Since 
L = [L, L] we have that Gy is contained in SL{V). We can therefore apply Theorem 
1.4 of Chapter 7 to deduce all the statements of the lemma. D 

Theorem. U[ is the coordinate ring of a linearly reductive semisimple algebraic 
group Gs(L), with Lie algebra L, whose irreducible representations coincide with 
those of the Lie algebra L. 

Proof Consider the representation V := 0 . V^. of L, with the sum running over 
all fundamental weights. We want to see that the coordinate Hopf algebra of the 
group Gs{L) := Gy (constructed in the previous lemma) is u[. Now (by Cartan's 
multiplication) any irreducible representation of L appears in a tensor power of V, 
and thus every finite-dimensional representation of L integrates to an algebraic rep­
resentation of Gs(L). We claim that u[, as 3. Hopf algebra, is identified with the 
coordinate ring C[Gs(L)] of Gs{L). In fact, the map is the one which identifies, for 
any dominant weight A, the space End(VA)* as a space of matrix coefficients either 
of L or of Gs(L). We have only to prove that the Hopf algebra operations are the 
same. There are two simple ideas to follow. 

First, the algebra of regular functions on Gs(L) is completely determined by its 
restriction to the dense set of elements exp (a), a e L. 

Second, although the element exp(«), being given by an infinite series, is not in 
the algebra UL, nevertheless, any matrix coefficient c^^ of UL extends by continuity 
to a function (0 | cxp(a)u) on the elements exp(fl) which, being the corresponding 
representation of the Gs(L) algebraic group, is the restriction of a regular algebraic 
function. 

In this way we start identifying the algebra of matrix coefficients u[ with the 
coordinate ring of Gs{L). At least as vector spaces they are both 0;^^^+ End(VA)*-



6 Semisimple Groups 351 

Next, we have to verify some identities in order to prove that we have an isomor­
phism as Hopf algebras. To verify an algebraic identity on functions on Gs(L), it 
is enough to verify it on the dense set of elements exp(«), a e L. By 6.1.1, 6.1.2. 
and the definition of matrix coefficient in the two cases, it follows that we have an 
isomorphism of algebras and coalgebras. Also the isomorphism respects unit and 
counit, as one sees easily. For the antipode, one has only to recall that in Ui, for 
a e Lv/Q have S(a) = —a so that S{e^) = e~^. 

Since for functions on Gs{L) the antipode is Sf(g) = /(g~^), we have the 
compatibility expressed by Sfie"") = /((^^)"^) = /(^"^) = /(5(^^)). We have 
thus an isomorphism between u[ and C[Gs(L)] as Hopf algebras. D 

It is still necessary to prove that the group Gs{L), the spectrum of u[, is simply 
connected and a finite universal cover of the adjoint group of L. Before doing this 
we draw some consequences of what we have already proved. Nevertheless we refer 
to Gs(L) as the simply connected group. In any case we can prove: 

Proposition 2. Let G be an algebraic group with Lie algebra a semisimple Lie alge­
bra L. Then G is a quotient ofGs{L) by a finite group. 

Proof. Any representation of L which integrates to G integrates also to a represen­
tation of Gs{L)\ thus we have the induced homomorphism. Since this induces an 
isomorphism of Lie algebras its kernel is discrete, and since it is also algebraic, it is 
finite. D 

Let us make a final remark. 

Proposition 3. Given two semisimple Lie algebras Li, L2, we have 

GALx ^ L2) = GALi) X GsiL2). 

Proof. The irreducible representations of Li 0 L2 are the tensor products M <S> N 
of irreducibles for the two Lie algebras; hence u[^^^^ = u[^ (g) U[^ form which the 
claim follows. D 

6.2 Parabolic Subgroups 

Let L be a simple Lie algebra, t a maximal toral subalgebra, 4>"̂  a system of positive 
roots and b^ the corresponding Borel subalgebra, and Gs(L) the group constructed 
in the previous section. Let cot be the corresponding fundamental weights and V, 
the corresponding fundamental representations with highest weight vectors vt. We 
consider a dominant weight X = 5Z/e7 ̂ t^t^ ^ / ^ -̂ Here / is the set of indices / 
which appear with nonnegative coefficient. We want now to perform a construction 
which in algebraic geometry is known as the Veronese embedding. Consider now 
the tensor product M := (8)/ey V.*̂ "'. It is a representation of L (not irreducible) 
with highest weight vector 0/^71^, • This vector generates inside M the irreducible 
representation V̂ -
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We have an induced Veronese map of projective spaces (say ^ = |7|): 

ieJ 

7t(Cau . . . , Cak) := Caf""' 0 . . . 0 af^\ 0 # ^/ € V/. 

This map is an embedding and it is equivariant with respect to the algebraic group 
Gs(L) (which integrates to the Lie algebra action). In particular we deduce that: 

Proposition 1. The stabilizer in Gs(L) of the line through the highest weight vector 
Vx is the intersection of the stabilizers Hi of the lines through the highest weight 
vectors Vifor the fundamental weights. We set Hj := Hi^jHi. 

Proposition 2. Let B be the Borel subgroup, with Lie algebra b'^. If H D B is an 
algebraic subgroup, then B = Hj for a subset J of the nodes of the Dynkin diagram. 

Proof Let H be any algebraic subgroup containing B. From Theorem 1, §2.1 Chap­
ter 7, there is a representation M of G and a line lin M such that H is the stabilizer 
of i. Since B c H, lis stabilized by B. The unipotent part of B (or of its Lie al­
gebra u"̂ ) must act trivially. Hence i is generated by a highest weight vector in an 
irreducible representation of G (Proposition 2 of §5.2). Hence by Proposition 1, we 
have that H must be equal to one of the groups Hj. D 

To identify all these groups let us first look at the Lie algebras. Given a set 7 C A 
of nodes of the Dynkin diagram,^^ let 4> j denote the root system generated by the 
simple roots not in this set, i.e., the set of roots in <l> which are linear combinations 
of the Q:/, / ^ J. 

Remark. The elements at, i ^ 7, form a system of simple roots for the root sys­
tem Oy. 

We can easily verify that 

is a Lie algebra. Moreover one easily has that PA^^PB = PAUB and that py is generated 
by b^ and the elements f for / ^ J. We set p, := p(/) so that py = H/eyp/. Let 
B, Pj, Pi be the connected groups in Gs(L) with Lie algebras b"̂ , py, p/. 

Lemma. The Lie algebra of Hj is pj. 

Proof Since fvx =0 if and only if (A,«/) = 0, we have that f is in the Lie algebra 
of the stabilizer of v^ if and only if m, = 0, i.e., / ^ / . Thus py is contained in the 
Lie algebra of Hj. Since these Lie algebras are all distinct and the Hj exhaust the 
list of all groups containing B, the claim follows. • 

99 We can identify the nodes with the simple roots. 
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Theorem. Pj = Hj, in particular Hj, is connected. 

Proof. We have that Pj stabiUzes tx and contains ^ , so it must coincide with one of 
the groups H and it can be only Hj. D 

Remark. Since in Proposition 2 we have seen that the subgroups Hj exhaust all 
the algebraic subgroups containing B, we have in particular that all the algebraic 
subgroups containing B are connected. ̂ ^ 

It is important to understand the Levi decomposition for these groups and alge­
bras. Decompose t = ty 0 1 } , where ij is spanned by the elements hi, i ^ J and tj-
is the orthogonal, i.e., i^ = [h ei\ (XiQi) = 0, Vi ^ J). 

Proposition 3. (i) The algebra ij := ij 0ae<Dy L^ is the Lie algebra of the (not 
necessarily irreducible) root system <t>j. 

(ii) The algebra 5j := ij 0aG<i>+-Oy La is the solvable radical ofpj. 
(Hi) pj = [j ^Bj is a Levi decomposition. 

Proof, (i) The elements et, f, hi, i ^ J art in ij and satisfy Serre's relations for 
the root system <^j. By Serre's theorem we thus have a homomorphism from the 
Lie algebra associated to <l>y to ly. This map sends a basis to a basis, so it is an 
isomorphism. 

(ii) py is contained in the Borel subalgebra of L, so it is solvable. It is easily seen 
to be an ideal of py. Since pj/sj = ij is semisimple, it is the solvable radical. 

(iii) Follows from (i), (ii). D 

We finally need to understand the weight lattice, and dominant and fundamental 
weights associated to Oy. The main remark is that if / ^ 7 and coi is the correspond­
ing fundamental weight for t, since the elements hj, j ^ J span ty we have that a)i 
restricted to ty coincides with the fundamental weight dual to a,. 

Let Lj C Pj C Gs(L)bc the corresponding semisimple group. 

Proposition 4. Ly is simply connected. 

Proof. To prove that a semisimple group is simply connected (according to our pro­
visional definition), it suffices to prove that all the representations of its Lie algebra 
integrate to representations of the group. Now if we restrict an irreducible representa­
tion Vx of Gs (L) to Ly, it will not remain irreducible, but its highest weight vector vx 
is still a highest weight vector for the corresponding Borel subalgebra ty ®ae^+ ^oi 
of Ly. From the previous discussion, all dominant weights appear in this way. D 

The subgroup L := LjT has Lie algebra ly 0 t-̂  and it is called a Levi factor of 
Py, Ly is the semisimple part of the Levi factor. L is a connected reductive group. 
If Uj denotes the unipotent radical of Py, i.e., the unipotent group with Lie algebra 
uy := ®a€<^+-<P ^« ' ^^ ^^^^ ̂ ^̂ ^ L n Uj = 1. This follows from the fact that 
a unipotent group with trivial Lie algebra is trivial. It gives the Levi decomposition 
forP: 

^^ With a more careful analysis in fact one can drop from the hypotheses the requirement to 
be algebraic. 
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Theorem (Levi decomposition). The multiplication map m : L x Uj ^^ P is an 
isomorphism of varieties and P = Li><Ujisa semidirect product. 

Proof. Since L normalizes Uj and the map m is injective with invertible Jacobian, it 
follows that the image of m is an open subgroup, hence equal to Pj since this group 
is connected and clearly gives a semidirect product. D 

In fact a similar argument (see [Bor], [Hu2], [OV]) shows in general that if G 
is any connected algebraic group with unipotent radical G^, one can find (using the 
Levi decomposition for Lie algebras and the fact that the Lie algebra is algebraic) a 
reductive subgroup L with G = L ^ Gu^ semidirect product. 

Remark. There is a certain abuse in the expression "Levi decomposition." For Lie 
algebras we used this term to find a presentation of a Lie algebra as a semidirect 
product of a semisimple and a solvable Lie algebra. Then, in order to prove Ado's 
theorem we corrected the decomposition so that it was really a presentation of a Lie 
algebra as a semidirect product of a reductive and a nilpotent Lie algebra. This is the 
type of decomposition which we are now stressing for P. 

6.3 Borel Subgroups 

We can now complete the analysis of Borel subgroups. 
Let G be a connected algebraic group. 

Definition. A maximal connected solvable subgroup of G is called a Borel sub­
group. 

A subgroup H with the property that G/H is projective (i.e., compact) is called 
Si parabolic subgroup. 

Before we start the main discussion let us make a few preliminary remarks. 

Lemma 1. (i) A Borel subgroup B of a connected algebraic group G contains the 
solvable radical ofG. 

(ii) IfG = G\xG2 is a product, a Borel subgroup BofG is a product B\ x B2 
of Borel subgroups in the two factors. 

Proof (i) Let R be the solvable radical, a normal subgroup. Thus B/? is a subgroup; 
it is connected since it is the image under multiplication of B x R. Finally BR is 
clearly solvable, hence BR = B. 

