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Invariants 

1 Applications to Invariant Theory 

In this chapter we shall make several computations of invariants of a group G acting 
linearly on a space V. In our examples we have that G is algebraic and often we are 
working over C. 

In the general case, V is a vector space over a general field F, and G C GL(V) = 
GL(n, F) is a linear group. One should consider the following basic principles: 

(1) Let F be the algebraic closure of F and let G be the Zariski closure of G in 
GL(n, F). Then a polynomial onV ^f F is invariant under G if and only if it 
is invariant under G. 

(2) Suppose F is infinite. If we find a set of generating polynomial invariants ft 
for the action of G on V 0/r F, and we suppose that the ft have coefficients in 
F, then the /) form a set of generators for the polynomial invariants under the 
action of G on V. 

(3) If F = R, F = C, then the real and the imaginary part of a polynomial invariant 
with complex coefficients are invariant. 

These remarks justify the fact that we often work geometrically over C. 

1.1 Cauchy Formulas 

Assume now that we have an action of a group G on a space U of dimension m and 
we want to compute the invariants of n copies of U. Assume first n >m. 

We think of n copies ofUsisU<^C^ and the linear group GL(n, C) acts on this 
vector space by tensor action on the second factor, commuting with the G action on 
L̂ . As we have seen in Chapter 3, the Lie algebra of GL(n, C) acts by polarization 
operators. The ring of G-invariants is stable under these actions. 

From Chapter 9, §6.3.2, the ring ViU"") of polynomial functions on [/ (g) C" 
equals 
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For the invariants under G we clearly have that 

(1.1.1) S(U' 0 C")^ = ®x,htiX)<m ^^(^*) ' ' ^ '̂ ^^^"^• 

This formula describes the ring of invariants of G acting on the polynomial ring 
of U^ as a representation of GL(n, C). In particular we see that the multiplic­
ity of 5x(C") in the ring V{U^)^ equals the dimension of the space of invariants 

The restriction on the height implies that when we restrict to m < n copies 
we again have the same formula, and hence we deduce the following by comparing 
isotypic components and by Chapter 9, §6.3.3: 

We deduce: 

Theorem 1. If dim U = m, the ring of invariants ofS(U* 0 C") is generated, under 
polarization, by the invariants ofm copies ofU. 

Proof Each isotypic component (under GL(n, C)) S),(U*)^ 0 ^'^(C") is generated 
under this group by Sx(U*)^ 0 5A(C^) since ht(X) <m. D 

There is a useful refinement of this theorem. 
If A is a partition of height exactly m, we can write it as A = /JL -\- kl^ with 

htifi) < m - 1. Then S),{U) 0 S^iC^ = (/\^ ^ 0 /\'^ C'^)^S^(U) 0 ^^.(C^). If 
the group G is contained in the special linear group the determinant of m-vectors, 
i.e., a generator of the 1-dimensional space /\^ U 0 / \ ^ C^ is invariant and we have 

SxiUf 0 5,(C-) = ( / \ " ^ 0 / \ " C'')'s^(Uf 0 5;,(C"). 

Thus we obtain by the same reasoning: 

Theorem 2. //dim U = mandG C SL(U), the ring of G-invariants ofSiU"" 0 C^) 
is generated, under polarization, by the determinant and invariants ofm — l copies 
ofU. 

Alternatively, we could use the G x [/+ invariants ^SxiU"")^ 0 ^^(C'')^^. They 
are contained in the polynomial ring S{U* 0 C^~^)[d], where d is the determinant 
of the first m vectors w/. By the theory of the highest weight, they generate, under 
polarization, all the invariants.^^^ 

^̂ ^ Every subspace W C 5(f/* (g) C") which is stable under polarization is generated by 
^^(^^(f/*^^"). Asubspace W C 5(t/*(g)C") stable under polarization and multiplication 
by the determinant d is generated (under polarizations and multiplication by d)hy W H 
5( t /*0C^- i ) . 
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1.2 FFT for SL(/I, C) 

We shall now discuss the first fundamental theorem of the special linear group 
SL{V),V = C^, acting on m copies of the fundamental representation. 

In the computation of invariants we will often use two simple ideas. 

(1) If two invariants, under a group G coincide on a set X, then they coincide on the 
set GX :={gx\g eG,x e X}. 

(2) If two polynomial invariants, under a group G coincide on a set X dense in Y, 
then they coincide on Y. 

We identify V" with the space of n x m matrices, with SL(n, C) acting by left 
multiplication. 

We consider the polynomial ring on V^ as the ring C[xij], i — 1 , . . . , n; 7 = 
1 , . . . , m, of polynomials in the entries ofnxm matrices. Set X := (xtj) the matrix 
whose entries are the indeterminates. 

Given n indices / i , . . . , /„ between 1 , . . . , m, we shall denote by [I ' l , . . . , /„] the 
determinant of the maximal minor of X extracted from the corresponding columns. 

Theorem 1. The ring of invariants C[JC/^]'^^^"''^^ coincides with the ring A := 
C[[ / i , . . . , /„]] generated by the (^) elements [/i, . . . , /„], 1 < /i < • • • < / „ < m. 

Proof. We can apply the previous theorem using the fact that the proposed ring A is 
certainly made of invariants, closed under polarization, and by definition it contains 
the determinant on the first n copies which is [1, 2 , . . . , n]. Thus it suffices to show 
that A coincides with the ring of invariants for n — 1 copies of V. 

Now it is clear that, given any n — I linearly independent vectors of V, they can 
be completed to a basis with determinant 1. Hence this set of n — 1 tuples, which is 
open, forms a unique orbit under SL{V). Therefore the invariants of n — 1 copies are 
just the constants, and the theorem is proved. D 

It is often convenient to formulate statements on invariants in a geometric way, 
that is, in the language of quotients (cf. Chapter 14, §3 for details). 

Definition. Given an affine variety V with the action of a group G and a map ic : 
V -> W, we say that :7r is a quotient under G, and denote W = V//G if the 
comorphism n* : k[W] -^ k[V] is an isomorphism of/:[W] to /:[y]^. 

We consider the space of m-tuples of vectors of dimension n as the space of 
n-tuples Ml,. . . , M„ of m-dimensional vectors, then the FFT of SL(n) becomes: 

Theorem 2. The map ( M I , . . . , M „ ) I-^ MI A . . . A M „ with image the decomposable 
vectors off\'' C" is the quotient ofiC^Y under SL{n, C)}^^ 

Let us understand this ring of invariants as a representation of GL(m, C). Notice 
that we recover a special case of Theorem 6.6 of Chapter 10. 

^̂ ^ We have not really proved everything; the reader should check that the decomposable vec­
tors are a subvariety. 
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Corollary. The space of polynomials of degree k in the elements [i\,... ,in\ as a 
representation ofGL(m,C) equals Skn(C^). 

Proof In the general formula S(U* 0 C")"^^^^^ = 0;^ 5A(^*)^^^^^ 0 SxiC^). We 
see that S^Cf/*) is always an irreducible representation of SL{U), and hence it con­
tains invariants only if it is the trivial representation. This happens if and only if 
A := A:" and Skn (C") = C. Thus we have the result that 

By comparing degrees we have the result. • 

Using the results of Chapter 10, §6.6 we could also describe the quadratic equa­
tions satisfied by the invariants. We prefer to leave this task to Chapter 13, where it 
will be approached in a combinatorial way. 

One can in fact combine this theorem with the first fundamental theorem of 
Chapter 9 §1.4 to get a theorem of invariants for SL(U) acting on U"^ 0 iU*y. 
We describe this space as pairs of matrices X e Mm,niC), Y € Mn,p(C), X of 
rows 0 1 , . . . , 0w and Y of columns MI, . . . , Up. A matrix A e SL(n, C) acts as 
(XA~^ AY) and we have invariants 

{(t>i\Uj), [M/I , M/J, [0y,, . . . , 0 ; J . 

The ((t>i\uj) are the entries of XY, and the [w/j,. . . , w/J are the determinants of 
the maximal minors of F, while [0^^,..., 0̂  J are the determinants of the maximal 
minors of X. 

Theorem 3. The ring of invariants V[U'^ 0 (U*)^]^^^^^ is the ring generated by 

{(t>i\Uj), [« / , , . . . , W/J, [0y, , . . . ,0yj . 

Proof We apply the methods of §1.1 to (/, (/* and reduce ton — \ copies of both U 
and U\ 

In this case, of the invariants described we only have the (0/|wy). Consider the 
open set in which the /i — 1 vectors wi , . . . , w„_i are linearly independent. Acting 
with SL{U) we can transform these vectors to be ^ i , . . . , ^„_i. Let us thus consider 
the subset 

W:={(0 i , . . . , 0„_ i ; ^ i i ) } . 

We can still think of the linear forms 0 i , . . . , 0„_i as rows of an « — 1 xn matrix X. 
This set W is stable under the subgroup of SL(n, C): 

H := { 
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A nonzero SL(n, C) invariant function restricts to W to a nonzero //-invariant func­
tion. 

The action of an element of / / on a matrix X consists of subtracting, from the 
last colunm of X, the linear combination with the coefficients at of the first n — I 
colunms. 

Thus, on the open set where the first n — I columns are linearly independent, 
we can make the last colunm 0 by acting with / / . Hence we see that an //-invariant 
function is independent of the coordinates of the last column. Now notice that the 
(n — 1)^ functions (0/|W;) restrict on W to the functions {(pilcj), j < n — I, which 
give all the coordinates of the first n — I colunms of X. It follows then that, given 
any invariant function / , there is a polynomial ^({0/ |M;>) which coincides with / on 
W. By the initial discussion we must have that f = gi{(t>i\uj)). D 

2 The Classical Groups 

2.1 FFT for Classical Groups 

We start here the description of the representation theory of other classical groups, in 
particular the orthogonal and the symplectic group; again we relate invariant theory 
with representation theory by the same methods used for the linear group. 

The proofs work over any field F of characteristic 0. In practice we think of 
F = R, C. 

We fix a vector space V (over F) with a nondegenerate invariant bilinear form. 
Let us denote by (M , f) a synmietric bilinear form, and by O (V) the orthogonal group 
fixing it. 

Let us denote by [M, V] an antisynmietric form and by Sp{V) the symplectic 
group fixing it. 

We start by remarking that for the fundamental representation of either one of 
these two groups we have a nondegenerate invariant bilinear form which identifies 
this representation with its dual. Thus for the first fundamental theorem it suffices 
to analyze the invariants of several copies of the fundamental representation. When 
convenient we identify vectors, or exterior products of vectors, with functions. 

The symplectic group Sp{V) on a 2n-dimensional vector space is formed by 
unimodular matrices (Chapter 5, §3.6.2). Fix a symplectic basis for which the matrix 

of the skew form is 7 = ( . " ). Given 2n vectors M/ which we write as column = ( - l o")' 
vectors of a 2n x 2n matrix A, the determinant of A equals the Pfaffian of the matrix 
A^JA which has as entries the skew products [«,, Uj], (Chapter 5, §3.6.2). Hence 

Lemma. The determinant of A = [MI, . . . , Mznl equals the Pfaffian of the matrix 
A'J A. 