(ii) If B is connected solvable, the two projections B\, B2 on the two factors 
are connected solvable, hence B c Bi x B2. If B is maximal, we have then 
B = Bix B2. • 

In this way one reduces the study of Borel subgroups to the case of semisimple 
groups. 

Lemma 2. Let B be connected solvable and H a parabolic subgroup ofG. Then B 
is contained in a conjugate of H. 
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Proof. By Borel's fixed point theorem, B fixes some point aH G G/H, hence 
BcaHa-y U 

Theorem. For an algebraic subgroup H C G the following two conditions are 
equivalent: 

1. H is maximal connected solvable (a Bore I subgroup). 
2. H is minimal parabolic. 

Proof. We claim that it suffices to prove that if 5 is a suitably chosen Borel subgroup, 
then G/B is projective, hence B is parabolic. In fact, assume for a moment that this 
has been proved and let H be minimal parabolic. First, B C aHa~^ for some a by 
the previous lemma. Since aHa~^ is minimal parabolic, we must have B = aHa~^. 
Given any other Borel subgroup B\ by the previous lemma, B' C aBa~^. Since 
aBa~^ is solvable connected and B' maximal solvable connected, we must have 
B' = aBa-\ 

Let us prove now that G/B is projective for a suitable connected maximal solv­
able B. Since B contains the solvable radical of G, we can assume that G is semisim­
ple. We do first the case G = Gs{L), the simply connected group of a simple Lie 
algebra L. Consider for B the subgroup with Lie algebra b"̂ . We have proved in 
Theorem 6.2 that B is the stabilizer of a line I generated by a highest weight vector 
in an irreducible representation M of Gs{L) relative to a regular dominant weight. 
We claim that the orbit Gs(L)/B C P(M) is closed in this projective space, and 
hence Gs{L)/B is projective. Otherwise, one could find in its closure a fixed point 
under B which is different from t. This is impossible since it would correspond to 
a new highest weight vector in the irreducible representation M. Moreover, we also 
see that the center Z of Gs{L) is contained in 5 . In fact, since on any irreducible 
representation the center of Gs{L) acts as scalars, Z acts trivially on the projective 
space. In particular, it is contained in the stabilizer B of the line i. 

The general case now follows from 6.1. A semisimple group G is the quotient 
G = Y[i^s{l-i)/'Z^.oidi product H/ Gs {Li) of simply connected groups with simple 
Lie algebras L/ by a finite group Z in the center. Taking the Borel subgroups Bi in 
Gs(Li) we have that fj- Bi contains Z, B := f], ^t/^ is a Borel subgroup in G and 
G/B = Y\iGs(Li)/Bi. D 

Corollary of proof. The center of G is contained in all Borel subgroups. 
All Borel subgroups are conjugate. 
The normalizer of B is B. 
A parabolic subgroup is conjugate to one and only one of the groups Pj, 7 C A. 

Proof All the statements follow from the theorem and the previous lemmas. The 
only thing to clarify is why two groups Pj are not conjugate. Suppose gPjg~^ = Pi. 
Since gBg~^ is a Borel subgroup of Pj there is an /z e Pi with hgBg~^h~^ = B. 
Hence hg e B and Pj = hgPj{hg)-^ = hPih'^ = Pi. D 

The variety G/B plays a fundamental role in the theory and, by analogy to the 
linear case, it is called the (complete) flag variety. 
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By the theory developed, G/B appears as the orbit of the line associated to a 
highest weight vector for an irreducible representation V̂  when the weight A G A"̂ "̂  
is strongly dominant, i.e., in the interior of the Weyl chamber C (cf. §2.4). 

The other varieties G/Pj also play an important role and appear as the orbit of 
the line associated to a highest weight vector for an irreducible representation V̂  
when the weight A is in a given set of walls of C. 

6.4 Bruhat Decomposition 

Let L be a simple Lie algebra, t a maximal toral subalgebra, 0+ a system of positive 
roots, h^X the corresponding Borel subalgebra, and u"̂  its nilpotent radical. We need 
to make several computations with the Weyl group W and with its lift W generated 
by the elements si in the groups 5'L/(2, C). In order to avoid unnecessary confusion 
let us denote by a, the simple reflections in W lifting to the elements st eW. 

For any algebraic group G with Lie algebra L we have that Gs(L) -^ G -^ 
Ga(L) (G is between the simply connected and the adjoint groups). In G we have 
the subgroups T, B, U, i.e., the torus, Borel group, and its unipotent radical with Lie 
algebras t, b" ,̂ u"̂ , respectively. Let W be the Weyl group. 

Proposition 1. The map T x U ^^ B, (t,u) \-^ tu is an isomorphism. 

Proof. Take a faithful representation of G and a basis of eigenvectors for T, ordered 
such that U acts as strictly upper triangular matrices. Call D the diagonal and V the 
strictly upper triangular matrices in this basis. The triangular matrices form a product 
D X V inside which T x U is closed. Since clearly the image TU C B C DV is 
also open in B, we must have TU = B and the map is an isomorphism. D 

First, a simple remark: 

Definition-Proposition 2. A maximal solvable subalgebra ofL is called a Borel sub­
algebra. A Borel subalgebra b is the Lie algebra of a Borel subgroup. 

Proof Let B be the Lie subgroup associated to b. Thus B is solvable. By Proposi­
tion 3 of Chapter 7, §3.5, the Zariski closure of B is solvable and connected so B is 
algebraic and clearly a Borel subgroup. D 

Consider the adjoint action of Ga(L) on L. 

Lemma 1. The stabilizer ofb'^ and u^ under the adjoint action is B. 

Proof. Clearly B stabilizes b^.xi^. If the stabilizer were larger, it would be one of 
the groups Pj, which is impossible. D 

Remark. According to Chapter 7, we can embed G/B ina. Grassmann variety. We let 
Â  = dimu"^ (the number of positive roots) and consider the line / \ u^ C /\ L. 
The orbit of this line is G/B. Now clearly a vector in / \ ^ u"̂  is a highest weight 
vector of weight J2ae<t>+ ^ — ̂ P- ̂ ^ remains puzzling to understand if there is also 
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a more geometric interpretation of the embedding of G/B associated to p. This in 
fact can be explained using a theory that we will develop in Chapter 11, §7. The 
adjoint group G = Ga(L) preserves the Killing form and the subspace u^ is totally 
isotropic. If we embed u^ in a maximal totally isotropic subspace we can apply to it 
the spin formalism and associate to it a pure spinor. We leave to the reader to verify 
(using the theory of Chapter 7) that this spinor is a highest weight vector of weight p. 

We want to develop some geometry of the varieties G/P. We will proceed in a 
geometric way which is a special case of a general theory of Bialynicki-Birula [BB]. 

Let us consider C* acting linearly on a vector space V. Denote by p : C* ^-
GL(V) the corresponding homomorphism. p is called a l-parameter group. De­
compose V according to the weights V = J^- V;̂ ., Vrm = {v e V \ p(t)v = t'^'v}. 
The action induces an action on the projective space of lines P(V). A point p eF(V) 
is a line Cu c V, and it is a fixed point under the action of C* if and only if v is an 
eigenvector. 

Given a general point in F(V) corresponding to the line through some vector 
V = J2i ^/' ^i ^ ^m,, we have p{t)v = J2i t^'^t- In projective space we can deho-
mogenize the coordinates and choose the index / among the ones for which Vt ^ 0 
and for which the exponent m/ is minimum. Say that this happens for / = 1. Choose a 
basis of eigenvectors among which the first is v\, and consider the open set of projec­
tive space in which the coordinate of i;i is nonzero and hence can be normalized to 1. 
In this set, in the affine coordinates chosen, we have p{t)v = I'l -h Xl/>i t"^'~^^Vi. 
Therefore we have limt^o p(t)v = vi. We have thus proved in particular: 

Lemma 2. For a point p e F(V) the limit lim/^o P(Op exists and is a fixed point of 
the action. 

Remark. If W C P(V) is a T-stable projective subvariety and /? G 1^, we have 
clearly lim^_^oP(Op ^ ^ - We will apply this lemma to G/B embedded in a G-
equivariant way in the projective space of a linear representation V̂ -

We want to apply this to a regular l-parameter subgroup of 7. By this we mean 
a homomorphism p : C* -^ T with the property that if a yi^ fi are two roots, 
considered as characters of T, we have that a o p ^ P o p. Then we have the 
following simple lemma. 

Lemma 3. A subspace ofL is stable under p(C*) if and only if it is stable under T. 

Proof A subspace of L is stable under p(C*) if and only if it is a sum of weight 
spaces; since p(C*) is regular, its weight spaces coincide with the weight spaces 
o f r . D 

We now introduce some special Borel subalgebras. For any choice ^ of the set 
of positive roots, we define bvi/ = 1 0 0 ^ 6 ^ ^«- ^^ particular, let ^ = w(^^) be a 
choice of positive roots. 

We know in fact that such a ^ corresponds to a Weyl chamber and by Theorem 
2.3 3), the Weyl group acts in a simply transitive way on the chambers. Thus we have 
defined algebras indexed by the Weyl group and we set bu; = 1 0 ©ae<D+ ^w (̂a)-
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Lemma 4. Let A C ^ be a set of roots satisfying the two properties: 

(S) a.peA, a + pe^=^a-\-^eA. 

(T) Of G A, = ^ -a ^ A. 

Then A C w{^^) for some w ^W. 

Proof By the theory of chambers, it suffices to find a regular vector i; such that 
(a, v) > 0, Va € A. In fact, since the regular vectors are dense and the previous 
condition is open, it suffices to find any vector v such that (a, u) > 0, Va G A. We 
proceed in three steps. 

(1) We prove by induction on m that given a sequence a i , . . . , a^ of m elements 
in A, we have ai + ^2 H + ĉm 7̂  0. For m = 1 it is clear. Assume it for m — 1. 
If ~ot\ =a2-\ h a^, we have {—oi\, a i h «m) > 0; thus, for some j > 2, we 
have (ofi ,aj) < 0. By Lemma 2.2, ai + o?̂  is a root, by assumption in A, so we can 
rewrite the sum as a shorter sum (a\ -\-aj) -{- J2i^\ j ^i = 0» ̂  contradiction. 

(2) We find a nonzero vector v with (a, v) > 0, Va G A. In fact, assume by 
contradiction that such a vector does not exist. In particular this implies that given 
a e A, there is a )6 G A with (a, P) < 0, and hence a -\- ^ e A. Starting from 
any root ao G A we find inductively an infinite sequence Pi e A, such that«/+! := 
Pi + «/ G A. By construction «/ = ao + î i + )̂ 2 H h A-i ^ ̂ ^ • For two distinct 
indices / < j we must have a, = aj, and hence 0 = X!î =/+i )̂ /i' contradicting 1. 

(3) By induction on the root system induced on the hyperplane Hy := 
{x\(x,v) = 0}, we can find a vector w with (a, w) > 0, Vo: e A H Hy. If we 
take w sufficiently close to 0, we can still have that {p,v -j- w) > 0, "^p e A — Hy. 
The vector v -\-w solves our problem. • 

Lemma 5. Let A C ^ be a set of roots, f) := t 0 0^^^ ^oe i^ « Lie algebra if and 
only if A satisfies the property (S) of Lemma 4. 

Furthermore \) is solvable if and only if A satisfies the further property (T). 

Proof The first part follows from the formula [L^, L^] = 1^+^. For the second, if 
a, —a G A, we have inside \) a copy of 5-/(2, C) which is not solvable. Otherwise, 
we can apply the previous lemma and see that [) c bu; for some w. D 

Proposition 3. (i) A Borel subalgebra \) is stable under the adjoint action ofT if and 
only if iC f). 

(ii) The Borel subalgebras containing t are the algebras b^j, w eW. 

Proof (i) If a subalgebra f) is stable under 7, it is stable under the adjoint action of t. 
Hence I)' := f) + 1 is a subalgebra and f) is an ideal in \)'. So, if \) is maximal solvable, 
we have that t C f). The converse is clear. 

(ii) Since \) is T-stable we must have f) = 1 0 0^,^^ La satisfies the hypotheses 
of Lemma 5, and hence it is contained in a bu;. Since f) is maximal solvable, it must 
coincide with bu;. n 
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From Theorem 6.3 and all the results of this section we have: 

Theorem 1. The set ofBorel subalgebras of L is identified under the adjoint action 
with the orbit of b and with the projective homogeneous variety G/B. The fixed 
points under T of G/B are the algebras by^ indexed by W. 

We want to decompose G/B according to the theory of 1-parameters subgroups 
now. We choose a regular 1-parameter subgroup of T with the further property that 
if a is a positive root, a(p(t)) = t^", ma < 0. From Lemma 3, it follows that the 
fixed points of p(C*) on G/B coincide with the T fixed points buj. We thus define 

(6.4.1) C- := {p e G/B \ ]imp(t)p = b , } . 

From Lemma 2 we deduce: 

Proposition 4. G/B is the disjoint union of the sets C~, w e W. 

We need to understand the nature of these sets C~. We use Theorem 2 of §3.5 in 
Chapter 4. First, we study G/B in a neighborhood of B = b, taking as a model the 
variety ofBorel subalgebras. We have that u~, the Lie algebra of the unipotent group 
L^~, is a complement of b"̂  in L, so from the cited theorem we have that the orbit 
map restricted to U~ gives a map i \U~ ^^ G/B, u \-^ Ad(w)(b) which is an open 
inmiersion at 1. Since (/~ is a group and / is equivariant with respect to the actions 
of L^~, we must have that / is an open map with an invertible differential at each 
point. Moreover, / is an isomorphism onto its image, since otherwise an element of 
U~ would stabilize b+, which is manifesdy absurd. In fact, U~ C\B = \ since it is a 
subgroup oiU~ with trivial Lie algebra, hence a finite group. In a unipotent group the 
only finite subgroup is the trivial group. We have thus found an open set isomorphic 
to U~ in G/B and we claim that this set is in fact C\. To see this, notice that U~ is 
T-stable, so G/B — U~ is closed and T-stable. Hence necessarily Ci C U~. To see 
that it coincides, notice that the T-action on L̂ ~ is isomorphic under the exponential 
map to the T-action on u~. By the definition of the 1-parameter subgroup p, all the 
eigenvalues of the group on u~ are strictly positive, so for every vector w G u~ we 
have Mmt^o p(t)u = 0, as desired. 

Let us look now instead at another fixed point by^ Choose a reduced expression 
of w and correspondingly an element Syj = st^Si^ • • -^tk ^ ^ ^^ ^^ Section 3.1, st e 

SLi (2, C) the matrix _ rv • We have that by, = Syj (b) has as an open neighborhood 

the orbit of the group Suj(U~)s~^, which by the exponential map is isomorphic to 
the Lie algebra u~ = Xlaeo- ^wia)- This neighborhood is thus isomorphic, in a T-
equivariant way, to u~ with the adjoint action of T. On this space the 1-parameter 
subgroup p has positive eigenvalues on the root spaces Lyj^a) for the roots a ^ 0 
such that w(a) <0 and negative eigenvalues for the roots a -< 0 such that w(a) > 0. 
Clearly the Lie algebra of the unipotent group U~ := U~ D Suj(U~)s~^ is the sum 
of the root spaces L^, where P < 0, w~^(P) < 0. We have: 

Lemma 6. C^ is the closed set U~byj of the open set Syj(U )s^ by, = Syj 
The orbit map from U~ to C~ is an isomorphism. 
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We need one final lemma: 

Lemma 7. Decompose u = Ui 0 U2 ^5 the direct sum of two Lie subalgebras, 
say u, = Lie{Ui). The map i : Ui x U2 ^^ U, i : (JC, j ) 1-̂  xy and the map 
7 : Ui 0 U2 -> U, j{a, b) := exp(fl) cxp{b) are isomorphisms of varieties. 

Proof Since Ut is isomorphic to U/ under the exponential map, the two statements 
are equivalent. The Jacobian of j at 0 is the identity, so the same is true for /. / is 
equivariant with respect to the right and left actions of U2,U\, so the differential 
of / is an isomorphism at each point. ̂ ^̂  Moreover, / is injective since otherwise, if 
xiyi = X2y2 we have X2^x\ = y2y^^ e U\ n U2. This group is a subgroup of a 
unipotent group with trivial Lie algebra, hence it is trivial. To conclude we need a 
basic fact from affine geometry. Both U\ x U2 and U are isomorphic to some affine 
space C". We have embedded, via i,U\ x U2 into U. Suppose then that we have an 
open set A of C^ which is an affine variety isomorphic to C". Then A = C^.To see 
this, observe that in a smooth affine variety the complement of a proper affine open 
set is a hypersurface, which in the case of C^ has an equation f(x)=0. We would 
have then that the function f{x) restricted to A = C" is a nonconstant invertible 
function. Since on C" the functions are the polynomials, this is impossible. D 

Given a M; G W we know by 2.3 that if u; = /̂, . . . 5,-̂  is a reduced expression, 
the set By^j := {fi e ^'^ \ w~^iP) < 0} of positive roots sent into negative roots by 
w~^ is the set of elements fih '•= si^Si^... 5,,,_, (of/J, h = 1 , . . . , ^. Let us define 
the unipotent group Uu) as having Lie algebra 0^^^^ L^. For a root a let Ua be the 
additive group with Lie algebra L^. 

Corollary. Let w = si^ ... st^ be a reduced expression. Then the group U^ is the 
product U^^Up,... ^^, = U^U^,_, ...Up,. 

Proof. We apply induction and the fact which follows by the previous lemma that 
Uuj is the product of UujSi with U^,^. • 

In particular it is useful to write the unipotent group (7 as a product of the root 
subgroups for the positive roots, ordered by a convex ordering. We can then complete 
our analysis. 

Theorem (Bruhat decomposition). The sets C~ are the orbits of B~ acting on 
G/B. 

Each C~ = U~bu) is a locally closed subset isomorphic to an affine space of 
dimension l(wwo) where WQ is the longest element of the Weyl group. 

The stabilizer in B~ of h^ is B' fl s^{B)s-^ = TU'^, where U^ = U' n 
Sw(U)s-^ has Lie algebra ®„^^-^ w-Hct)e<i>+ ^^' 

^^^ It is not known if this is enough. There is a famous open problem, the Jacobian conjecture, 
stafing that if we have a polynomial map C" -^ C" with everywhere nonzero Jacobian, it 
is an isomorphism. 
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Proof. Most of the statements have been proved. It is clear that s^{B)s~^ is the 
stabilizer of b ;̂ = M{s^){h) in G. Hence B~ C\ Sy^{B)s~^ is the stabilizer in B~ of 
b̂ .̂ This is a subgroup with Lie algebra 

b-nb„; = te 0 L«. 

We have a decomposition 

b = t 0 y ^ La 0 ^^y Lfjf, 

which translates in groups as B~ = TU~Uu, = U'TU^ (the products giving iso­
morphisms of varieties). Hence B~buj =" U~TU^bu) = U~buj = C~. • 

Some remarks are in order. In a similar way one can decompose G/B into B-
orbits. Since B = Syj^B's'^, we have that 

G/B = \J s^,C- = IJ Bsu,,b^ = [j Bb^,^. 
weW weW weW 

Set Uu, := SujoU-^^s-^^. The cell 

with center buj is an orbit under B and has dimension i(w). 
Uuj is the unipotent group with Lie algebra 0«efi^, ^a where 

Finally C^ = {p e G/B \ lim.^oo p(t)p = b ,} . 
We have a decomposition of the open set U~ = C~ x C^^^. The cells are called 

Bruhat cells and form two opposite cell decompositions. 
Second, if we now choose G to be any algebraic group with Lie algebra L and 

Ga(L) = G/Z where Z is the finite center of G, we have that: 

Proposition 5. The preimage of a Borel subgroup Ba ofGa(L) is a Borel subgroup 
B ofG. Moreover there is a canonical 1-1 correspondence between the B-orbits on 
G/B and the double cosets of B in G, hence the decomposition: 

(6.4.2) ^ ~ I BsujB = I UyjSujB, (Bruhatdecomposition). 
weW weW 

The obvious map U^j x B ^^ U^s^B is an isomorphism. 

Proof Essentially everything has already been proved. Observe only that G/B em­
beds in the projective space of an irreducible representation. On this space Z acts as 
scalars, hence Z acts trivially on projective space. It follows that Z C B and that 
G/B = Ga{L)/Ba. • 
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The fact that the Bruhat cells are orbits (under B~ or B^) implies immediately 
that: 

Proposition 6. The closure S^\=Cu)Ofa cell Cy^ is a union of cells. 

Definition. Sy^ is called a Schubert variety. 

The previous proposition has an important consequence. It defines a partial order 
W given by jc ^ >̂  <^=^ C+ C C^. Tt 

be understood combinatorially as follows. 
in W given by jc ^ >' 4==^ C^ C C^ . This order is called the Bruhat order. It can 

Theorem (on Bruhat order). Given x, y eW we have x < y in the Bruhat order if 
and only if there is a reduced expression y = Si^ si^... 5/+̂  such that x can be written 
as a product of some of the 5/ in the same order as they appear in y. 

We postpone the proof of this theorem to the next section. 

6.5 Bruhat Order 

Let us recall the definitions and results of 6.2. Given a subset / of the nodes of 
the Dynkin diagram, we have the corresponding root system 4>y with simple roots 
as those corresponding to the nodes not in J. Its Weyl group Wj is the subgroup 
generated by the corresponding simple reflections si, i ^ J (the stabilizer of a point 
in a suitable stratum of the closure of the Weyl chamber). We also have defined a 
paraboUc subalgebra py and a corresponding parabolic subgroup P = Pj. 

Reasoning as in 6.4 we have: 

Lemma. P is the stabilizer ofpj under the adjoint action. 
G/P can be identified with the set of parabolic subalgebras conjugate topj. 
The parabolic subalgebras conjugated topj and fixed by T are the ones contain­

ing i are in 1-1 correspondence with the cosets W/ Wj. 

Proof. Let us show the last statement. If q is a parabolic subalgebra containing t, 
a maximal solvable subalgebra of q is a Borel subalgebra of L containing t, hence 
is equal to bw This implies that for some w e W v/e have that q = Swipj). The 
elements s^^ are in the group W such that W/W DT = W. One verifies inmiediately 
that the stabilizer in W of py is the preimage of Wj and the claim follows. n 

Theorem, (i) We have a decomposition P = LJu;€Wy ^w^wB. 
(ii) The variety G/P has also a cell decomposition. Its cells are indexed by ele­

ments ofW/Wjy and in the fibration n : G/N -> G/P, we have that 7t~^CxWj = 

LJu;€JcW^y ^w 

(Hi) The coset x Wj has a unique minimal element in the Bruhat order whose 
length is the dimension of the cell CxWj-

(iv) Finally, the fiber P/B over the point P of this fibration is the complete flag 
variety associated to the Levi factor Lj. 