The orthogonal group instead contains a subgroup of index 2, the special linear 
group SO(V) formed by the orthogonal matrices of determinant 1. 
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When we discuss either the symplectic or the special orthogonal group we as­
sume we have chosen a trivialization /\^^^ ^ F = C of the top exterior power of 
V. 

If m = dim V and f i , . . . , i;;„ are m vector variables, the element v\ A ... A Vm 
is to be understood as a function on V®'" invariant under the special linear group. 

Given a direct sum V®^ of copies of the fundamental representation, we denote 
by Ml,. . . , ŵ  a typical element of this space. 

Theorem. Let dim V = n: 

(i) The ring of invariants of several copies of the fundamental representation of 
SO(V) is generated by the scalar products (ut, Uj) and by the determinants 
Ui^ A Ui^ A . . . A Ui^. 

(ii) The ring of invariants of several copies of the fundamental representation of 
0(V) is generated by the scalar products (ui, Uj). 

(Hi) The ring of invariants of several copies of the fundamental representation of 
Sp(V) is generated by the functions [«,, Uj]. 

Before proving this theorem we formulate it in the language of matrices and 
quotients. 

Consider the group 0(n, C) of n x n matrices X with X^X = XX^ = 1 and 
consider the space of n x m matrices Y with the action of 0(«, C) given by multi-
phcation XY. Then: 

The mapping Y \-^ Y^Y from the variety ofnxm matrices to the symmetric 
m X m matrices of rank < n is a quotient under the orthogonal group. 

Similarly, let 

be the standard 2n x In skew-symmetric matrix and Sp(2n, C) the standard sym­
plectic group of the matrices X such that X^ JnX = Jn. Then consider the space of 
2n X m matrices Y with the action of Sp(2n, C) given by multiplication XY. Then: 

The mapping Y -^ Y^ JnY from the space of2n x m matrices to the variety of 
antisymmetric mxm matrices of rank < 2n is a quotient under the symplectic group. 

Proof of the Theorem for SO(V), 0(V). We prove first that the theorem for SO(V) 
implies the theorem for 0 ( y ) . 

One should remark that since SO(V) is a normal subgroup of index 2 in 0(V), 
we have a natural action of the group 0(V)/SO(V) = Z/(2) on the ring of SO(V) 
invariants. 

Let T be the element of Z/(2) corresponding to the orthogonal transformations of 
determinant —1 (improper transformations). The elements (M/, UJ) are invariants of 
this action while r(M/J AUI^A. .. ui^) = —ui^ Aut^A... ui^. It follows that the orthog­
onal invariants are polynomials in the special orthogonal invariants in which every 
monomial contains a product of an even number of elements of type ui^Aui^A.. .ui^. 
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Thus it is enough to verify the following identity: 

(M/J AUi^ A . . . UiJiUj^ AUj^ A . . . UjJ 

= det 
{Ui^.Uj,) iUi^.Uj^) . . . {Ui^.UjJ 

\{Ui^,Uj^) (Ui^,Uj^) . . . {Ui^.UjJJ 

This is easily verified, since in an orthonormal basis the matrix having as rows the 
coordinates of the vectors M, times the matrix having as columns the coordinates of 
the vectors Uj yields the matrix of scalar products. 

Now we discuss SO{V). Let A be the proposed ring of invariants. From the 
definition, this ring contains the determinants and it is closed under polarization op­
erators. 

From §1.1 we deduce that it is enough to prove the Theorem for « — 1 copies of 
the fundamental representation. We work by induction on n and can assume n > \. 

We have to use one of the two possible reductions. 

First We first prove the theorem for the case of real invariants on a real vector space 
V := R" with the standard Euclidean norm. 

This method is justified by the following analysis that we leave to the reader to 
justify. Suppose that we have an algebraic group G acting on a complex space Vc 
which is the complexification of a real space V. Assume also that we have a real sub­
group HofG which acts on V and which is Zariski dense in G. Given a polynomial 
fonVc, we have that / is invariant under G if and only if it is invariant under H. 
Such a polynomial can be uniquely decomposed into fo(v) + ifi(v) where both /o 
and / i have real coefficients. Moreover, / is //-invariant if and only if both /o and 
/ i are //-invariant. Finally, a polynomial with real coefficients is //-invariant as a 
function on Vc if and only if it is invariant as a function on V. The previous setting 
applies to SO(n, R) c SO(n, C) and (M")^ C (C^. _ 

Let et denote the canonical basis of R" and consider V := R"~^ formed by the 
vectors with the last coordinate 0 (and spanned by ^ j , / < n). 

We claim that any special orthogonal invariant E on V"~^ restricted to V is 
an invariant under the orthogonal group of V: in fact, it is clear that every orthogonal 
transformation of V can be extended to a special orthogonal transformation of V. 

By induction, therefore, we have a polynomial F((M/, UJ)) which, restricted to 

V , coincides with E. We claim that F, E coincide for every choice of n — I 
vectors wi , . . . , M„_I. 

For any such choice there is a vector u of norm 1 and orthogonal to these vec­
tors. There is a special orthogonal transformation which brings this vector u into en 
and thus the vectors w/ into the space R""^ Since both F, E are invariant and they 
coincide on R"~\ the claim follows. 
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Second If one does not like the reduction to the real case, one can argue as follows. 
Prove first that the set ofn — l tuples of vectors which span a nondegenerate subspace 
in V are a dense open set of y"~^ and then argue as before. n 

Proof of the Theorem for Sp(V). Again let R be the proposed ring of invariants for 
Sp(V), dim V = 2m. From the remark on the Pfaffian (Lemma 2.1) we see that R 
contains the determinants, and it is closed under polarization operators. 

From §1.1 we deduce that it is enough to prove the theorem for 2m — 1 copies 
of the fundamental representation. We work by induction on m. For m = 1, 
Sp(2, C) = 5L(2, C) and the theorem is clear. Assume we have chosen a symplectic 
basis et, fi, i = 1 , . . . , m, and consider the space of vectors V having coordinate 0 
in^i. 

On this space the symplectic form is degenerate with kernel spanned by f\ and 
it is again nondegenerate on the subspace W where both the coordinates of e\, f\ 
vanish. 

Claim A symplectic invariant F(MI, . . . , W2/n-i). when computed on elements 
Ui € V, is a function which depends only on the coordinates in ei, f, i > 1. 

To prove the claim, consider the symplectic transformations ei h^ tei, f\ \-^ 
t'^fi and identity on W. These transformations preserve V, induce multipUcation by 
t on the coordinate of / i , and fix the other coordinates. If a polynomial is invariant 
under this group of transformations, it must be independent of the coordinate of / i , 
hence the claim. 

Since F(MI, . . . , W2m-i) restricted to W'^^'^ is invariant under the symplectic 
group of W, by induction there exists a polynomial G([M/, UJ]) which coincides with 

F on W^^~^ and by the previous claim, also on V . We claim that G([M/ , Uj]) = 
F(ui,..., U2m-\) everywhere. 

It is enough by continuity to show this on the set of 2m — 1 vectors which are 
linearly independent. In this case such a set of vectors generates a subspace where 
the symplectic form is degenerate with a 1-dimensional kernel. Hence, by the theory 
of symplectic forms, there is a symplectic transformation which brings this subspace 
to V and the claim follows. D 

We can now apply this theory to representation theory. 

3 The Classical Groups (Representations) 

3.1 Traceless Tensors 

We start from a vector space with a nondegenerate symmetric or skew form, denoted 
( , ) , [ , ] respectively. Before we do any further computations we need to establish 
a basic dictionary deduced from the identification V = V* induced by the form. 

We first want to study the identification End(y) = V 0 V* = V 0 V and 
treat V 0 V as operators. We make explicit some formulas in the two cases (easy 
verification): 
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(M (8) v)(w) = u(v, w), (M 0 u) o (if (8) z) = M (8) (f, w)z, 

(3.1.1) tr(M 01;) = (M, i;), 

(u (8) i')(if) = w[i', u;], (M (8) 1̂) o (u; 0 z) = M 0 [f, u;]z, 

(3.1.2) tr(M0i;) = -[u,vl 

Furthermore, for the adjoint case we have (M 0 u)* = i; 0 M in the orthogonal case 
and (M 0 u)* = —i; 0 M in the symplectic case. Now we enter a more interesting area: 
we want to study the tensor powers V®" under the action of 0(V) or of 5/7(y). 

We already know that these groups are linearly reductive (Chapter 7, §3.2). In 
particular all the tensor powers are completely reducible and we want to study these 
decompositions. 

Let us denote by G one of the two previous groups. We use the notation of the 
symmetric case but the discussion is completely formal and it applies also to the 
skew case. 

First, we have to study homG(V®^, V^^). From the basic principle of Chapter 9, 
§ 1.1 we identify 

(3.1.3) homG(V®\ V® )̂ = [V^^ 0 (V*)^^f = [(V®^+^)*]^. 

Thus the space of intertwiners between y*^ ,̂ y<̂ ^ can be identified with the space of 
multilinear invariants inh -\-k vector variables. 

Explicitly, on each V®^ we have the scalar product 

(ifi 0 • • • 0 ifp, zi 0 • • • 0 Zp) := ]~[(w;/, Zi) 
i 

and we identify A e homG(V®^, V® )̂ with the invariant function 

(3.1.4) xlfAiX 0 Y) := (A(X), 7), X € V®^ Y € V^^ 

It is convenient to denote the variables as ( M I , . . . , M/,, i ; i , . . . , Vk). Theorem 2.1 
implies that these invariants are spanned by suitable monomials (the multilinear 
ones) in the scalar or skew products between these vectors. In particular there are 
nontrivial intertwiners if and only ifh-{-k = 2nis even. 

It is necessary to identify some special intertwiners. 

Contraction The map V 0 V -> C, given by M 0 f -> (M, u), is called an elementary 
contraction. 

Extension By duality in the space V 0 V, the space of G-invariants is one-
dimensional; a generator can be exhibited by choosing a pair of dual bases {et, fj) = 
8ij and setting / := J2i ^t ^ ft- The map C ^ V 0 V given by a ^^ a I is an 
elementary extension. 

We remark that since M := ^ . ( M , fi)ei = J] / ("' ^ / ) / / ' ^^ have^^ 

(3.1.5) (/, Ml 0 ui) = («i, U2). 

104 In the skew case M := 5^-(M, fi)ei = — Xl/("' ^i)fi-
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So / is identified with the given bilinear form. One can easily extend these maps 
to general tensor powers and consider the contractions and extensions 

(3.1.6) dj : V®^ -> V®^-^ eij : V®^'^ -> V^^ 

given by contracting in the indices /, j or inserting in the indices /, j (e.g., ^n : V ^• 
y®Msi;h-> Y^i^i^^^ fi)' 

Remark. Notice in particular that c/y is surjective and eij is injective. 
We have Cij = Cji, eij — Cji in the symmetric case, while ctj = —Cjt, etj = —ejt 

in the skew-symmetric case. 

In order to keep some order in these maps it is useful to consider the two sym­
metric groups Sh and Sk which act on the two tensor powers commuting with the 
group G and as orthogonal (or symplectic) transformations. 