6 Semisimple Groups 363 

Proof. All the statements follow easily from the Levi decomposition. Let L be the 
Levi factor, B the standard Borel subgroup, and R the solvable radical of P. We 
have that L fl ^ is a Borel subgroup in L and we have a canonical identification 
L/L 0 8 = P/B. Moreover, L differs from Ly by a torus part in B. Hence we have 
also P/B = Lj/Bj, with Bj = BDLj SL Borel subgroup in Lj. The Weyl group of 
Ly is Wy so the Bruhat decomposition for Lj induces a Bruhat decomposition for P 
given by i). 

By the previous lemma, the fixed points (G/P)^ are in 1-1 correspondence with 
W/Wj. We thus have a decomposition into locally closed subsets Ca, a e W/Wj 
as for the full flag variety. n 

A particularly important case of the previous analysis for us is that of a minimal 
parabolic. By this we mean a parabolic P associated to the set J of all nodes except 
one /. In this case the root system ^j is a system of type Ai and thus the semisimple 
Levi factor is the group SL(2, C). The Bruhat decomposition for P, which we denote 
P(i), reduces to only two double cosets P(i) = Bu BsiB and P{i)/B = P^C) is 
the projective line, a sphere. The two cells are the affine line and the point at infinity. 

We pass now to the crucial combinatorial lemma. 

Bruhat lemma. Let w e W and Suj = st^s^ 
expression of w = ot^ oi^. 
simple reflection a/. Then 

. SiJ^k be associated to a reduced 
cTi^k- Let us consider the element St associated to a 

BsiBBsujB = 
\BSiSy,B ifiiatw) =l(w)-{-l 

I BsiSy^B U BsujB ifl((JiW) = l(w) - 1. 

Proof For the first part it is enough to see that siBsy^B C Bsts^jB. Since sf € T 
this is equivalent to proving that siBsiSiS^jB c BsiSy^B. We have (by the Corollary 
of the previous section), that siBsi c BU^ai ^^^ 

Since i(aiw) = i(w) -f 1 we have w~^(ai) > 0, and so U^-i^ai) C B. 
In the other case w~^{ai) < 0. Set w = a/w. By the previous case Bs^jB = 

BsiBsuB. Let us thus compute BsiBBsiB. We claim that BsiBBsiB = BstBU B. 

This will prove the claim. Clearly this is true if G = SL(2, C) and 5-, = ^ = _ . ^ 

since in this case BsB U B = SL(2, C), and 1 = (-1)^^ e BsBBsB and s e 
BsBBsB since 

0 1 
- 1 0 = 

1 ll 
0 1 

0 1 
- 1 0 

- 1 - 1 
0 - 1 

0 1 
- 1 0 

ll 1 
0 1 

For the general case we notice that this is a computation in the minimal parabolic 
associated to /. We have that all the double cosets contain the solvable radical and 
thus we can perform the computation modulo the radical, reducing to the previous 
special case. n 
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Geometric lemma. Let w = OiU, t{w) = i(u) + 1. Then Sy = PSu where P D B 
is the minimal parabolic associated to the simple reflection st. 

Proof. Since P = BstBUB, fromBruhat's lemma we have PC^ = C«; UC^. More­
over, from the proof of the lemma, it follows that Cu is in the closure of Cy^', thus by 
continuity Cuj C PSu C Syj. Thus it is sufficient to prove that PSu is closed. By the 
Levi decomposition for P using SL(2, C) C P, we have that PSu = SL{2, C)Su. 
In SL(2, C) every element can be written as product ab with a e SU(2, C), and b 
upper triangular, hence in B H SL(2, C). Thus PSu = SL{2, C)Su = SU(2, C)P. 
Finally since SU(2, C) is compact, the action map SU{2, C) x Su ^^ G/B is proper 
and so its image is closed. D 

Remark. With a little more algebraic geometry one can give a proof which is valid 
in all characteristics. One forms the algebraic variety P XB Su whose points are pairs 
(p, v), p e P,v e Su, modulo the identification (pb, v) = (/?, bv), Vu e Su. 

The action map factors through a map P XB Su -> Su) which one proves to be 
proper. This in fact is the beginning of an interesting construction, the Bott-Samelson 
resolution of singularities for 5^,. 

Proof (of the theorem on Bruhat order stated in §6.4). Let y e W and Ty := Ux<yCx, 
where < is the Bruhat order. We have to prove that Ty = Sy. We work by induction 
on the length of y. Let y = 5/jW, l(y) = l{u) -\- I. By induction Su is the union 
of the cells Cx where x is obtained from the reduced expressions of w, deleting 
some factors. Given this we have by the Bruhat decomposition of P that PSu = 
(B U Bsi^ B)Su = SuU Bsi^ Su. Now if jc ^ w in the Bruhat order, we have that also 
x.Si^x precede y. This shows that Su^ C T^^. Conversely, let JC < y. Then we have 
a reduced expression y = Sj^ Sj^... Sj^ = Sj^ w and JC is obtained by dropping some 
of the factors; hence either x < w or x = Sj^x' and x' < w. The same argument as 
before shows that Cx C Sy. • 

Remark. The theory we have discussed holds in any characteristic, and in fact also 
over finite fields, where it gives the basic ingredients for the representation theory of 
the finite Chevalley groups. For instance, in the case of a finite field F with q ele­
ments, one takes the flag variety as basis of a permutation representation C[G/5]. 
One applies next the discussion of Chapter 1, §3.2, where we showed that the en-
domorphism algebra of C[G/5] is the Hecke algebra of double cosets. The the­
ory of Bruhat implies that this algebra has a basis Ty^ indexed hy w e W and that 
TuTy = Tuv/ifl(uv) = £(M)-f£(i;), while r̂ ^ = (^-1)7; .+^ for a simple reflection. 
This is the beginning of a rather deep theory. 

Remark. Given a representation Vx, )^ = J2i ^i^t ^^^^ ^̂ ^̂  ^̂ ^ stabilizer of the 
highest weight vector vx is Pj, J = {i \ mi ^ 0}, the set of T fixed points in the 
orbit GCvx = G/Pj C P( V )̂ is the set of lines of the highest weight vectors for the 
various algebras buj. These vectors are called the extremal weight vectors and their 
weights (the W orbit of A.) the extremal weights. There are (very few) representations 
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which are particularly simple, and have the extremal weight vectors as basis; these 
are called minuscule. Among them we find 
and, as we will see, the spin representations. 
are called minuscule. Among them we find the exterior powers / \ V for type A„ 

Examples. In classical groups we can represent the variety G/B in a more concrete 
way as a flag variety. We have already seen the definition of flags in Chapter 7, 
§4.1 where we described Borel subgroups of classical groups as stabilizers of totally 
isotropic flags. 

Examples of fixed points Let us understand in this language which points are the 
r-fixed points. A flag of subspaces V, of the defining representation is fixed under 
T if and only if each V, is fixed, i.e., it is a sum of eigenspaces. For SL{n, C), 
where T consists of the diagonal matrices, the standard basis ^ i , . . . , „̂ is a basis 
of distinct eigenvalues, so a T-stable space has as basis a subset of the ei. Thus a 
stable flag is constructed from a permutation a as the sequence of subspaces V, := 
(^^(1),..., ea(i)}. We see concretely how the fixed points are indexed by 5„. 

Exercise. Prove directly the Bruhat decomposition for SL(n, C), using the method 
of putting a matrix into canonical row echelon form. 

For the other classical groups, the argument is similar. Consider for instance the 
symplectic group, with basis Ci, f of eigenvectors with distinct eigenvalues. Again a 
r-stable space has as basis a subset of the et, f. The condition for such a space to be 
totally isotropic is that, for each /, it should contain at most one and not both of the 
elements et, f. This information can be encoded with a permutation plus a sequence 
of ±1 , setting +1 if ei appears, —1 if f appears. It is easily seen that we are again 
encoding the fixed flags by the Weyl group. The even orthogonal group requires a 
better analysis. The problem is that in this case, the set of complete isotropic flags 
is no longer an orbit under S0(2n,C). This is explained by the famihar example 
of the two rulings of lines in a quadric in projective 3-space (which correspond to 
totally isotropic planes in 4 space). In group theoretical terms this means that the set 
of totally isotropic spaces of dimension n form two orbits under S0i2n,C). This 
can be seen by induction as follows. One proves: 

1. If m = dim V > 2, the special orthogonal group acts transitively on the set of 
nonzero isotropic vectors. 

2. If e is such a vector the orthogonal e-^ is an m — 1-dimensional space on which 
the symmetric form is degenerate with kernel generated by e. Modulo e, we have 
an m — 1-dimensional space U := e-^/Ce. The stabilizer of ^ in SO{V) induces 
on U the full special orthogonal group. 

3. By induction, two A:-dimensional totally isotropic spaces are in the same orbit 
for k < m/2. 

4. Finally 50(2, C) is the subgroup of 5L(2, C) stabilizing the degenerate conic 
{xe-\-yf I xy = 0}. SO (2, C) consists of diagonal matrices e h^ te, f \-^ t~^f. 
There are only two isotropic lines jc = 0, >' = 0. This analysis explains why the 
fixed flags correspond to the Weyl group which has n!2"~^ elements. 
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Now let us understand the partial flag varieties G/P with P a paraboUc sub­
group. We leave the details to the reader (see also Chapter 13). 

For type A„, with group SL{V),2i parabolic subgroup is the stabilizer of a.partial 
flag Vi C V2- • • C Vk with dim V, = hi. The dimensions hi correspond to the 
positions, in the Dynkin diagram A„, of the set J of nodes that we remove. 

In particular, a maximal parabolic is the stabilizer of a single subspace, for in­
stance, in a basis ^ i , . . . , ^^, the /:-dimensional subspace spanned by ^ i , . . . , ĵt- In 
fact, the stabilizer of this subspace is the stabilizer of the line through the vector 
1̂ A 2̂ A • • • A ̂ jt ^ A^ ^- The irreducible representation /\^ V is a fundamental 

representation with weight cok. The orbit of the highest weight vector ^i A • • • A ĵ̂  is 
the set of decomposable exterior vectors. It corresponds in projective space to the set 
of A:-dimensional subspaces, which is the Grassmann variety, isomorphic to G/P[k) 

\A B\ 
where the parabolic subgroup is the group of block matrices with A a /: x /: 
matrix. We plan to return to these ideas in Chapter 13, where we will take a more 
combinatorial approach which will free us from the characteristic 0 constraint. 

Exercise. Show that the corresponding group W{k] is Sk x Sn->r\-k- The fixed points 
correspond to the decomposable vectors /̂j A ̂ ,2 A • • • A /̂̂ , i\ < ii < • -- < /^. 

For the other classical groups one has to impose the restriction that the subspaces 
of the flags be totally isotropic. One can then develop a parallel theory of isotropic 
Grassmannians. We have again a more explicit geometric interpretation of the fun­
damental representations. These representations are discussed in the next chapter. 

Exercise. VisuaUze, using the matrix description of classical groups, the paraboHc 
subgroups in block matrix form. 

For the symplectic and orthogonal group we will use the Theorems of Chapter 11. 
For the symplectic group of a space V, the fundamental weight cok corresponds 

to the irreducible representation Ao(^) ^ A^(^) consisting of traceless tensors. Its 
highest weight vector is 1̂ A ̂ 2 A . . . A ^̂  (cf. Chapter 11, §6.7). 

In A ^» the orbit under Sp{V) of the highest weight vector ^1A • • Â ;̂  is the set 
of decomposable exterior vectors which are traceless. The condition to be traceless 
corresponds to the constraint, on the corresponding /:-dimensional subspace, to be 
totally isotropic. This is the isotropic Grassmann variety. It is then not hard to see 
that to a set 7 = {7*1, 72. • • • ^ jk] of nodes corresponds the variety oipartial isotropic 
flags Vj, cVj,C"-(l V,,, dimV,; = 7,. 

Exercise. Prove that the intersection of the usual Grassmann variety, with the pro­
jective subspace P(Ao(^)) is the isotropic Grassmann variety. 

For the orthogonal groups we have, besides the exterior powers A (^) which 
remain irreducible, also the spin representations. 

On each of the ex 
quadratic form on V. 

On each of the exterior powers A^(^) we have a quadratic form induced by the 

Exercise. Prove that a decomposable vector u := v\ /\V2 /\ ... ^ Vk corresponds 
to an isotropic subspace if and only if it is isotropic. The condition that the vector u 
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corresponds to a totally isotropic subspace is more complicated although it is given 
by quadratic equations. In fact one can prove that it is: u<S)u belongs to the irreducible 
representation in /\^ V®^ of the orthogonal group, generated by the highest weight 
vector. 

Finally for the maximal totally isotropic subspaces we should use, as fundamen­
tal representations, the spin representations, although from §6.2 we know we can 
also use twice the fundamental weights and work with exterior powers (cf. Chap­
ter 11, §6.6). The analogues of the decomposable vectors are called in this cast pure 
spinors. 

6.6 Quadratic Equations 

E. Cartan discovered that pure spinors, as well as the usual decomposable vectors 
in exterior powers, can be detected by a system of quadratic equations. This phe­
nomenon is quite general, as we will see in this section. We have seen that the 
parabolic subgroups P give rise to compact homogeneous spaces G/P. Such a va­
riety is the orbit, in some projective space P(V;^), of the highest weight vector. In 
this section we want to prove a theorem due to Kostant, showing that, as a subvari-
ety of P( VA), the ideal of functions vanishing on G/P is given by explicit quadratic 
equations. 

Let vx be the highest weight vector of V̂ - We know by §5.2 Proposition 3 that 
vx (8) îA is a highest weight vector of V2A C VA 0 V̂  and Vx^Vx = Vix 0;X^2A ^M-

If i; G V;, is in the orbit of vx we must have that v ® v e Vix-
The theorem we have in mind is proved in two steps. 

1. One proves that the Casimir element C has a scalar value on Vix which is differ­
ent from the values it takes on the other V^ of the decomposition and interprets 
this as quadratic equations on G/P. 

2. One proves that these equations generate the desired ideal. 

As a first step we compute the value of C on an irreducible representation Vx, 
or equivalently on vx. Take as basis for L the elements (a, a)ea/2, /« for all posi­
tive roots, and an orthonormal basis kt of I). From 1.8.1 (computing the dual basis 
fa,,(a,a)ea/2,ki) 

We have 

faeaVx = 0, eafccVk = K , fa]vx = h^Vx = Hha)vx = (A | a)vx, 

(cf. 1.8.1). Finally, "£• kfvx = E / A(̂ /)̂ î x = (A, X)vx by duality and: 

Lemma 1. C acts on Vx by the scalar 

C{X) := ^ (A , a) + (X, A) = (A, 2p) + (A, A) = (A + p, A + yo) - (p, p). 
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We can now complete step 2. 

Lemma 2.IfiJi<Xisa dominant weight, we have C(/x) < C(k). 

Proof. C(A) - C(/x) = (X + p, A + p) - (/x + p, /x + p). Write fx = X - y with y 
a positive combination of positive roots. Then (A, + p, A, -h p) — (/x + p, /x + p) = 
(X + /x + 2p, y). Since A + /x + 2p is a regular dominant weight and y a nonzero 
sum of positive roots, we have (X + /x + 2p, y) > 0. n 

Corollary. V2x = {a e V^^VxlCa = C{2X)a}, 

Proof. The result follows from the lemma and the decomposition Vx <S> V^ = 
y2x®f^^2x ^M' which shows that the sunmiands V^ are eigenspaces for C with 
eigenvalue strictly less than the one obtained on V2X' n 

Let us now establish some notations. Let R denote the polynomial ring on the 
vector space V̂ - It equals the symmetric algebra on the dual space which is V ,̂ with 
/x = —wo(X), by Proposition 5.3. Notice that —wo(p) = p and (/x, /x) = (A,, X), so 
C(X) = C(/x). 

The space R2 of polynomials of degree 2 consists (always, by §5.3) of V2/X over 
which the Casimir element has value C(2/x) and lower terms. Let X denote the affine 
cone corresponding ioG/P cF(Vx). X consists of the vectors v which are in the G-
orbit of the multiples of 1;;̂ . Let A be the coordinate ring of X which is / ? / / , where / 
is the ideal of R vanishing on X. Notice that since X is stable under G, / is also stable 
under G, and A = 0 ^ A^ is a graded representation. Since vx <S) vx e V2x^ x ^ x e 
V2X for each element jc G X. In particular let us look at the restriction to X of the 
homogeneous polynomials 7̂ 2 of degree 2 with image A2. Let Q c /?2 be the kernel 
of the map R2 ^^ A2. Q is 3. set of quadratic equations for X. From the corollary 
it follows that Q equals the sum of all the irreducible representations different from 
¥2^, in the decomposition of R2 into irreducibles. Since V2X is irreducible, A2 is dual 
to V2X, and so it is isomorphic to ¥2^. The Casimir element C = Y.i ^i^i ^^^^ ^^ 
a second order differential operator on R and on A, where the elements of the Lie 
algebra at, bi act as derivations. 

Theorem (Kostant). Let J be the ideal generated by the quadratic equations Q 
inR. 

(i) R/ J = A, J is the ideal of the definition ofX. 
(ii) The coordinate ring ofX, as a representation ofG, is 0 ^ o ^kfi-

Proof Lei R/J = B. The Lie algebra L acts on R by derivations and, since / 
is generated by the subrepresentation Q, L preserves J and induces an action on 
B. The corresponding simply connected group acts as automorphisms. The Casimir 
element C = J2i ^(^t ^̂ ŝ as a second order differential operator on R and B. Finally, 
Bi = V^. B2 = V2/X-

Let jc, y e Bi. Then, xy e B2 = V2n. hence C{x) = C(k)x, Cixy) = C{2k)xy. 
On the other hand, C{xy) = C(x)y-\-xC(y) + J2i ^/ M^t W + ^t (^)^i W- We have 
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hence J2i ^iMbtiy) + bt{x)ai{y) = [C(2A) - 2CiX)]xy = {2k, 2p) + 4(A, A) -
2[(X, 2p) + (A, A.)] = 2(A, >.). On an element of degree k we have 

k 

C{X\X2...Xk) = ^ X i X 2 . . . C ( X / ) . . . X j t + ^ ^ X i X 2 . . . f l / , X / ...bhXj ...Xk 

i=\ i<j h 

+ X1X2 • • • bhXi . . . QhXj . . .Xk = [kC(X)+2(yj(X,k)]xiX2...Xk. 

Now [kC(X) + 2 (^) (A, A)] = CikX). We now apply Lemma 2. ^^ is a quotient of 
V^^, and on Bk we have that C acts with the unique eigenvalue C(kX); therefore we 
must have that Bk = Vk^, is irreducible. We can now finish. The map IT : B ^^ A is 
surjective by definition. If it were not injective, being L-equivariant, we would have 
that some Bk maps to 0. This is not possible since if on a variety all polynomials 
of degree k vanish, this variety must be 0. Thus J is the defining ideal of X and 
B = 0 ^ 0 VkfM is the coordinate ring of X. • 

Corollary. A vector v e Vx is such that f 0 f € VIA if and only if a scalar multiple 
ofv is in the orbit ofv^. 

Proof In fact i; (g) 1; e VIA if and only if v satisfies the quadratic relations Q. n 

Remark. On Vx 0 Vx the Casimir operator is CA 0 1 + 1 0 CA + 2D, where 

D = ^ (a, a)(^« 0 /« + /« 0 e^)/2 + ^ / : / 0 k. 

Thus a vector a G V̂  0 V̂  is in Vix if and only if Da = {X, X)a. 
The equation D(i; 01;) = (A, X)^ 0 u expands in a basis to a system of quadratic 

equations, defining in projective space the variety G/P. 

Examples. We give here a few examples of fundamental weights for classical groups. 
More examples can be obtained from the theory to be developed in the next chapters. 

1. The defining representation. 
For the special linear group acting on C" = V̂ ,, there is a unique orbit of nonzero 

vectors and so X = C". Vicox = 5'^(C"), the symmetric tensors, and the condition 
u (S) u G iŜ CC") is always satisfied. 

For the symplectic group the analysis is the same. 
For the special orthogonal group it is easily seen that X is the variety of isotropic 

vectors. In this case the quadratic equations reduce to (M, M) = 0, the canonical 
quadric. 

2. For the other fundamental weights in /\^ C", the variety X is the set of de­
composable vectors, and its associated projective variety is the Grassmann variety. 
In this case the quadratic equations give rise to the theory of standard diagrams. We 
refer to Chapter 13 for a more detailed discussion. 

For the other classical groups the Grassmann variety has to be replaced by the 
variety of totally isotropic subspaces. We discuss in Chapter 11, §6.9 the theory 
of maximal totally isotropic spaces in the orthogonal case using the theory of pure 
spinors. 
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6.7 The Weyl Group and Characters 

We now deduce the internal description of the Weyl group and its consequences for 
characters. 

Theorem 1. The normalizer NT of the maximal torus T is the union [Jyj^w ^w-^- ̂ ^ 
have an isomorphism W = Nj/T. 

Proof. Clearly Â ^ D \Jw^w ^^jT. Conversely, let a e Nj. Since a normalizes T it 
permutes its fixed points in G/B. In particular we must have that for some w e W 
the element s~^a fixes b"̂ . By Lemma 1 of 6.4, this implies that s'^a € B. If we have 
an element tu e B, t e T, M G L'̂  in the normalizer of T we also have u e Nj^ We 
claim that NT OU = 1. This will prove the claim. Otherwise NT r\U is a. subgroup 
of U which is a unipotent group normalizing T. Recall that a unipotent group is 
necessarily connected. The same argument of Lemma 3.6 of Chapter 7 shows that 
NT r\U must commute with T. This is not possible for a nontrivial subgroup of U, 
since the Lie algebra of f/ is a sum of nontrivial eigenspaces for T. D 

We collect another result which is useful for the next section. 

Proposition. If G is a semisimple algebraic group, then the center ofG is contained 
in all maximal tori. 

Proof From the corollary of 6.3 we have Z C B = TU. If we had z e Z,z = tu, we 
would have that u commutes with T. We have already remarked that the normalizer 
of r in L̂  is trivial so w = 1 and z e T. Since maximal tori are conjugate, Z is in 
every one of them. D 

We can now complete the proof of Theorem 1, Chapter 8, §4.1 in a very precise 
form. Recall that an element t e T is regular if it is not in the kernel of any root 
character. We denote by T^^^ this set of regular elements. Observe first that a generic 
element of G is a regular element in some maximal torus T. 

Lemma. The map c : G x T^^^ -^ G, c : (g, t) \-^ gtg~^ has surjective differential 
at every point. Its image is a dense open set ofG. 

Proof. Since the map c is G-equivariant, with respect to the left action on G x T^^^ 
and conjugation in G, it is enough to compute it at some element (1, ?o) where the 
tangent space is identified with L 0 t. To compute the differential we can compose 
with L -̂i and consider separately the two maps g H^ to^gtog~^ and t h^ t. The first 

map is the composition g \-^ (t^^gto, g~^) i-> tQ^gtog~^, and so it has differential 
a h^ Ad(tQ^)(a) — a; the second is the identity of t. Thus we have to prove that the 
map (a, u) v-^ [Ad{t^^) — V[a -\- u is surjective. Since by hypothesis Ad{t^^) does 
not possess any eigenvalue 1 on the root subspaces, the image of L under Ad(?o^ )̂ — 1 
is 0ĉ ĉi> La. We can then conclude that the image of c is open; since it is algebraic 
it is also dense. D 
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Theorem 2. Let G be a simply connected semisimple group. 