Thus Sh X Sk acts on homG( V®\ V^^) with (a, T)A := r Aa"^ We also have an 
action of Sh x Sk on the space [(V<̂ +̂̂ )*]<̂  of multihnear invariants by the inclusion 
Sh X Sk C Sh-\-k' 

We need to show that the identification x/r : homciV^^ V®^) = [(V®^+^)*]^ is 
Sh X 5jt-equivariant. The formula V^A(^ 0 Y) := (A(X), Y) gives 

((or, T)xlfA)(X 0 Y) := xlfA(cr-'X 0 T-'Y) = (Aia'^X), r ' ^F) 

(3.1.7) = ( r A ( a - ^ X ) , r ) , 

as required. 
Consider now a multilinear monomial in the elements («/, MJ), (vh, Vk), i^p, ^q)-

In this monomial ihth + k = 2n elements (ui,... ,Uh,vi,... ,Vk) each appear once 
and the monomial itself is described by the combinatorics of the n pairings. 

Suppose we have exactly a pairings of type (w/, Vj)}^^ Then h — a, A: — a are 
both even and the remaining pairings are all homosexual. 

It is clear that under the action of the group Sh x 5^, this invariant can be brought 
to the following canonical form: 

(3.1.8) 
(h-a)/2 ik-a)/2 

Lemma. The invariant Ja corresponds to the intertwiner 

(3.1.9) 

{h-a)/2 

Q : Wl 0 W2 <8) • • • 0 M/i 1-̂  W (Wa+2/-l, «a+2/)"l 0 ' ' ' 0 Ŵ  0 /^^^^-^^^ 
/=1 

105 Weyl calls these pairings heterosexual and the others homosexual. 
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Proof. We compute explicitly 

{h-a)/2 

( n (Wa+2r-l, Wa+2/)Wl 0 ' ' ' 0 "a 0 7^^^"^^/^ Vx ^ Vi ^ ' " ^ Vkj = Ja 

from iteration of 3.1.5. • 

The main consequence of the lemma is: 

Theorem 1. Any intertwiner between V®^ and V®^ is a composition of symmetries, 
contractions and extensions. 

Remark. It is convenient, in order to normalize this composition, to perform first all 
the contractions and after all the extensions. 

We have seen that there are no intertwiners between V^^, V^^ if h + k is odd 
but there are injective G-equivariant maps V^^'-^ -> V^ for all a < h/1. 

In particular we can define the subspace T^{V^) as the sum of all the irreducible 
representations of G which do not appear in the lower tensor powers y®^-^. We 
claim: 

Theorem 2. The space T^{V^) is the intersection of all the kernels of the maps ctj. 
It is called the space oftraceless tensors. 

Proof If an irreducible representation M of G appears both in v'^^~^, a > 0, 
and in V^, by semisimplicity an isomorphism between these two submodules can be 
extended to a nonzero intertwiner between V^, y®^-^. 

From the previous theorem, these intertwiners vanish on r^(V^), and so all the 
irreducible representations in T^(V^) do not appear in v®^~'^, a > 0. The converse 
is also clear: if a contraction does not vanish on an irreducible submodule Â  of V^^, 
then the image of Â  is an isomorphic submodule of v'^^~'^. Thus we may say that 
T^{V^) contains all the new representations of G in V®^. n 

In particular, T^(V^) is a sum of isotypic components and we may study the 
restriction of the centralizer of G in V®^ to T^{V^). 

Proposition. T^{V^) is stable under the action of the symmetric group Sh, which 
spans the centralizer ofGinT^(V^). 

Proof Since clearly crctja'^ = Ca(i)a(j), V/, j , a e Sh, the first claim is clear. 
Since the group is linearly reductive, any element of the centralizer of G acting 

on r^(V^) is the restriction of an element of the centralizer of G acting on V^^. 
From Theorem 1, these elements are products of symmetries, contractions and 

extensions. As soon as at least one contraction appears, the operator vanishes on 
T^(V^). Hence only the symmetries are left. • 
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Thus, we have again a situation similar to the one for the linear group, except 
that the space T^(V^) is a. more complicated object to describe. Our next task is to 
decompose 

where the M^ are the irreducible representations of Sh, which are given by the theory 
of Young symmetrizers, and the U), are the corresponding new representations of G. 
We thus have to discover which A appear. In order to do this we will have to work 
out the second fundamental theorem. 

3.2 The Envelope of 0(V) 

Let us complete the analysis with a simple presentation of the algebra Up spanned 
by the orthogonal group acting on tensor space V^^, for some p. 

By definition this algebra is contained in the algebra Ap spanned by the lin­
ear group acting on V^^ and this, in turn, is formed by the symmetric elements of 
End{V)^P. 

We have already, by complete reducibility, that Up is the centralizer of 
Endo(V)(V®^), and by the analysis of the previous section one sees immediately 
that this centralizer is generated by the symmetric group Sp and a single operator: 

(3.2.1) C : Vi(S> V2<S>' •' <SiVp -^ (vi, vi)! 0 f3 0 • • • 0 f̂ . 

Thus we want to understand the condition for an element of Ap to commute with C. 
We claim that this is equivalent to the following system of linear equations. Define 
the following linear map of End(V)®^ to End(V)®^^-^^: 

;r : Ai 0 A2 0 A3 0 • • • 0 Ap ^ A1A2 0 A3 0 • • • 0 A^. 

Theorem. An element X e Ap is also in Up if and only if 7t(X) is of the form 
a l V 0 y. Ye End(V)®(^-2)^ a e Fa scalar. 

Proof First, it is clear that the set of elements satisfying the given condition forms 
a linear space containing the elements A*̂ ,̂ A G 0(V). Let us verify indeed that 
the condition is just the condition to commute with C. As usual we can work on 
decomposable elements Ai 0 A2 0 F. The condition to conmiute with C is that 
(AiM, A2v)I = (w, v)Ai 0 A2/, that is, taking vectors a, b, that 

(fl, b)(Aiu, A2V) = (a(S)b, (AIM, A21;)/) = (w, v)(a 0 ^, Ai 0 A2/) 

= (M, v)(A[a, A'^b) 

implies that B := A1A2 satisfies (a,b)(u, B^v) = (u,v)(a, Bb). Taking the 
a,b,u,v from an orthonormal basis, we deduce the identities for the entries xtj of B: 

Xh,k^i = ^iJ^h =^ ^iJ = ^h,h. Xij = 0 if / 7^ j . 

That is, 5 is a scalar matrix. a 
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4.1 Example: Representations of SL(V) 

Let V be a vector space with a given basis ^ i , . . . , ^„. To V we associate the torus of 
diagonal matrices and the Borel subgroup B of upper triangular matrices. 

Proposition. The vector e\ A e2 A ... A ek is a highest weight vector, for B, of the 
exterior power /\ V, as an SL(V) module, of weight cok. 

Proof Apply 

k 

ei,j(e\ A ̂ 2 A . . . A ̂ ^) = ^ ^ 1 A 2̂ A . . . eij{eh) A...Aek 

k 

= ^ ^1 A ^2 A . . . Sj^hei A . . . A ^^, 

which is 0, since, if ^j^h / 0 we obtain two factors ei in the product. When we apply 
a diagonal matrix ^ oiieii to the vector we obtain the weight cok = Xl/=i ^i • ^ 

For sl(n, C) consider the representation on a tensor power associated to a parti­
tion X := h\,h2,... ,hn and dual partition ni, ^ 2 , . . . , «̂  = l^^2^^.. .n^".ln Chap­
ter 9, §3.1, the formulas 3.1.1, 3.1.2 produce the tensor 

aril = (ei A e2 A ... A Cn^) <S> ie\ A e2 A ... A Cn^) 0 • • • 0 ( î A ̂ 2 A . . . A Cn,) 

in this representation. One easily verifies that a^L^ is a highest weight vector of 
weight 

n-\ 

(4.1.1) 0)^ \=Y^ajCOj. 
7 = 1 

Set y = C". The previous statement is a consequence of the previous proposition 
and Chapter 10, §5.2 Proposition 3. In fact by construction aj U is the tensor product 
of the highest weight vectors in the factors of V® '̂ 0(A^ V)®^̂  0 . . . (A" V)®""" - The 
factors A" ^ do not intervene since they are the trivial representation of si (n, C). 

Remark. Notice that hi = Yl]=i ^y so that the sum in the lattice of weights corre­
spond to the sum of the sequences X = (/ii, /z2, • . . , /̂ n) as vectors with n coordi­
nates. This should not be confused with our use of the direct sum of partitions in 
Chapter 8, §4.2. 

Remark. If we think of the weights of the Cartan subalgebra also as weights for 
the maximal torus, we can see that the highest weight gives the leading term in the 
character, which for SL{n, C) is the Schur function. 

One should remark that when we take a 2n-dimensional symplectic space with 
basis ^ 1 , . . . , ^„, / i , . . . , /„, the elements 1̂ A ̂ 2 A . . . A ̂ ^, /: < n are still highest 
weight vectors of weight coi but, as we shall see in §6.6, the exterior powers are no 
longer irreducible. Moreover, for the orthogonal Lie algebras, besides the exterior 
powers, we need to discuss the spin representations. 
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4.2 Highest Weights and f7-Invariants 

We now pass to groups. Let G be a semisimple group. Fix a Cartan subalgebra t a set 
of positive roots and the corresponding Lie algebras u^, b^. The three corresponding 
algebraic subgroups of G are denoted by T, V^, B^. One has that B^ = U^T as a 
semidirect product (in particular T = B^/U^) (Chapter 10, §6.4). 

As an example in SL{n, C) we have that T is the subgroup of diagonal matrices, 
B"^ the subgroup of upper triangular matrices and V^ the subgroup of strictly upper 
triangular matrices, that is, the upper triangular matrices with 1 on the diagonal or, 
equivalently, with all eigenvalues 1 (unipotent elements). 

For an irreducible representation of G, the highest weight vector relative io B^ 
is the unique (up to scalars) vector v invariant under U^\ it is also an eigenvector 
under B^ and hence T. 

Thus V determines a multiplicative character on B^}^ Notice that any multi-
pHcative algebraic character of B^ is trivial on U^ (by Chapter 7, §1.5) and it is just 
induced by an (algebraic) character of T = B^/U^. 

In the following, when we use the word character, we mean an algebraic multi­
plicative character. 

The geometric interpretation of highest weights is obtained as follows. 
In Chapter 10, §6.9 we extended the notion of highest weight to reductive groups 

and described the representations. Consider an action of a reductive group G on an 
affine algebraic variety V. Let A[V] be the coordinate ring of V which is a rational 
representation under the induced action of G. Thus A[V] can be decomposed into a 
direct sum of irreducible representations. 

If / G A[V] is a highest weight vector of some weight A, we have for every 
b e B^ that bf = A(Z?)/, and conversely, a function / with this property is a 
highest weight vector. 

Notice that if / i , / i are highest weight vectors of weight Ai, A2, then /1/2 is a 
highest weight vector of weight Ai 4- A2. Now unless / is invertible, the set 

Sf:={xeV\f(x) = 0} 

is a hypersurface of V and it is clearly stable under B^. Conversely, if V satisfies 
the property that every hypersurface is defined by an equation (for instance if V is an 
affine space) we have that to a 5^-stable hypersurface is associated a highest weight 
vector. 

Of course, as usual in algebraic geometry, this correspondence is not bijective, 
but we have to take into consideration multiplicities. 

Lemma. If A[V] is a unique factorization domain, then we have a 1-1 correspon­
dence between irreducible B"^-stable hypersurfaces and irreducible (aspolynomials) 
highest weight vectors (up to a multiplicative scalar factor). 

^^^ Recall that we define multiplicative character of a group G to be any homomorphism of G 
to the multiplicative group C*. 
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Proof. It is enough to show that if / = Hz Si î  ^ highest weight vector, say of 
weight X, factored into irreducible polynomials, then the gt are also highest weight 
vectors. 

For this take an element b e B^. We have xQ>)f = (V) = Wii^St)- Since 
B^ acts as a group of automorphisms, the bgi are irreducible, and thus the elements 
bgi must equal the gj up to some possible permutation and scalar multiplication. 
Since the action of B^ on A[V] is rational there is a i5"^-stable subspace U C A[V] 
containing the elements gt. 

Consider the induced action oi B^ on the projective space of lines of L̂ . By 
assumption the lines through the elements gt are permuted by B^. Since 5"^ is con­
nected, the only possible algebraic actions of B^ on a finite set are trivial. It follows 
that the gt are eigenvectors under B^. One deduces, from the previous remarks, that 
they are f/"^-invariant and bgi = XiWgi^ where xt are characters of B^ and in fact, 
for the semisimple part of G, are dominant weights. D 

4.3 Determinantal Loci 

Let us analyze now, as a first elementary example, the orbit structure of some basic 
representations. 

We start with hom( V, W) thought of as a representation of GL(V) x GL{W). It 
is convenient to introduce bases and use the usual matrix notation. 

Let n, m be the dimensions of V and W. Using bases we identify hom(y, W) 
with the space M^„ of rectangular matrices. The group GL{V) x GL(W) is also 
identified to GL(n) x GL{m) and the action on Mmn is (A, B)X = BXA~^. 

The notion of the rank of an operator is an invariant notion. Furthermore we have: 

Proposition. Two elements o/hom(V, W) are in the same GL{V) x GL{W) orbit 
if and only if they have the same rank. 

Proof This is an elementary fact. One can give an abstract proof as follows. 
Given a matrix C of rank k, choose a basis of V such that the last n —k vectors 

are a basis of its kernel. Then the image of the first k vectors are linearly independent 
and we can complete them to a basis of W. In these bases the operator has matrix (in 
block form): 

Co o ) . 
where U is the identity matrix of size k. This matrix is obtained from C by the 
action of the group, and so it is in the same orbit. We have a canonical representative 
for matrices of rank k. In practice this abstract proof can be made into an effective 
algorithm, for instance, by using Gaussian elimination on rows and columns. n 

As a consequence we also have: Consider V 0 W as a representation of GL{V) x 
GL{W). Then there are exactly min(n, m) + 1 orbits, formed by the tensors which 
can be expressed as sum of k decomposable tensors (and not less), k = 0 , . . . , 
min(m, n). 
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This is left to the reader using the identification V (S) W = hom(y*, W). We 
remark that these results are quite general and make no particular assumptions on 
the field F. 

We suggest to the reader a harder exercise which is in fact quite interesting and 
has far-reaching generalizations. 

Exercise. Consider again the space ofmxn matrices but restrict the action to 
B^{m) X B~{n) where B^(m) (resp. B~~(n)) is the group of upper (resp. of lower) 
triangular matrices, and prove that also in this case there are finitely many orbits. 
This is a small generaUzation of the Bruhat decomposition (Chapter 10, §6.4): 

The orbits of B+(n) x B'in) acting on GLin) by (A, B)X := AXB'^ are in 
1-1 correspondence with the symmetric group 5„. 

4.4 Orbits of Matrices 

Let us now consider the action on bilinear forms, restricting to € symmetric forms 
on a vector space U over a field F. Representing them as matrices, the action of the 
linear group is (A, X) i-^ AXA\ 

For antisymmetric forms on U, the only invariant is again the rank, which is 
necessarily even. The rank classifies symmetric forms if F is algebraically closed, 
otherwise there are deeper arithmetical invariants. For instance, in the special case of 
the real numbers, the signature is a sufficient invariant. ̂ ^̂  

The proof is by induction. If an antisymmetric form is nonzero we can find a pair 
of vectors ^i, / i on which the matrix of the form is | _̂ j Q |. If V is the span of 
these vectors, the space U decomposes into the orthogonal sum V 0 V-̂ . Then one 
proceeds by induction on V-̂  until one reaches a complement where the form is 0 
and one chooses an arbitrary basis Vj of it, getting a basis /̂ , / ) , / = 1 , . . . , / : , fy . In 
the dual basis we have a canonical representative of the form as X^/^i e^ A / ' . 

For a nonzero symmetric form (over an algebraically closed field) instead, one 
can choose a vector ei of norm 1 and proceed with the orthogonal decomposition un­
til one has a space where the form is 0. With obvious notation the form is X!f=i (^')^-

Summarizing, we have seen in particular the orbit structure for the following 
representations: 

1. The space Mn,m (C) of nxm matrices X with the action of GL(n, C) x GL(m, C) 
givenby(A,5)X := AXB-\ 

2. The space M^{C) of symmetric n x n matrices X with the action of GL(n, C) 
given by A.Z :=AXA'. 

3. The space M~(C) of skew-symmetric n x n matrices X with the action of 
GL{n, C) given by A.X := AXA\ 

In each case there are only finitely many orbits under the given group action, and two 
matrices are in the same orbit if and only if they have the same rank. 

107 The theory of quadratic forms over Q or Z is a rather deep part of arithmetic. 
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Exercise, (i) If Vk denotes the set of matrices of rank k (where k must be even in 
case 3), we have that the closure Vk is 

(4.4.1) Vk:=Uj<kVj. 

(ii) The varieties Vk are the only varieties invariant under the given group action, 
(iii) The varieties Vk are irreducible. 

From the correspondence between varieties and ideals we deduce that the ideals 
defining them are the only invariant ideals equal to their radical and they are all prime 
ideals. 

We shall deduce from this the second fundamental theorem of invariant theory in 
§6. 

More interesting is the fact that there are also finitely many orbits under the action 
of a Borel subgroup. We will not compute all the orbits, but we will restrict ourselves 
to analyzing the invariant hypersurfaces. We discuss the 3 cases. 

1. To distinguish between GL{n, C) and GL{m, C) we let T(n), T(m), U-^(n), 
U^(m),..., etc., denote the torus, unipotent, etc. of the two groups. 

We take as a Borel subgroup of GL(n,C) x GL(m, C) the subgroup Bin)' x 
B{m)^ of pairs (A, B) where A is a lower and B is an upper triangular matrix. We 
may assume n <m{ov we transpose). 

If (A, B) e B{n)- x B(m)+, X e Mn,m(Q, the matrix AXB'^ is obtained from 
X by elementary row and column operations of the following types: 

(a) multiply a row or a column by a nonzero scalar, 
(b) add to the i^^ row the / ^ row, with j < /, multiplied by some number, 
(c) add to the /* column the / ^ column, with j < /, multiplied by some number. 

This is the usual Gaussian elimination on rows and colunms of X without per­
forming any exchanges. 

The usual remark about these operations is that, for every k < n, they do not 
change the rank of the k x k minor Xk of X extracted from the first k rows and the 
first k colunms. Moreover, if we start from a matrix X with the property that for every 
/: < n we have det(Xjt) ^ 0, then the standard algorithm of Gaussian elimination 
proves that, under the action of B{n)~ x B{m)^, this matrix is equivalent to the 
matrix / with entries 1 on the diagonal and 0 elsewhere. We deduce 

Theorem 1. r/z^ open set of matrices X e Mn,m(C) ^ith det(Xfc) ^ 0, /: = 
1 , . . . , n, is a unique orbit under the group B(n)~ x B(m)^. 

The only B(n)~ x B{m)^ stable hypersurfaces of Mn,m{C) are the ones defined 
by the equations det(Xjt) = 0, which are irreducible. 

Proof We have already remarked that the first part of the theorem is a consequence 
of Gaussian elimination. As for the second, since the complement of this open orbit is 
the union of the hypersurfaces of equations det(X^) = 0, it is clearly enough to prove 
that these equations are irreducible. The main property of the functions detCXĵ ) is 
the fact that they are highest weight vectors for B{n)~ x B{m)^. 
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Thus we compute the weight of detCZ :̂) directly. Given a pair D\, D2 € T(n) x 
T(m) of diagonal matrices with entries jc,, yj respectively, we have 

k 

(4.4.2) (Du D2)dk{X) := di,(D;'XD2) = H ^ r V / * W . 

Hence the weight of dk is 

fl-r'fl̂ . 
which is the highest weight of (/\^ C'')* 0 A^ C""' ^ fundamental weight. 

We can now prove that the functions det(Zjt) are irreducible. If det(Xyt) is not 
irreducible, it is a product of highest weight vectors gi and its weight is the sum of 
the weights of the gi which are dominant weights. We have seen that dk := det(X;t) is 
a fundamental weight, hence we are done once we remark that the only polynomials 
which belong to the 0 weight are constant. D 

2. and 3. are treated as follows. One thinks of a symmetric or skew-symmetric matrix 
as the matrix of a form. 

Again we choose as Borel subgroup B{n)~ and Gaussian elimination is the al­
gorithm of putting the matrix of the form in normal form by a triangular change of 
basis. 

The generic orbit is obtained when the given form has maximal rank on all the 
subspaces spanned by the first k basis vectors k < n, which, in the synmietric case, 
means that the form is nondegenerate on these subspaces, while in the skew case it 
means that the form is nondegenerate on the even-dimensional subspaces. 

2. On synmietric matrices this is essentially the Gram-Schmidt algorithm. We 
get that 

Theorem 2. The open set of symmetric matrices X G M+(C) with &ti{Xk) 7̂  0, VA: 
is a unique orbit under the group B{n)~. 

The only B(n)~ stable hypersurfaces ofM^(C) are the ones defined by the equa­
tions Sk '.= det(Xjt) = 0, which are irreducible. 

Proof Here we can proceed as in the linear case except at one point, when we arrive 
at the computation of the character of Sk, we discover that it is Y\i=\ ̂ r^' which is 
twice a fundamental weight. 

Hence a priori we could have s^ = ab with a, b with weight Y[i=\ ^7^- ^^ ^^^ 
that this is not possible, set the variables Xij =0, i ^ j getting s^ = Y\i=i ^a' hence 
a, b should specialize to two factors of 0/=! ^a^ hut clearly these factors never have 
as weight Y[i=\ ^f^- Hence s^ is irreducible. • 

3. Choose as a Borel subgroup B{n)~ and perform Gaussian elimination on skew-
symmetric matrices. For every k with 2k < n, consider the minor X2k' The condition 
that this skew-symmetric matrix be nonsingular is that the Pfaffian pk := Pf(X2k) 
is nonzero. 
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Theorem 3. The open set of skew-symmetric matrices X e M~(C) with PfiXik) 7̂  
0, VA: is a unique orbit under the group B(n)~. 