(i) The ring of regular functions, invariant under conjugation by G, is the polyno­
mial ring C[X(Oi] in the characters Xcoi of the fundamental representations. 

(ii) The restriction to a maximal torus T of the irreducible characters XA. -̂  ^ A"̂  
forms an integral basis of the ring Z[T]^ of W-invariant characters ofT. 

(Hi) Z[T]^ = Z[Xa>i,' " , X(jt)r] is ^polynomial ring over Z generated by the restric­
tions of the characters Xcot of the fundamental representations. 

Proof. From the previous theorem the restriction to 7 of a function on G, invariant 
under conjugation, is W-invariant. Since the union of all maximal tori in G is dense 
in G we have that this restriction is an injective map. The rings Z[A], C[A] are 
both permutation representations under W. From Theorem 2.4, every element of A 
is W-conjugate to a unique element X e A"̂ . Therefore if we set Sx, X e A^, to be 
the sum of all the conjugates under WofX e A"̂ , we have that 

(6.7.1) Z[A] = 0^^^,Z5x. 

From the highest weight theory it follows that the restriction to a maximal torus T of 
the irreducible character XA, -̂  ^ A"̂ , which by abuse of notation we still denote by 
XA. is of the form 

XA = SX-\-^C^^XS^, 

for suitable positive integers c^^x (which express the multiplicity of the space of 
weight /x in V )̂. In particular, we deduce that the irreducible characters XA, ^ ^ A+, 
form an integral basis of the ring Z[f]^ of W-invariant characters of T. Writing 
a dominant character X = Xll=i ^t^t^ ^t € N we see that xx. and YYi=\ X^\ have 
the same leading term Sx (in the dominance order) and thus Z[T]^ is a polynomial 
ring over Z generated by the restrictions of the characters XMI of the fundamental 
representations. 

The statement for regular functions over C follows from this more precise anal­
ysis. D 

The reader will note the strong connection between this general theorem and var­
ious theorems on symmetric functions and conjugation invariant functions on matri­
ces. 

6.8 The Fundamental Group 

We have constructed the group Gs{L) with the same representations as a semisimple 
Lie algebra L. We do not yet know that Gs(L) is simply connected. The difficulty 
comes from the fact that we cannot say a priori that the simply connected group asso­
ciated to L is a linear group, and so it is obtained by integrating a finite-dimensional 
representation. The next theorem answers this question. In it we will use some basic 
facts of algebraic topology for which we refer to standard books, such as [Sp], [Ha]. 
We need to know that if G is a Lie group and H a closed subgroup, we have a locally 
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trivial fibration H ^^ G ^^ G/H. To any such fibration one has an associated long 
exact sequence of homotopy groups. This will allow us to compute 7T\{G) for G an 
adjoint semisimple group. The fibration we consider is ^ ^^ G ^- G/B. In order to 
compute the long exact sequence of this fibration we need to develop some topology 
o f ^ a n d o f G / 5 . 

First, let us analyze B. Let Tc be the compact torus in T. 

Proposition. The inclusion of Tc G T C B is a homotopy equivalence. 7t\{Tc) = 
homz(r, Z). 

Proof. We remark that B = TU is homotopic to the maximal torus T since U is 
homeomorphic to a vector space. T = (C*)" is homotopic to (5^)" = W/Z^. The 
homotopy groups are 7r/(R7Z") = 0, V/ > 1, 7ri(lR7Z") = Z". The homotopy 
group of (5^)" is the free abelian group generated by the canonical inclusions of S^ 
in the n factors. In precise terms, in each homotopy class we have the loop induced 
by a 1-parameter subgroup /z: 

S' - ^ ^ Tc 

C* ^ > T 

More intrinsically ni(T) is identified with the group homz(T,Z) of 1-parameter 
subgroups. D 

By the Bruhat decomposition G/B is a union of even-dimensional cells. In order 
to apply the standard theory of CW-complexes we need more precise information. 
Let (G/B)h be the union of all the Schubert cells of complex dimension < h. We 
need to show that (G/B)h is the 2/z-dimensional skeleton of a CW complex and that 
every Schubert cell of complex dimension h is the interior of a ball of real dimen­
sion 2h with its boundary attached to {G/B)h-\. If we can prove these statements, 
we will deduce by standard theory that 7T\{G/B) = 1, n2(G/B) = H2{G/B, Z) 
having as basis the orientation classes of the complex 1-dimensional Schubert vari­
eties, which correspond to the simple reflections si and are each homeomorphic to a 
2-dimensional sphere. 

Let us first analyze the basic case of 5L(2, C). We have the action of SL(2, C) 
on P \ and in homogeneous coordinates the two cells of P^ are po := {(1,0)}, 
C := {a, 1}, a e C. The map 

1 a\ 
0 1 

0 

ll = 
a 
1 

is the parametrization we have used for the open cell. 
Consider the set D of unitary matrices: 

D:= Ir' ^ J : r^-\-s^ = \, r,s>0, 0 € [0, 27r] I , 
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Setting se^^ = x -\-iy we see that this is in fact the 2-cell jĉ  + y^ + r^ = 1, r > 0, 
with boundary the circle with r = 0. When we apply these matrices to po, we see 
that the boundary 9D fixes po and the interior D of the cell maps isomorphically to 
the open cell of P^. 

If BQ denotes the subgroup of upper triangular matrices in SL{2, C), we have, 
comparing the actions on P^ that 

DBQ = BQSBO, dD C BQ. 

We can now use this attaching map to recursively define the attaching maps for the 
Bruhat cells. For each node / of the Dynkin diagram, we define D/ to be the copy of 
D contained in the corresponding group SUi(2, C). 

Proposition. Given w = oi^ GI^ -- -^tk ^ ^ ^ reduced expression, consider the Ik-
dimensional cell Du) = Di^ X Di^ X •' • X Di^. The multiplication map: 

Di, X A, X •.. X Di, -^ Di^Di,... Di,B 

has image Sy^j. The interior of Dy^j maps homeomorphically to the Bruhat cell Cw> 
while the boundary maps to S^ — C^j. 

Proof, Let u = at^w. By induction we can assume the statement for u. Then by 
induction A,(^« - C J C {S^ - C^) and dDi^S^ C S^ since dDi^ C B.li 
remains to prove only that we have a homeomorphism D x Cu -> C^̂ . By the 
description of the cells, every element x e Cy^^ has a unique expression as x = ast^c 
where a is in the root subgroup Ucn , and c e Cu. We have that asi^ = dh, for a 
unique element d e D and b e SLi^ (2, C) upper triangular. The claim follows. D 

We thus have: 

Corollary. G/B has the structure of a CW complex, with only even-dimensional 
cells Dy^j of dimension 2l(w) indexed by the elements ofW. 

Each Schubert cell is a subcomplex. 
If w = SiU, l{w) = l(u) -\- I, then S^ is obtained from S^ by attaching the 

cell Duj. 

ni(G/B)=0,Hi{G/B,Z) = 0ifiisodd,whileH2k{G/B,Z) = ^^^^^^j^Z[Dyjl 
where D^ is the homology class induced by the cell Dy^. 

7t2(G/B) = H2(G/B,Z). 

Proof These statements are all standard consequences of the CW complex structure. 
The main remark is that in the cellular complex which computes homology, the odd 
terms are 0, and thus the even terms of the complex coincide with the homology. 

Given that 7ti(G/B) = 0, n2(G/B) = H2{G/B,Z) is the Hurewicz iso­
morphism. D 

For us, the two important facts are that TC\{G/B) = 0 and 7X2{G/B,1) = 
0 ^ Z[Ds^], a sum on the simple reflections. 
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Theorem 1. Given a root system 0, if Gs(L) is as in §6.1 then Gs{L) is simply 
connected. 

Moreover, its center Z is isomorphic to homzCA/A^, Q/Z) where A is the weight 
lattice and A^ is the root lattice. 

Finally, Z = 7t\{G), where G := GaiL) is the associated adjoint group. 

Proof. Given any dominant weight X and the corresponding irreducible represen­
tation Vx, by Schur's lemma, Z acts as some scalars which are elements 0;̂  of 
Z = hom(Z, C*). Since Z is a finite group, any such homomorphism takes val­
ues in the roots of 1, which can be identified with Q/Z. By §5.2 Proposition 3, we 
have that 0A+)tt = 0A0^^- Hence we get a map from A to Z. If this mapping were not 
surjective, we would have an element a e Z,a j^ linthe kernel of all the 0^- This is 
impossible since by definition Gs(L) has a faithful representation which is the sum 
of the K;.. Since Z c T and Z acts trivially on the adjoint representation, we have 
that the homomorphism factors to a homomorphism of A/A^ to Z. 

Apply the previous results to G = G^ (L). We obtain that the long exact sequence 
of homotopy groups of the fibration B -^ G ^^ G/B gives the exact sequence: 

(6.8.1) 0 -^ 7T2(G) -^ H2{G/B, Z) -^ homz(f, Z) -> 7ri(G) -> 0. 

It is thus necessary to understand the mapping HiiG/B, lu) -> homz(r, Z). 
Next we treat 5L(2, C). In the diagram 

f/(l,C) > SU(2X) > F^ 

1 
B > SL(2X) > F^ 

the vertical arrows are homotopy equivalences. We can thus replace 5L(2, C) by 
SU(2, C). 

We have the homeomorphisms SU(2, C) = S\ (Chapter 5, §5.1) ^ ( 1 , C) = 
5^ F^ = S^. The fibration 5^ -> 5^ ^ S^ is called the Hopffibration. 

Since 7ti{S^) = 7t2{S^) = 0 we get the isomorphism 7ri(5^) = HiiS^, Z). A 
more precise analysis shows that this isomorphism preserves the standard orienta­
tions of S^S^. 

The way to achieve the general case, for each node / of the Dynkin diagram we 
embed SU{2, C) in 5L/(2, C) C G,(L) -> G = Ga{L) and we have a diagram 

U{\X) > SU(2X) > F^ 

d 1 4 
B > G > G/B 

The mapping / of S^ = U(IX) into the maximal torus T of G is given by 
^(PV^ ,_^ 0̂/i,V=4 ^g ^ homotopy class in hom(7', Z) = hom(A,, Z) it is the ele­
ment which is the evaluation of p e Ar at hi. From 1.8.1 this value is (fi | a,). 
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Next j maps P^ to the cell D^.. 
We see that the homology class [D .̂ ] maps to the linear function r, e hom(A^, Z), 

1/ : ^ 1-̂  (^ I a,). By 2.4.2 these linear functions are indeed a basis of the dual of the 
weight lattice and this completes the proof that 

(6.8.2) homz(A/A., Q/Z) = homz(A„ Z)/homz(A, Z) = 7ri(G). 

Now we have a mapping on the universal covering group G of G to Gs(L), 
which maps surjectively the center of G, identified to hom^CA/A^, Q/Z), to the 
center Z of Gs(L). Since we have seen that Z has a surjective homomorphism to 
homz(A/A^, Q/Z) and these are all finite groups, the map from G to Gs(L) is an 
isomorphism. n 

By inspecting the Cartan matrices and computing the determinants we have the 
following table for A/A^: 

An : A/Ar = Z/(n + 1). In fact the determinant of the Cartan matrix is n + 1 
but SL(n-\-l,C) has as center the group of (n + 1)̂ ^ roots of 1. 