The only B{n)~-stable hypersurfaces ofM~ (C) are the ones defined by the equa­
tions pk := Pf(X2k) = 0, which are irreducible. 

Proof. If Pf{X2k) 7̂  0 for all k, we easily see that we can construct in a triangular 
form a symplectic basis for the matrix X, hence the first part. For the rest, again it 
suffices to prove that the polynomials pk are irreducible. In fact we can compute 
their weight which, by the formula 3.6.2 in Chapter 5, is Y\^ti ^r^' ^ fundamental 
weight. D 

From Lemma 4.2 we can describe, in the three previous examples, the highest 
weight vectors as monomials in the irreducible ones. This gives an implicit descrip­
tion of the polynomial ring as representation. We shall discuss this in more detail in 
the next sections. 

4.5 Cauchy Formulas 

We can deduce now the Cauchy formulas that are behind this theory. We do it in 
the symmetric and skew-symmetric cases, which are the new formulas, using the 
notations of the previous section. 

In the symmetric case we have that the full list of highest weight vectors is the 
set of monomials n L i h' ^ith weight f l L i ULi ^7^"^'• 

If we denote by V the fundamental representation of GL(n, C), we have that 

n k n 

nn-r^'"'=n 
k^\ i = l /=1 

is the highest weight of 5x(V)*, where X is the partition kk = 2 Yji<k ^k-
In the skew case we obtain the monomials Y[2k<n PT ^^^^ weight 

nn ~Hi<2k^k 

We deduce the special plethystic formulas (Chapter 9, §7.3).̂ ^^ 

Theorem. As a representation ofGL{V) the ring 5(5^(V)) decomposes as 

(4.5.1) S(S\V)):=^^S2x(V). 

As a representation ofGL(V)the ring S(/\ (V)) decomposes as 

(4.5.2) s{/\\v)):=^^Si,(V). 

Proof We have that the space of symmetric forms on V is, as a representation, 
S^(Vy and the action is, in matrix notation, given by (A, X) -^ {A~^yXA~^, so 
S(S^(V)) is the ring of polynomials on this space. We can apply the previous theo­
rem and the analysis following it. The considerations for the skew case are similar. 

D 

~T.i<k^^k 

^^^ Recall these are formulas which describe the composition SxiSf^{V)) of Schur functors. 
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In more pictorial language, thinking of A as the shape of a diagram we can say 
that the diagrams appearing in S(S^(V)) have even rows, while the ones appearing 
in S(/\ (V)) have even colunms.^^^ It is convenient to have a short notation for these 
concepts and write 

A K^ n, A \-'' n 

to express the fact that the diagram A has even rows, resp., even columns. 
We should remark that the previous theorem corresponds to identities of charac­

ters. 
According to MoHen's formula (Chapter 9, §4.3.3), given a linear operator A on a 

vector space U, its action on the synmietric algebra has as graded character detri-M) • 
If ^ 1 , . . . , „̂ is a basis of V and X is the matrix Xei = xt et, we have that et ej, i < 

j , is a basis of 5^(V) and et A ej, i < j a. basis of /\^(V). Thus from Molien's 
formula and the previous theorem we therefore deduce 

(4.5.3) n n-x-.)^^^^'^'"--'"^ 

(4-5.4) n ( / - . x ) ^ ^ ^ ^^^"" • • •' ""^-

These are the formulas (C2) and (C3) stated in Chapter 2, §4.1. 

4.6 Bruhat Cells 

We point out also the following fact, which generalizes the discussion for the linear 
group and whose details we leave to the reader. If G is a semisimple simply con­
nected algebraic group, we know that its coordinate ring C[G] = 0;^eA+ Vx. 0 V*. 
Given a Borel subgroup B of G, the highest weight vectors (for the B xB) action are 
the elements /A := fx <8) 0A where i;̂  resp. 0A are the highest weight vectors of VA. 
resp. V^. If A = J^i ^t^t ^i^h the cot fundamental, we have /A = Hz /^ ' - A = ^ 
is a hypersurface of G which is stable under B x B. It is not difficult to see that it is 
the closure of the double coset BSIWQB. Here si denotes the simple reflection by the 
simple root of the same index / as the fundamental weight. 

5 The Second Fundamental Theorem (SFT) 

5.1 Determinantal Ideals 

We need to discuss now the relations among invariants. We shall take a geomet­
ric approach reserving the combinatorial approach for the section on tableaux. The 

^̂ ^ Unfortunately the row or column encoding is not really canonical. In Chapter 13 we will 
be obliged to switch the convention. 
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study of the relations among invariants proceeds as follows. We express the first fun­
damental theorem in matrix form and deduce a description of the invariant prime 
ideals, which is equivalent to the SFT, from the highest weight theory. 

For the general linear group we have described invariant theory through the mul­
tiplication map / : Mp^rn X Mm,q "> M^,^, / (X, Y) \= XY (Chapter 9, §1.4.1). 

The ring of polynomial functions on Mp^rn x Mm,q which are G/(m, C)-invariant 
is given by the polynomial functions on Mp^q composed with the map / . We have 
remarked that by elementary linear algebra, the multiplication map / has as its image 
the subvariety of p x q matrices of rank < m. This is the whole space if m > 
min(/7, q). Otherwise, it is a proper subvariety defined, at least set theoretically, by 
the vanishing of the determinants of the (m -h 1) x (m -h 1) minors of the matrix of 
coordinate functions Xij on Mp^q. 

For the group 0(n, C) we have considered the space of n x m matrices Y with 
the action of 0(n, C) given by multiplication XY. Then the mapping Y ^^ Y^Y 
from the space ofnxm matrices to the symmetric m x m matrices of rank < n is a 
quotient under the orthogonal group. Again, the determinants of the (m -f-1) x (m +1) 
minors of these matrices define this subvariety set-theoretically. 

Similarly, for the symplectic group we have considered the space of2nxm ma­
trices Y with the action of Sp{2n, C) given by multiplication XY. Then the mapping 
Y ^^ Y^JnY (with Jn the standard 2n x In skew-synmietric matrix), from the space 
oflnxm matrices to the antisymmetric m x m matrices of rank < 2« is a quotient 
under the symplectic group. In this case the correct relations are not the determinants 
of the minors but rather the Pfaffians of the principal minors of order 2(n + 1). 

We have thus identified three types of determinantal varieties for each of which 
we want to determine the ideal of relations. We will make use of the plethystic for­
mulas developed in the previous section. 

According to §4.3 we know that the determinantal varieties are the only varieties 
that are invariant under the appropriate group action. According to the matrix formu­
lation of the first fundamental theorem they are also the varieties which have rings of 
invariants as coordinate rings. We want to describe the ideals of definition and their 
coordinate rings as representations. 

In Chapter 9, §7.1 we have seen that, given two vector spaces V and W, we have 
the decomposition 

P[hom(y, W)] = 0 ^ 5,(W*) 0 5x(V) = 0 ^ h o m ( 5 , ( y ) , 5,(W))*. 

Moreover if we think of 7^[hom( V, W)] as the polynomial ring C[JC/^], its subspace 
Dk, spanned by the determinants of the minors of order k of the matrix X := (xij), 
is identified with the subrepresentation Dk = /\^ W* ^ /\'^ V. We define 

(5.1.1) h :=V[hom(V, W)]Dk 

to be the determinantal ideal generated by the determinants of all the /: x /: minors 
ofX. 

Consider now SiS^iV)) = V[S^{Vy] as the polynomial ring C[jc/y], xtj = Xjt. 
Let X := (xij) be a symmetric matrix of variables. 
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We want to see how to identify, along the same lines as Chapter 9, §7.1, the 
subspace Dl of 7^[5^(y)*] spanned by the determinants of the minors of order k of 
the matrix X. 

Let A h m be a partition. Given a symmetric form A on V, it induces a symmetric 
form A®'" on V®'" by 

m 

A^'^iui 0 • • • 0 W;„, i;i (g) • • • 0 i;;n) := n ^ ( " ' ' '̂•̂ • 
1=1 

Thus by restriction it induces a symmetric form, which we will denote by Sx(A), on 
Sx(V), or equivalently, an element of S^(S),(Vy) which we identify with S^(Sx(V)T. 

In other words we can identify Sx(A) with a linear form on S'^iSxiV)). 
According to the Corollary in Chapter 10, §5.2, S2x(V) appears with multiplicity 

1 in S'^iSxiV)). So we deduce that Sx(A) induces a linear function {Sx(A) \ v) on 

As a function of A, v this function (S),(A) \ v) is GL(V)-invariant, linear in u, 
and a homogeneous polynomial of degree 2m in A. Thus we have a dual map 

sixiv) ^ nsHvri 
We claim that this map is nonzero. Since S2x{V) is irreducible, it then identifies 
SixiV) with its corresponding factor in the decomposition 4.5.1. 

To see this, we compute the linear form S),{A) on the highest weight vector U<S)U 

By definition we get a product of determinants of suitable minors of A, so in general 
a nonzero element. 

In particular, we apply this to A = l^ Sx(V) = /\^(V), S^iA) = A^A. We see 
that if A = (aij) is the matrix of the given form in a basis ^ i , . . . , ^„, the matrix of 
A^A in the basis et^ Aet^... A /̂̂  is given by the formula 

(5.1.2) 
A^A(e/j A ̂ /2 A . . . A /̂̂ , Cj^ A Cj^ A ... A Cj^) = det(fl,;,^J, r, s = 1 , . . . , /:. 

The determinant 5.1.2 is the determinant of the minor extracted from the rows 
/ i , . . . , ik and the columns 7*1,..., jk of A. 

We have thus naturally defined a map jk : S^{/\^ V) -> P[S^(Vy] with the 
image the space Dl (spanned by the determinants of the minors of order k). 

We need to prove that jk, restricted to 2̂* (V), gives an isomorphism to D^, which 
is therefore irreducible with highest weight vector Icok. 

To see this we analyze the decomposition of S'^(/\^ V) into irreducible represen­
tations. We have S^(/\^ V) C /\^ V 0 /\^ V; the decomposition of /\^ V 0 A^ ^ 
is given by Pieri's formula. Since /\^ V consists of just one column of length /:, 
/\^V(S)/\^V = 0f^Q 1̂2,2̂ -, (V), the sum of the S^(V) where /x has at most two 
rows, of lengths 2k — /, / respectively (/ < k). Of these partitions, the only one 
with even rows is 2̂-̂  (V). Hence all the other irreducible representation appearing in 
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A ^ ^ A V do not appear in V[S'^{Vy] and so the map jk on them must be 0, 
proving the claim. 

Consider now V[/\^(Vy] as the polynomial ring C[JC/^], JC/y = —Xji. Let X := 
(xij) be a skew-symmetric matrix of variables. We carry out a similar analysis for 
the subspace Pk of V[/\^(Vy] spanned by the Pfaffians of the principal minors of 
order 2^ of Z. 

In this case the analysis is simpler. The exterior power map A^ ^* "^ A ^*' 
A ^^ A^ := A^A gives for A = Y^t^j dtjet A ej that 

(5.1.3) A^ = k\ ^ [/i, / 2 , . . . , i2k\ei, A ^/, A . . . A ei^,, 
i\<i2<:.i2k 

where [i\J2,..., i2k\ denotes the Pfaffian of the principal minor of A extracted from 
the row and colunm indices i\ < i2 < ... iik- One has immediately by duality the 
required map with image the space Pk'. 

A%-5(AV)). 
Of course A ^ ̂  corresponds to a single even column of length 2k. 

Using the results of the previous section and the previous discussion we have the 

Second Fundamental Theorem. 

(1) The only GL(V) x GL(W)-invariant prime ideals in 7^[hom(V, W)] are the 
ideals 4 . As representations we have that 

(5.1.4) 7^[hom(V, W)]/4 == 0 , , , ( , ) , , ^A(H^*) 0 S^{V). 

(2) The only GL(V)-invariantprime ideals in V[S^(Vy] are the determinantal ide­
als 

I^'.= V[S\VTVk 

generated by the determinants of the kxk minors of the symmetric matrix X. As 
representations we have that 

(3) The only GL(V)-invariantprime ideals inV[/\^iVy] are the Pfaffian ideals 

generated by the Pfaffians of the principal 2k x 2k minors. As representations 
we have that 
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Prac|/! In each of the 3 cases we know that the set of highest weights is the set of 
monomials YYi=\ ^t' ^^ ^ certain number of elements dt (determinants or Pfaffians) 
highest weights of certain representations Â , (the determinantal or Pfaffian spaces 
described before). Specifically, in case 1 we have n = min(dim V, dim W) and dt is 
the determinant of the principal / x / minor of the matrix xtj. In case 2, again n = 
dim V with di the same type of determinants, while in type 3 we have dim V = 2n 
and the dj is the Pfaffian of the principal 2/ x 2/ submatrix. 

Every invariant subspace M is identified by the set / of highest weight vectors 
that it contains. 

If M is an ideal, and n"=i 4' e / , then certainly YY!=i ^f ^ ^ if ^t ^ ^i ^^^ 
each /. 

If M is a prime ideal it follows that, if a monomial ]~[ dp e / , then at least one 
di appearing with nonzero exponent must be in / . 

It follows, for a prime ideal M, that M is necessarily generated by the subspaces 
Ni contained in it. To conclude, it is enough to remark, in the case of determinantal 
ideals, that dt is in the ideal generated by d^ as soon as / > /:. It clearly suffices to 
show this for dk+\, i.e., to show that 

(5.1.7) DM C 4 , Dl^, C 7,-̂ , PM C /,". 

The first two statements follow immediately by a row or column expansion of a 
determinant of a (/: +1) x (/: +1) minor in terms of determinants ofkxk minors. As 
for the Pfaffians, recall the defining formula 3.6.1 ofChapter5. A = J2i<j ^U^i ^^j'-

A +̂̂  = (/: + 1)! ^ [/i, / 2 , . . . , ^2(̂ +1)]̂ /, Aei,A...A ei^^^^^^ 
i\<h<---i2(k+\) 

= AAkl ^ [/i, / 2 , . . . , i2k]ei, Aei^A...A ei^^. 
ii<i2<...<i2k 

From the above we deduce the typical Laplace expansion for a Pfaffian: 

(/: + l ) [ l , 2 , . . . , 2 ( / : + l ) ] 

(-iy^j-'xij[h 2 , . . . , / - 1, / + 1 , . . . , 7 - 1, y + 1 , . . . , 2(/: + 1)]. 

Therefore in each case we have that for a given prime invariant ideal M there is an 
integer k such that YYi=i ^T' ^ M if and only if m, > 0 for at least one i >k. Thus 
the ideal is generated by Dk, J^, Pj^ for the minimal index k for which this space is 
contained in the ideal. The remaining statements are just a reinterpretation of what 
we said. D 

We called the previous theorem the Second Fundamental Theorem since it de­
scribes the ideals of matrices (in the three types) of rank < k {ov < 2k in the 
skew-symmetric case). We have already seen that these varieties are the varieties 
corresponding to the three algebras of invariants we considered, so this theorem is a 
description of the ideal of relations among invariants. 
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5.2 Spherical Weights 

There is a rather general theory of spherical subgroups / / of a given group G and the 
orthogonal and symplectic group are spherical in the corresponding group GL(V). 

The technical definition of a spherical subgroup / / of a reductive group G is 
the following: We assume that a Borel subgroup B has an open orbit in G/H, or 
equivalently, that there is a Borel subgroup B with BH dense in G. There is a deep 
theory of these pairs which we will not treat. 

One of the first properties of spherical subgroups is that given an irreducible rep­
resentation of G, the space of invariants under H is at most 1-dimensional. When it 
is exactly 1, the corresponding dominant weight is then called a spherical weight rel­
ative to H. We want to illustrate this phenomenon for the orthogonal and symplectic 
groups. 

1. Orthogonal group. Take an n-dimensional orthogonal space V and consider 
n — 1 copies of V which we display as V 0 W, dim W = n — I. 

We know that the orthogonal or special orthogonal invariants of n — I copies 
of V are the scalar products (M,, UJ) and that they are algebraically independent. As 
a representation of GL(n — 1, C) = GL(W), these basic invariants transform as 
S^(W) and so the ring they generate is S(S^(W)) = 0 ^ S2fi(W). On the other hand, 
by Cauchy's formula, 

We deduce an isomorphism as GL(W)-representations: 

(5.2.1) 0 ^ 5,(y)̂ (̂ > 0 S,(W) = 0 ^ S2^(W). 

Corollary of 5.2.1. dim^^CV)^^^^ = lifx = 2/x and 0 otherwise. 

There is a simple explanation for this invariant which we leave to the reader. 
The scalar product induces a nondegenerate scalar product on. V^^ for all p and 

thus a nondegenerate scalar product on 5A(V) for each V. This induces a canonical 
invariant element in S'^iSxiV)), and its projection to S2),{V) is the required invariant 
(cf.§5.1). 

Since SO(V) c SL{V) the restriction to dimension n — I is not harmful since 
all representations of SL(V) appear. For 0(V) we can take n-copies and leave the 
details to the reader. 

2. Symplectic group. Take a 2n-dimensional symplectic space V and consider 
2n copies of V which we display as V (g) W, dim W = 2n. 

We know that the symplectic invariants of 2n copies of V are the scalar prod­
ucts [ui.Uj] and that they are algebraically independent. As a representation of 
GL(2n, C) = GL(W) these basic invariants transform as /\^(W) and so the ring 
they generate is S(/\^(W)) = 0 ^ S2^(W). On the other hand by Cauchy's formula, 

S{V (8) wfP^^^ = 0 ^ SxiVfP^^^ 0 Sx{W), 
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we deduce an isomorphism as GL(W) representations: 

(5.2.2) 0 ^ 5,(V)̂ (̂̂ > 0 S,{W) = 0 ^ S^^iW). 

Corollary of 5.2.2. dim5x(V)^^^^^ = I if k = 241 and 0 otherwise. 

There is a similar explanation for this invariant. Start from the basic invariant 
7 G / \ V. We get by exterior multiplication 7^ G /\^^ V, and then by tensor prod­
uct, the invariant 7^' 0 /^^ ^ . . . ^ jkr„ ^ ^^k^ y ^ . . . 0 ^^^r y ^^ich projects to 
the invariant in Sx(V), where X = 2ki,2k2,... ,2kr. 

6 The Second Fundamental Theorem for Intertwiners 

6.1 Symmetric Group 

We want to apply the results of the previous section to intertwiners. We need to 
recall the discussion of multilinear characters in §6.4 of Chapter 9. Start from 
P[hom(V, W)] = S(W* (g) V) = 0 ^ SxiW*) 0 Sx{V), with dimV = n, W = C\ 

Using the standard basis ei of C", we have identified V^^ with a subspace of 
^(C" 0 V) by encoding the element YYi=\ ^i 0 f/ as i;i 0 i;2 0 • • • 0 fn-

The previous mapping identifies V®^ c S{C^ 0 V) with a weight space under 
the torus of diagonal matrices X with entries xi. We have Xet = xiei and 

n n 

X]~Ĵ / 0i;/ = ]~Ix/[~[^/0i;/. 

Now we extend this idea to various examples. First, we identify the group alge­
bra C[Sn\ with the space P^ of polynomials in the variables xij which are multilin­
ear in right and left indices, that is, we consider the span P^ of those monomials 
^ixjx^iiji •'' ^injn s^^h that both i\,i2,' " ^in and ji, J2, •.., jn are permutations of 
1,2, . . ! , n . 

Of course a monomial of this type can be uniquely displayed as 

•^l,a-i(l)-^2,(T-i(2) • • ••^n,a-i(n) = •^or(l),l-^a(2),2 • • ••^or(n),n 

which defines the required map 

(6.1.1) 0 : a h> X^(l),lXa(2),2 . "Xa(n),n' 

Now remark that this space of polynomials is a weight space with respect to 
the product T x T of two maximal tori of diagonal matrices under the induced 
GL(n, C) X GL(n, C) action on C[Xij]. Let us denote by xi, X2 the two weights. 

We remark also that this mapping is equivariant under the left and right action of 
Sn on C[Sn] which correspond, respectively, to 

(6.1.2) Xij - ^ Xa(i)j, Xij - ^ Xi^a(j). 
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Fix an m-dimensional vector space V and recall the basic symmetry homomorphism 

(6.1.3) /„ : C[5„] ^ End(V^'^). 

We have a homomorphism given by the FFT. With the notations of Chapter 9, §1.4 
it is / : C[Xij] -^ C[{ai\vj)]. It maps P^ onto the space of multilinear invariants of 
n covector and n vector variables. 

Let us denote by J„ this space, which is spanned by the elements Y\l=\ (̂ cr(o 1̂ /)-

Finally, we have the canonical isomorphism j : EndGL(V) ^^" —^ 2„. It maps 
the endomorphism induced by a permutation a to 0/̂ =1 (̂ <y0)1̂ /) (^^- Chapter 9, 
§1.3.2). 

We have a commutative diagram 

C[Sn] -^-^ Pn 

(6.1.4) /„! / 

from which we deduce that the kernel of /„ can be identified, via the linear isomor­
phism O, with the intersection of Pn with the determinantal ideal /^+i in C[Xij]. 

Given a matrix X we denote by (/i, (2,..., im+i\j\, h^ • • •' 7m+i)(^) or. if no 
confusion arises, by (/i, /2, • •., im+\ Iji. 72, • • •, jm+\) the determinant of the minor 
of X extracted from the rows of indices / and the colunms of indices 7. 

Clearly (/i, ii,..., im+\\j\^ h^ • • • ^ 7m+i)» multiplied by any monomial in the 
Xij, is a weight vector for T x T. 