For G2, F4, £"8 the determinant is 1. Hence A/A^ = 0, and the adjoint groups 
are simply connected. 

For £7, D„, Bn we have A/A, = Z/(2). For £5, A/A, = Z/(3), by the compu­
tation of the determinant. 

For type Z)„ the determinant is 4. There are two groups of order 4, Z/(4) and 
Z/(2) X Z/(2). A closer inspection of the elementary divisors of the Cartan matrix 
shows that we have Z/(2) x Z/(2) when n is even and Z/(4) when n is odd. 

6.9 Reductive Groups 

We have seen the definition of reductive groups in Chapter 7 where we proved that 
a reductive group is linearly reductive, modulo the same theorem for semisimple 
groups. We have now proved this from the representation theory of semisimple Lie 
algebras. From all the work done, we have now proved that if an algebraic group is 
semisimple, that is, if its Lie algebra 9 is semisimple, then it is the quotient of the 
simply connected semisimple group of g modulo a finite subgroup of its center. The 
simply connected semisimple group of Lie algebra 9 is the product of the simply 
connected groups of the simple Lie algebras g, which decompose g. 

Lemma. Let G be a simply connected semisimple algebraic group with Lie algebra 
9 and H any algebraic group with Lie algebra \). If (j) : g ^^ \) is a complex lin­
ear homomorphism of Lie algebras, 0 integrates to an algebraic homomorphism of 
algebraic groups. 

Proof Consider a faithful linear representation of / / C GL{n,C). When we inte­
grate the homomorphism 0, we are in fact integrating a linear representation of 9. 
We know that these representations integrate to rational representations of G. D 
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Given a connected reductive group G, let Z be the connected component of its 
center. We know that Z is a torus. Decompose the Lie algebra of G as 00/ 0 3 
where 3 is the Lie algebra of Z and the algebras g, are simple. Let G/ be the simply 
connected algebraic group with Lie algebra QI . The previous lemma implies that for 
each /, there is an algebraic homomorphism 0/ \ Gi ^^ G inducing the inclusion of 
the Lie algebra. Thus we deduce a map (f) '.WiGixZ ^^ G which is the identity on 
the Lie algebras. This is thus a surjective algebraic homomorphism with finite kernel 
contained in the product ]"[/ ^/ x ^^ where Z/ is the finite center of G/. Conversely: 

Theorem. Given simply connected algebraic groups Gi with simple Lie algebras 
and centers Zi, a torus Z and a finite subgroup A C Hz ^t ^ ^ ^^^^ AP^Z = \ythe 
group Y\- Gi X Z/A is reductive with Z as its connected center 

In this way all reductive groups are obtained and classified. 
The irreducible representations of ["[/ ^/ ^ Zf A are the tensor products 

^i ^h ^ X >̂ ^̂ ^ X ^ character of Z with the restriction that A acts trivially. 

6.10 Automorphisms 

The construction of Serre (cf. §3.1) allows us to also determine the entire group 
of automorphisms of a simple Lie algebra L. Recall that since all derivations are 
inner, the adjoint group is the connected component of the automorphism group. 
Now let 0 : L ^- L be any automorphism. We use the usual notations t, 4>, O"̂  for a 
maximal toral subalgebra, roots and positive roots. Since maximal toral subalgebras 
are conjugate under the adjoint group, there is an element g of the adjoint group such 
that ^(t) = 0(t). Thus setting V̂  := g~V' we have T/r(t) = t. From Proposition 3 
of §5.4 we have that iri^^) = b ;̂ for some w ^ ^. Hence 5~̂ V (̂b"̂ ) = b"̂ . The 
outcome of this discussion is that we can restrict our study to those automorphisms 
0 for which 0(t+) = t+ and 0(b+) = b+. 

One such automorphism permutes the roots preserving the positive roots, and 
hence it induces a permutation of the simple roots, hence a symmetry of the Dynkin 
diagram. On the other hand, we see immediately that the group of symmetries 
of the Dynkin diagram is Z/(2) for type A„,n > 1 (reversing the orientation), 
Dn,n > 4 (exchanging the two last nodes n — 1, n), E^. It is the identity in cases 
Bn,Cn,G2, F4, Ej, Es. Finally, D4 has as a symmetry group the symmetric group 
5*3 (see the triality in the next Chapter 7.3). Given a permutation a of the nodes of the 
Dynkin diagram we have that we can define an automorphism (pa of the Lie algebra 
by (paihi) = had), (paiet) = Cad), (paifi) = fa{i)' This is wcll defined since the 
Serre relations are preserved. We finally have to understand the nature of an auto­
morphism fixing the roots. Thus 0(/z/) = /z/, 0(^/) = a/^/, for some numbers «/. It 
follows that (pifi) = ot^^ fi and that 0 is conjugation by an element of the maximal 
torus, of coordinates a,. 

Theorem. The full group Aut(L) of automorphisms of the Lie algebra L is the 
semidirect product of the adjoint group and the group of symmetries of the Dynkin 
diagram. 
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Proof. We have seen that we can expHcitly realize the group of symmetries of the 
Dynkin diagram as a group S of automorphisms of L and that every element of 
Aut(L) is a product of an inner automorphism in Ga{L) and an element of S. It 
suffices to see that S (^Ga{L) = 1. For this, notice that an element of 5 fi Ga(L) 
normalizes the Borel subgroup. But we have proved that in Ga(L) the normalizer of 
B is B. It is clear that BOS =1. D 

Examples. In A„, as an outer automorphism we can take x \-> (x~^)^ 
In Dn, as an outer automorphism we can take conjugation by any improper or­

thogonal transformation. 

7 Compact Lie Groups 

7.1 Compact Lie Groups 

At this point we can complete the classification of compact Lie groups. Let ^ be a 
compact Lie group and t its Lie algebra. By complete reducibility we can decompose 
6 as a direct sum of irreducible modules, hence simple Lie algebras. Among simple 
Lie algebras we distinguish between the 1-dimensional ones, which are abelian, and 
the nonabelian. The abelian summands of t add to the center 3 of t. 

The adjoint group is a compact group with Lie algebra the sum of the nonabelian 
simple sunmiands of t. First, we study the case 3 = 0 and K is adjoint. On t there is a 
^-invariant (positive real) scalar product for which the elements ad(a) are skew sym­
metric. For a skew-symmetric real matrix A we see that A^ is a negative semidefinite 
matrix, since (A^v, v) = —{Av,Av) < 0. For a negative semidefinite nonzero ma­
trix, the trace is negative and we deduce 

Proposition 1. The Killing form for the Lie algebra of a compact group is negative 
semidefinite with kernel the Lie algebra of the center 

Definition. A real Lie algebra with negative definite Killing form is called a compact 
Lie algebra. 

Before we continue, let L be a real simple Lie algebra; complexify L to L 0 C. 
By Chapter 6, §3.2 applied to L as a module on the algebra generated by the elements 
ad(a), a € L, we may have that either L 0 C remains simple or it decomposes as 
the sum of two irreducible modules. 

Lemma. Let L be a compact simple real Lie algebra. L (^Cis still simple. 

Proof Otherwise, in the same chapter the elements of ad(L) can be thought of as 
complex or quatemionic matrices (hence also complex). 

If a real Lie algebra has also a complex structure we can compute the Killing form 
in two ways, taking either the real or the complex trace. A complex n x n matrix A 
is a real 2n x 2n matrix. The real trace trK(A) is obtained from the complex trace 
as 2 Re(trc A) twice its real part. Given a complex quadratic form, in some basis it 
is a sum of squares J2h(^h + iyh)'^^ its real part is J^h ^l ~ yl- ^^^ ^^ indefinite, 
contradicting the hypotheses made on L. D 
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Proposition 2. Conversely, if for a group G the Killing form on the Lie algebra is 
negative definite, the adjoint group is a product of compact simple Lie groups. 

Proof If the Killing form (a, a) is negative definite, the Lie algebra, endowed with 
—(a, a) is a Euclidean space. The adjoint group G acts as a group of orthogonal 
transformations. We can therefore decompose L = 0 - L, as a direct sum of orthog­
onal irreducible subspaces. These are necessarily ideals and simple Lie algebras. 
Since the center of L is trivial, each L/ is noncommutative and, by the previous 
proposition, L/ 0 C is a complex simple Lie algebra. We claim that G is a closed 
subgroup of the orthogonal group. Otherwise its closure G has a Lie algebra bigger 
than ad(L). Since clearly G acts as automorphisms of the Lie algebra L, this im­
plies that there is a derivation D of L which is not inner. Since L (g) C is a complex 
semisimple Lie algebra, D is inner in L 0 C, and being real, it is indeed in L. There­
fore the group G is closed and the product of the adjoint groups of the simple Lie 
algebras L/. Each G, is a simple group. We can quickly prove at least that G, is sim­
ple as a Lie group, although a finer analysis shows that it is also simple as an abstract 
group. Since G/ is adjoint, it has no center, hence no discrete normal subgroups. A 
proper connected normal subgroup would correspond to a proper two-sided ideal of 
Li. This is not possible, since L/ is simple. D 

To complete the first step in the classification we have to see, given a complex 
simple Lie algebra L, of which compact Lie algebras it is the complexification. We 
use the theory of Chapter 8, §6.2 and §7.1. For this we look first to the Cartan 
involution. 

7.2 The Compact Form 

We prove that the semisimple groups which we found are complexifications of com­
pact groups. For this we need to define a suitable adjunction on the semisimple Lie 
algebras. This is achieved by the Cartan involution, which can be defined using the 
Serre relations. Let L be presented as in §3.1 from a root system. 

Proposition 1. There is an antilinear involution co, called the Cartan involution, on 
a semisimple Lie algebra which, on the Chevalley generators, acts as 

(7.2.1) co(ei) = f. (o{hi) = hi. 

Proof. To define co means to define a homomorphism to the conjugate opposite al­
gebra. Since all relations are defined over Q the only thing to check is that the 
relations are preserved. This is immediate. For instance ^ijht = co([ei, fj]) = 
[o)(fj),cjo(ei)] = [cj, f]. The fact that co is involutory is clear since it is so on 
the generators. n 

We now need to show that: 

Theorem 1. The real subalgebra t := {a e L\ co(a) = —a] gives a compact form 
forL. 
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Clearly for each a e L v/e have a = (a -^ o){a))/l -\- {a - a)(a))/2, 
(a — co(a))/2 e i, (a + co(a))/2 e ^/^t. Since co is an antilinear involution, 
we can easily verify that for the Killing form we have (co(a),a){b)) = (a,b). This 
gives the Hermitian form {a, b) := {a, co(b)). We claim it is positive definite. Let 
us compute (a, a) = (a,(o(a)) using the orthogonal decomposition for the Killing 
form L = 1 0 0c^^cD+(^a ® L-a)' On t = £'c, with E the real space generated by 
the elements hi, for a G £", a € C we have (a (g) a, a 0 a) = (a, a)\a\^ > 0. 

For Lot® L-a one should first remark that the elements st which lift the simple 
reflections preserve the Hermitian form. Next, one can restrict to Cei 0 C// and 
compute 

{aei + bfi, o){aei + bfi)) = {aei + bft, aft + bet) 

= {da + bb){ei, ft) = 2(aa + bb)/{oii,ai) > 0. 

In conclusion we have a self-adjoint group and a compact form: 

Proposition 2. {a, b) is a Hilbert scalar product for which the adjoint 6>/ad(x), x G 
L is given by ad(a>(x)). 

t is the Lie algebra of the unitary elements in the adjoint group of L. 

Proof We have just checked positivity. For the second statement, notice that since 
[x, coib)] = —cjL>[a)(x), b], we have 

(ad(jc)(fl), b) = (a, - ^d(x)(co{b))) = (a, a)(did(a)(x))(b))) 

(7.2.2) ={a,ad{co(xmb)). 