In order to get a weight vector in P„ we must consider the products 

( 6 . 1 . 5 ) ( / i , ii, . . . , im+\\j\^ 72 ' • • • ' 7m+l)-^/,„+2,7m+2 • • '^injn 

with /i, i2,'.. ,in and j \ , 7*2,..., 7n, both permutations of 1, 2 , . . . , n. 

Theorem. Under the isomorphism <l> the space Pn H Im+i is 0 if m >n.Ifm < n it 
corresponds to the two-sided ideal ofC[Sn] generated by the element 

(6.1.6) Am+\ := ^ 6^a, 
(reSm + \ 

the antisymmetrizer onm-\-l elements (chosen arbitrarily from the given n elements). 

Proof From 6.1.2 it follows that the element corresponding to a typical element of 
type 6.1.5 is of the form aAr"^ where 

A = ( 1 , 2 , . . . , m + 1 | 1 , 2 , . . . , m + l)Xm+2,m+2 " - Xn,n 

= ( 2i^ ^or-^a(l),l-^or(2),2 . • .•^or(m+l),m+l )^m+2,m+2 . • ••^n,n. 
(reSm+i 

This element clearly corresponds to Am+i • n 
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Now we want to recover in a new form the result of Chapter 9, §3.1.3. First, 
recall that, as any group algebra, C[Sn] decomposes into the sum of its minimal 
ideals corresponding to irreducible representations 

We first decompose 

Then we pass to the weight space 

(6.1.8) =ff) Ml^Mx. 

As a consequence the image of C[5„] in End( V*̂ ") is 0;^p„ ^^^^^ M* <Si M^. 

6.2 Multilinear Spaces 

Now we go on to the orthogonal and symplectic group. First, we formulate some 
analogue of P". In the symmetric or skew-symmetric cases, we take a (symmetric 
or skew-synmietric) matrix Y = (yij) of even size 2n, and consider the span of the 
multilinear monomials 

yii,jiji2,j2 • ' - y i n , . 

such that i\,i2^ •'' Jn, ji, J2i •' - ^ jn^ is a permutation of 1, 2 , . . . , 2n. This is again 
the weight space of the weight x of the diagonal group T of GL(2n,C). 

Although at first sight the space looks the same in the two cases, it is not so, and 
we will call these two cases P^^ and P^". In fact, the symmetric group Szn acts on 
the polynomial ring C[yij] (as a subgroup of GL(2n, C)) by criytj) = yaiOaU)-

It is clear that S2n acts transitively on the given set of multilinear monomials. 
First, we want to understand it as a representation on P^ and for this we consider 

the special monomial 

Mo :=y\,2y3A'"y2n-\,2n' 

Let Hn be the subgroup of S2n which fixes the partition of {1, 2 , . . . , 2n} formed by 
the n sets with 2 elements {2/ - 1, 2/}, / = 1 , . . . , n. Clearly, Hn = Sn \x Z/(2)" is 
the obvious semidirect product, where Sn acts in the diagonal way on odd and even 
numbers a(2/ - 1) = 2a(/) - 1, a(2/) = 2a(i) and Z/(2)" is generated by the 
transpositions (2/ — 1,2/). 

In either case //„ is the stabilizer of the line through MQ. In the symmetric case 
Hn fixes Mo, while in the skew-symmetric case it induces on this line the sign of the 
permutation (remark that Sn C ^2^ is made of even permutations). We deduce: 
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Proposition. P^, as a representation of Sm, coincides with the permutation repre­
sentation Ind^" C associated to Sm/fin-

P", as a representation of Sin, coincides with the representation Ind^" C(6) in­
duced to Sin from the sign representation C{€) of Hn. 

Next, one can describe these representations in terms of irreducible representa­
tions of Sin- Using the formulas 4.5.1,2 and Chapter 9, §6.4 we get 

Theorem. As a representation of Sm the space P^ decomposes as 

(6.2.1) PI = SiS\V)Y := 0^^„^„ S,iVV = 0^^„^„ M,. 

P" decomposes as 

(6.2.2) PI = s(^iV)y := 0^^„^„ S^iW = 0^^„^„ A/.. 

Remark. By Frobenius reciprocity (Chapter 8, §5.2), this theorem computes the mul­
tiplicity of the trivial and the sign representation of //„ in any irreducible representa­
tion of Sin- Both appear with multiplicity at most 1, and in fact the trivial representa­
tion appears when X has even columns and the sign representation when it has even 
rows. 

One can think of //„ as a spherical subgroup of Sm • 

Next we apply the ideas of 6.1 to intertwiners. We do it only in the simplest case. 

6.3 Orthogonal and Symplectic Group 

1. Orthogonal case. Let V be an orthogonal space of dimension m, and consider 
the space Xĵ  of multilinear invariants in 2n variables w, G V, i = I,... ,2n.l2n^^ 
spanned by the monomials (M/J , uQiut^^, ui^)... (w/2„_i, W/2J' where i\, ii,..., iin is 
a permutation of 1, 2 , . . . , 2w. 

Let jij = yji be symmetric variables. Under the map 

C[yij] -> C[(M/, Uj)], yij \-> (w/, Uj), 

the space P^ maps suijectively onto 2^^ with kernel P^ fi I^j^i-
The same proof as in 6.1 shows that 

Theorem 1. As a representation of Sin ^c have 

P+ n /+_^i = © A h - 2 n , ht{k)>m+l ^ ^ ' ^^n = © A h - 2 n , ht(X)<m ^^' 

The interpretation of the relations in the algebras of intertwiners Endo(v) V^^ is 
more complicated and we shall not describe it in full detail. 
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2. Symplectic case. Let V be a symplectic space of dimension 2m and consider 
the space 2"2n C)f multilinear invariants in 2n variables M/ G V, i = 1 , . . . , 2n. 
I2n is spanned by the monomials [ui^, UiJ[Ui^, uij .. .[ui^^_^, ut^J, where i\,i2, 
. . . , i2n is a permutation of 1, 2 , . . . , 2n. 

Let yij = —yji be antisymmetric variables. Under the map 

C[yij] -^ C[[w/, Uj]], yij H> [M,, wy], 

the space P" maps surjectively onto T2̂  with kernel P^ Pi /^_^i. 
The same proof as in 6.1 shows that 

Theorem 2. As a representation of Sm, ^e have 

The interpretation of the relations in the algebras of intertwiners Endsp(V) V^^ 
is again more complicated and we shall not describe it in full detail. We want 
nevertheless to describe part of the structure of the algebra of intertwiners, the one 
relative to traceless tensors T^(V^^). In both the orthogonal and symplectic cases 
the idea is similar. Let us first develop the symplectic case which is simpler, and 
leave the discussion of the orthogonal case to §6.5. 

Consider a monomial M := j/uij/2,y2 • • • yinJn- ^^ ^^^ assume by symmetry 
ik < jk for all k. We see by the formulas 3.1.8, 3.1.9 that the operator 0M : ^®" -^ 
y^n involves at least one contraction unless all the indices ik are < n and jk > n. 

Let us denote by (p^ the restriction of the operator 0A/ to T^(V'^'^). We have seen 
that 0A/ = 0 if the monomial contains a variable yij, j„+/,„+y, i, j < n. Thus the 
map M -> 0A/ factors through the space P_ of monomials obtained, setting to zero 
one of the two previous types of variables. 

The only monomials that remain are of type M^ := YYi=\ yi,n+(j{i)^ a e Sn, and 
Mcj corresponds to the invariant 

J^[W/, Un+a(i)] = [Wa-i(l) 0 Wa-'(2) 0 * ' ' 0 Wa-'(«)' ^n+l <S> Un+2 0 ' ' ' 0 W2„] 

which corresponds to the map induced by the permutation a onV^^. 
We have just identified P_ with the group algebra C[Sn] and the map 

p:T_= C[Sn] -^ End5p(V)(r^V^")), p(M) := 0 ^ , 

with the canonical map to the algebra of operators induced by the symmetric group. 
Since T^(V^^) is a sum of isotypic components in V^^, the map p is surjective. 

The image of Pl^I'^x in P" = C[5„] is contained in the kernel of p. To identify 
this image, take the Pfaffian of the principal minor of Y of indices /i, 2̂, • •. 2̂m+2 
and evaluate after setting yij = j„+/ ^̂ .y = 0, /, j < n. Let us say that h of these 
indices are < n and 2m + 2 — /z are > «. 

The specialized matrix has block form \ yt r\\ and the minor extracted from 

the indices i\,i2, • • •, /2m+2 contains a square block matrix, made of O's, whose size 
is the larger of the two numbers h and 2m -\-2 — h. 
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Since the maximum dimension of a totally isotropic space, for a nondegenerate 
symplectic form on a 2m + 2-dimensional space, is m + 1, we deduce that the only 
case in which this Pfaffian can be nonzero is when /z = 2m + 2 — /z = m + l.In this 
case Z is a square (m + 1) x (m + 1) matrix, and the Pfaffian equals det(Z). 

Thus, arguing as in the Hnear case, we see that the image of P'^ D I~^^ in P_ = 
C[Sn\ is the ideal generated by the antisymmetrizer on m + 1 elements. 

Theorem 3. The algebra End5p(V)(r^(V*^")) equals the algebra C[Sn\ modulo the 
ideal generated by the antisymmetrizer onm -]- I elements. 

Proof. We have already seen that the given algebra is a homomorphic image of the 
group algebra of Sn modulo the given ideal. In order to prove that there are no further 
relations, we observe that if [/ c V is the subspace spanned by ^ i , . . . , ^w, it is a 
(maximal) totally isotropic subspace and thus U^^ C T^(V^^).On the other hand, 
by the linear theory, the kernel of the action of C[5„] on L̂ *̂ " coincides with the ideal 
generated by the antisymmetrizer on m + 1 elements, and the claim follows. D 

6.4 Irreducible Representations of Sp(V) 

We are now ready to exhibit the list of irreducible rational representations of Sp(V). 
First, using the double centralizer theorem, we have a decomposition 

(6.4.1) °̂(̂ "") = e..„,.,a,..^^®^^(^)' 

where we have indicated by Tx(V) the irreducible representation of Sp{V) paired to 
Mx. We should note then that we can construct, as in 4.1, the tensor 

(6.4.2) 
(^1 A ^2 A . . . A en,) (g) (^1 A ^2 A . . . A e^^) 0 ••• 0 (^1 A ^2 A . . . A ^„,) G Tx{V) 

where the partition X has columns n\,n2,... ,nt. We ask the reader to verify that it 
is a highest weight vector for Tx{V) with highest weight Yl)=x ^«; • 

Since Sp{V) is contained in the special linear group, from Proposition 1.4 
of Chapter 7, all irreducible representations appear in tensor powers of V. Since 
T^{y^^) contains all the irreducible representations appearing in V®" and not in 
V® ,̂ k < n,WQ deduce: 

Theorem. The irreducible representations Tx(V)yht{k)<m, constitute a complete 
list of inequivalent irreducible representations of Sp{V). 

Since Sp{V) is simply connected (Chapter 5, §3.10), from Theorem 6.1 of Chap­
ter 10 it follows that this is also the list of irreducible representations of the Lie alge­
bra sp(2m, C). Of course, we are recovering in a more explicit form the classification 
by highest weights. 
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6.5 Orthogonal Intertwiners 

We want to describe also in the orthogonal case part of the structure of the algebra 
of intertwiners, the one relative to traceless tensors T^(V^^). 