The last statement follows from the previous ones. D 

We have at this point proved that the adjoint group of a semisimple algebraic 
group is self-adjoint for the Hilbert structure given by the Cartan involution. In par­
ticular, it has a Cartan decomposition G = KP with K a maximal compact sub­
group. If the Lie algebra of G is simple, G is a simple algebraic group and K a 
simple compact group. Let us pass now to the simply connected cover Gs(L). Let 
Ks be the preimage of K in Gs{L). 

Proposition 3. Ks is connected maximal compact and is the universal cover of K. 
Ks is Zariski dense in Gs{L). 

Proof Since the map TT : GsiL) -> G is a finite covering, the map Ks -^ K is also 
a finite covering. The inclusion of ^ in G is a homotopy equivalence. In particular, it 
induces an isomorphism of fundamental groups. Thus Ks is connected compact and 
the universal cover of ^ . If it were not maximal compact, we would have a larger 
compact group with image a compact group strictly larger than K. The first claim 
follows. 

The Zariski closure of Ks is an algebraic subgroup H containing Ks. Its image 
in G contains ^ , so it must coincide with G. Since the kernel of TT is in H we must 
have G,(L) = H. D 
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From Proposition 2, Chapter 8, §6.1 we have: 

Theorem 2. Given any rational representation M ofGs(L) choose a Hilbert space 
structure on M invariant under Ks. Then Gs(L) is self-adjoint and Kg is the sub­
group of unitary elements. 

In the correspondence between a compact K and a self-adjoint algebraic group 
G, we have seen that the algebraic group is topologically G = K x V with V affine 
space. Thus G is simply connected if and only if K is simply connected. 

Remark. At this point we can complete the analysis by establishing the full classi­
fication of compact connected Lie groups and their algebraic analogues, the linearly 
reductive groups. Summarizing all our work we have proved: 

Theorem 3. There is a correspondence between connected compact Lie groups and 
reductive algebraic groups, which to a compact group K associates its algebraic 
envelope defined in Chapter 8, §7.2. 

Conversely, to a reductive group G we associate a maximal compact subgroup 
K unique up to conjugacy. 

In any linear representation of G, a Hilbert metric invariant under K makes G 
self-adjoint. 

G has a Cartan decomposition relative to K. 

Then Theorem 6.9 becomes the classification theorem for connected compact Lie 
groups: 

Theorem 4. Given simply connected compact groups Ki with simple Lie algebras 
and centers Zt, a compact torus T and a finite subgroup A C fl/ ^i ^ ^ ^^^^ 
AHT = I, the group f][- Ki x T/A is compact with Z as its connected center 

In this way all connected compact groups are obtained and classified. 

Proof The compact group [7- Ki x T/A is the one associated to the reductive group 
Yli Gi X Z/A, where G/ is the complexification of Ki and Z the complexification 
of r . D 

From these theorems we can also deduce the classification of irreducible repre­
sentations of reductive or compact Lie groups. For G = (f]/ Gi x 2^)/^» we must 
give for each / an irreducible representation V\, of G, and also a character x of Z. 
The representations (8), VA, 0 X ^^ the list of irreducible representations of]"]/ ^t x ^• 
Such a representation factors through G if and only if A acts trivially on it. For each 
/, ki induces a character on Z, which we still call A,. Thus the condition is that the 
character Y[i ^tX should be trivial on A. 

7.3 Final Comparisons 

We have now established several correspondences. One is between reductive groups 
and compact groups, the other between Lie algebras and groups. In particular we 
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have associated to a complex simple Lie algebra two canonical algebraic groups, the 
adjoint group and the simply connected group, their compact forms and the compact 
Lie algebra. Several other auxiliary objects have appeared in the classification, and 
we should compare them all. 

First, let us look at tori. Let L be a simple Lie algebra, t a Cartan subalge-
bra, Ga(L), Gs(L) the adjoint and simply connected groups. Ga(L) = Gs(L)/Z, 
where Z is the center of Gs{L). Consider the maximal tori Ta, Ts associated to t in 
GaiL), Gs(L), respectively. From §7.8, it follows that Z C Ts. Since Ts and Ta have 
the same Lie algebra it follows that Ta = Ts/Z. Since the exponential from the nilpo-
tent elements to the unipotents is an isomorphism of varieties, the unipotent elements 
of Gs(L) are mapped isomorphically to those of Ga{L) under the quotient map. For 
the Borel subgroup associated to positive roots we thus have TalJ'^ in Ga(L) and 
TsU'^ in Gs(L); for the Bruhat decomposition we have 

Gad) = \J U^s^TaU^. GsiL) = \J U^s^TsU^. 
weW weW 

A similar argument shows that the normalizer of Ts in Gs(L) is Nj, = 
Llwew ^w'^s ^^^ ^Ts/^ = NT^. In particular NjJTs = NrJTa = W. Another sim­
ple argument, which we leave to the reader, shows that there is a 1-1 correspondence 
between maximal tori in any group with Lie algebra L and maximal toral subalgebras 
of L. In particular maximal tori of G are all conjugate (Theorem 3.2). 

More interesting is the comparison with compact groups. In this case, the second 
main tool, besides the Cartan decomposition, is the Iwasawa decomposition. We 
explain a special case of this theorem. Let us start with a very simple remark. The 
Cartan involution, by definition, maps u"̂  to u" and t into itself. 

Let t be the compact form associated to the Cartan involution. Let us look first 
at the Cartan involution on t. From formulas 7.2.1 we see that t̂  := t Pi Hs the real 
space with basis / hj. It is clearly the Lie algebra of the maximal compact torus Tc in 
r , and T has a Cartan decomposition. 

Proposition 1. (/) 1̂  = tc 0 m where m:= {a — (o{a), ^ E u~}. 
(ii)L = t-\-b^, tc = ! n b + . 
(Hi) IfK is the compact group B D K — Tc. 

Proof, (i) The first statement follows directly from the formula 7.2.1 defining co 
which shows in particular that (o(u~) = u"̂ , a;(t) = t. It follows that every element 
of Hs of the form —a)(a) -{-t + ajeic, a e u~. 

(ii) Since b"̂  = 1 0 u"̂  any element x = a + t -\- b, a e n^, t e i, b e u~ in L 
equals a -h (0(b) -\-1 -\- b - a){b), a + (D{b) -\-teh^,b — o){b) e I showing that 
L^l + h"". 

Consider now an element —o){a) -\-1 -\- a e ^ with t € tc, a G u~. If we have 
t -\- {a — (jo(a)) € b"̂  since r € b"*" we have a — co{a) e b^. This clearly implies that 
a = 0. 

For the second part, we have from the first part that B fi ^ is a compact Lie 
group with Lie algebra tc. Clearly B O K D Tc. Thus it suffices to remark that Tc is 
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maximal compact in B. Let / / D Tc be maximal compact. Since unitary elements 
are semisimple we have that HfMJ^ = 1. Hence in the quotient, H maps injectively 
into the maximal compact group of T. This is Tc. Hence H = Tc. • 

The previous simple proposition has a very important geometric implication. Let 
K be the associated compact group. We can assume we are working in the adjoint 
case. As the reader will see, the other cases follow. Restrict the orbit map of G to 
G/B to the compact group K. The stabilizer of [B] £ G/B in K is then, by Lemma 
1 of 6.4 and the previous proposition, B H K = Tc. The tangent space of G/B in 
B is L/b'^. Hence from the same proposition the Lie algebra of t maps surjectively 
to this tangent space. By the implicit function theorem this means that the image of 
K under the orbit map contains an open neighborhood of B. By equivariance, the 
image of K is open. Since K is compact the image of K is also closed. It follows 
that K[B] = G/B and: 

Theorem 1. KB = G and the homogeneous space G/B can also be described in 
compact form as K/Tc. 

It is interesting to see concretely what this means at least in one classical group. 
For SL{n, C), the flag variety is the set of flags Vi C V2 C • • • C V„ = V. Fixing 
a maximal compact subgroup is like fixing a Hilbert structure on V. When we do 
this, each V, has an orthogonal complement L/ in Vj+i. The flag is equivalent to 
the sequence Li, L2 , . . . , L„ of mutually orthogonal lines. The group SU{n, C) acts 
transitively on this set and the stabilizer of the set of lines generated by the standard 
orthonormal basis ei in SU(n,C) is the compact torus of special unitary diagonal 
matrices. 

Consider next the normalizer NT^ of the compact torus in K. First, let us recall 
that for each / in the Dynkin diagram, the elements st inducing the simple reflections 
belong to the corresponding SUi (2, C) C 5L/ (2, C). In particular all the elements st 
belong to K. We have. 

Proposition2. NT, = Kr\NT. MoreoverNTJTC=^NT/T = W. 

Proof. If a e NT^ since Tc is Zariski dense in T we have a e Nj, hence the first 
statement. Since the classes of the elements si e Nj^ generate W = A^^/T, the 
second statement follows. D 

We have thus proved that the Weyl group can also be recovered from the compact 
group. When we are dealing with compact Lie groups the notion of maximal torus is 
obviously that of a maximal compact abelian connected subgroup (Chapter 4, §7.1). 
Let us see then: 

Theorem 2. In a compact connected Lie group K all maximal tori are conjugate. 
Every element of K is contained in a maximal torus. 

Proof Let Z be the connected part of the center of Â . If A is a torus, it is clear 
that AZ is also a compact connected abelian group. It follows that all maximal tori 
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contain Z. Hence we can pass io K/Z and assume that K is semisimple. Then K is 
a maximal compact subgroup of a semisimple algebraic group G. We use now the 
identification G/B = K/Tc, where Tc is the compact part of a maximal torus in G. 
Let A be any torus in K. Since A is abelian connected, it is contained in a maximal 
connected solvable subgroup P of G, that is a Borel subgroup of G. From the theory 
developed, we have that P has a fixed point in G/B, and hence A has a fixed point 
in K/Tc. By the fixed point principle A is conjugate to a subgroup of T .̂ If A is a 
maximal torus, we must have A conjugate to Tc. 

For the second part, every element of G is contained in a Borel subgroup, but a 
Borel subgroup intersects ^ in a maximal torus. D 

One should also see [A] for a more direct proof based on the notion of degree of 
a map between manifolds. 

Remark. In the algebraic case it is not true that every semisimple element of G is 
contained in a maximal torus! 

In the description K/Tc "wc lose the information about the 5-action and the al­
gebraic structure, but we gain a very interesting topological insight. 

Propositions. Let n G Nj,. Given a coset kTc,k e K the coset kn~^Tc is well 
defined and depends only on the class ofn in W. In this way we define an action of 
W onK/Tc. 

Proof. If t e Tc we must show that kn~^Tc = ktn~^Tc. Now ktn~^Tc = 
kn~^ntn~^Tc = kn'^Tc since ntn~^ e Tc. It is clear that the formula, since it is 
well defined, defines an action of Â^̂  on A'/Tc. We have to verify that Tc acts triv­
ially, but this is clear. D 

Example. In the case of SU(n, C) where K/ Tc is the set of sequence Li, L 2 , . . . , L„ 
of mutually orthogonal lines and W is the symmetric group, the action of a permuta­
tion or on a sequence is just the sequence La(\), La{2),..., ^a(«)-

Exercise. Calculate explicitly the action of ^2 = Z/(2) on the flag variety of 
SL{2, C) which is just the projective line. Verify that it is not algebraic. 

The Bruhat decomposition and the topological action of W on the flag variety 
are the beginning of a very deep theory which links geometry and representations 
but goes beyond the limits of this book. 