We let V be an m-dimensional orthogonal space. Consider a monomial M := 
ytiji yiiji'' • yinjn • W^ ^^^ assume by symmetry that ik < jk for all k. We see by the 
formulas 3.1.8 and 3.1.9 that the operator 0A/ : V*̂ " -^ V®" involves at least one 
contraction unless all the indices ik aic < n and jk > n. 

Let us denote by 0^/ the restriction of the operator 0M to T^(V^"). We have seen 
that 0Af = 0 if the monomial contains a variable j/y, y„+/„+y, /, j < n. Thus the 
map M -^ (t>j^ factors through the space P^ of monomials obtained by setting to 0 
one of the two previous types of variables. The only monomials that remain are of 
type 

n 

and Mfj corresponds to the invariant 

which corresponds to the map induced by the permutation a onV^^. 
We have just identified P^ with the group algebra C[5'„] and the map 

p:'Pl = C[Sn] ^ Endspiv^iT^'iV^")), p(M) := 0^,, 

with the canonical map to the algebra of operators induced by the symmetric group. 
Since r^(V®") is a sum of isotypic components, the map p is surjective. 

Let us identify the image of P^ n /^^^ in P'l = C[Sn] which is in the kernel 
of p. 

Take the determinant D of an (m + 1) x (m + 1) minor of Y extracted from the 
row indices i\, 12, • . . , /m+i, the column indices y'l, J2, • . . , 7m+i» and evaluate after 
setting yij = yn+i,n+j = 0, /, j < n. Let us say that h of the row indices are < n and 
m + 1—/zare>n and also k of the column indices are < n and m-\-1 — k are > n. 

The specialized matrix has block form I j where Z i s a n / z x m + 1—A: 

and Wanm-hl—hxk matrix. If this matrix has nonzero determinant, the image 
of the first k basis vectors must be linearly independent. Hence m -\- I — h > k, and 
similarly h < m-\-1 — k. Hence h -\-k = m + I, i.e., Z is a square h x h and W is a 
square k x k matrix. 

Up to sign the determinant of this matrix is D = det(H^) det(Z). 
This determinant is again a weight vector which, multiplied by a monomial M 

in the ytj, can give rise to an element of DM e P^ if and only if the indices 
/i, / 2 , . . . , im+i and ju ji...., Jm+\ are all distinct. 

Up to a permutation in 5„ x 5„ we may assume then that these two sets of indices 
are 1, 2 , . . . , /i, « + /z + 1, A2 + /z + 2 , . . . , n + /z + /: and /z + 1, /z + 2, . . . , /z + A:, 
/2 + l ,n + 2, . . . , n + /zso that using the symmetry yn+h+i,h+j = yh+j,n+h+i, we 
obtain that det(\y) det(Z) equals 
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/ . ^or>'or(l),/i+l>'a(2),n+2 • • • yaih),n+h 

creSh 

^ 2_^ ^cryh+(T{\),n+h+iyh+a(2),n-\-h-\-2 • • • yh+a{k),n-\-h+k' 

aeSk 

We multiply this by M := YY!Zi~^ yh+k+t,n+h+k+t-
This element corresponds in C[5„] to the antisymmetrizer relative to the partition 

consisting of the parts (1, 2 , . . . , /z), (/z + 1 , . . . , /z + k), 1"-^-^. This is the element 
YlaeShxSk <̂TÔ - A determinant of a minor of order > m + 1 can be developed into a 
linear combination of monomials times determinants of order m + 1; thus the ideal 
of C[5'„] corresponding to P^ fl /̂ _ ĵ contains the ideal generated by the products of 
two antisymmetrizers on two disjoint sets whose union has > m + 1 elements. 

From the description of Young symmetrizers, it follows that each Young sym-
metrizer, relative to a partition with the first two columns adding to a number > m +1 
is in the ideal generated by such products. Thus we see that: 

The image of P^ 0 I^_^^ in P^ — C[5'„] contains the ideal generated by all 
the Young symmetrizers relative to diagrams with the first two columns adding to a 
number > m + 1. 

Theorem 1. The algebra Endo(v)(r^(V®")) equals the algebra C[5„] modulo the 
ideal generated by all the Young symmetrizers relative to diagrams with the first two 
columns adding to a number > m -h 1. 

Proofi We have already seen that the given algebra is a homomorphic image of the 
group algebra of 5„ modulo the given ideal. In order to prove that there are no further 
relations it is enough to show that if X is a partition with the first two columns adding 
up to at most m, then we can find a nonzero tensor u with cju traceless and cju 7̂  0, 
where CT is a Young symmetrizer of type A,. 

For this we cannot argue as simply as in the symplectic case: we need a variation 
of the theme. First, consider the diagram of A filled in increasing order from up to 
down and right to left with the numbers 1, 2 , . . . , n, e.g., 

1 5 8 11 
2 6 9 
3 7 10 
4 

Next suppose we fill it as a tableau with some of the basis vectors ei, fj, e.g., 

ei 

fl 
ei 

U 

h 
€4 

63 

e\ 

U 
h 

To this display we associate a tensor u in which we place in the /̂ ^ position the vector 
placed in the tableau in the case labeled with /, e.g., in our previous example: 
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W := 2̂ 0 /2 <8) 3̂ 0 /4 ® /3 <8) 4̂ <8) 3̂ ^ 1̂ <8) /4 <8) / l 0 ^1. 

If the vectors that we place on the columns are all distinct, the antisymmetrization 
aju ^ 0. 

Assume first m = 2pis even. If the first column has < p elements, we can work 
in the totally isotropic subspace U := (^i , . . . , ^p}. As for the symplectic group, 
Lf^^ is made of traceless tensors. On U'^^ the group algebra C5„ acts with the kernel 
generated by the antisymmetrizer on /? + 1 elements. We construct the display with 
Ci on the i^^ row. The associated tensor M is a highest weight vector as in 6.4.2. 

Otherwise, lei p -\- s, p — t, 5 < r be the lengths of the first two columns. 
We first fill the diagram with /̂ in the i^^ row, i < p, and we are left with s 

rows with just 1 element, which we fill with fp, fp-\,..., fps+i- This tensor is 
symmetric in the row positions, so when we apply to it the corresponding Young 
symmetrizer we only have to antisymmetrize the columns. 

When we perform a contraction on this tensor there are s possible contractions 
that are nonzero (in fact have value 1) and that correspond to the indices of the 
first column occupied by the pairs ^p_/, /p_/. Notice that if we exchange these two 
positions, the contraction does not change. 

It follows that when we antisymmetrize this element, we get a required nonzero 
traceless tensor in M^. Explicitly, up to a permutation we have the tensor: 

(ei A...AepAfp A / p _ i A . . . A fp-s+\) (8) (^1 A . . . A Cp-t) 

(6.5.1) 0 - - . 0 ( ^ i A . . . A ^ „ , ) G 7 ; ( V ^ ) . 

The odd case is similar. D 

Proposition. The tensor 6.5.1 is a highest weight vector of weight cops + (^p-t + 

To prove the proposition, one applies the elements ^/^^ defined in Chapter 10, 
§4.1.7 and 4.1.21 and one uses the formula 5.1.1 of the same chapter. 

We are now ready to exhibit the list of irreducible rational representations of 
0(y). First, using the double centralizer theorem, we have a decomposition 

T\v^-) = ^ M, 0 71(7), 

where we have indicated by Tx(V) the irreducible representation of 0(V) paired to 
M), and /ii, /12 the first two columns of k. 

The determinant representation of 0 ( V) is contained in V^^ and it is equal to its 
inverse. Hence, from Theorem 1.4 of Chapter 7, all irreducible representations appear 
in tensor powers of V. Since r^(V®«) contains all the irreducible representations 
appearing in V^" and not in V^^, A: < n, we deduce 

Theorem 2. The irreducible representations T),(V), h\-\-h2 < m,form a complete 
list of inequivalent irreducible representations ofO(V). 

^^^ We underline to indicate the Chevalley generators, in order not to confuse them with the 
basis elements. 
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6.6 Irreducible Representations of SO(V) 

We can now pass to SO(V). In this case there is one more invariant [vi,..., Vm] 
which gives rise to new intertwiners. 

Moreover, since SOiV) has index 2 in 0(V), we can apply Clifford's Theorem 
(Chapter 8, §5.1), and deduce that each irreducible representation M of 0(V) re­
mains irreducible under SO(V) or splits into two irreducibles according whether it 
is or it is not isomorphic to M (8) €. The sign representation is the one induced by the 
determinant. 

The theory is nontrivial only when dim V = 2n is even. In fact in the case of 
dimV odd, we have that 0(V) = SO(V) x Z/(2) where Z/(2) is ±1 (plus or 
minus the identity matrix). Therefore an irreducible representation of 0(V) remains 
irreducible when restricted to SO(V). 

To put together these two facts we start with: 

Lemma l.LetT: V^^ -^ V®^ be an SO{V)-invariant linearmap. 
We can decompose T = T\ -{- T2 so that: 
T\ is 0(V)-linear, and T2 is 0(V)-linearprovided we twist V^^ by the determi­

nant representation. 
Given any irreducible representation N C V*̂ ,̂ ifT2(N) ^ 0, then T2iN) is 

isomorphic to N <S) € (e is the determinant or sign representation ofO(V)). 

Proof. Z/(2) = 0(V)/SO(V) acts on the space of 50(V)-invariant linear maps. 
Any such map is canonically decomposed as a sum T = T\ -\- T2 for the two eigen­
values ±1 of Z/(2). Then Tx is 0(V)-invariant while for X e 0{V), we have 
T2iXa) = dci(X)X(T2(a)), the required condition. 

The second part is an immediate consequence of the first. D 

Let us use the notation [ f i , . . . , Vm] := fi A 2̂ A . . . A f̂ . First, let us analyze, 
fork <m = dim(y), the operator 

defined by the implicit formula (using the induced scalar product on tensor): 

(6.6.1) (*(i;i 0 • • • (g) Vk), Vk+i <^-"<S>Vm) = [Vu..., Vm]. 

Remark that if a G Sm-k we have, by symmetry of the scalar product, 

( a * (ui (8) • • • (g) Vk), Vk+\ <S) •"<S)Vm) 

= (*(f l 0 • • • 0 Vk), (T~\vk+\ 0 • • • 0 Vm)) 

= [V\, . . . ,Vk, Va{k+l), • • • , ^CT(m)] 

= €AV\....,Vm]. 

This implies that *(i'i 0 • • • 0 Ujt) e /\'"~^ V. Similarly 
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*(o-(i;i 0 • • • (8) Vk)) = 6̂  * (ui (g) • • • (g) f̂ t) 

implies that * factors through a map 

Still defined by the implicit formula 

(6.6.2) (*(i;i A . . . A Vk), Vk+i A . . . A i;^) = [ i ; i , . . . , v^]. 

In particular exterior powers are pairwise isomorphic under SO(V). 
In an orthonormal oriented basis M, we have *(«/, A. . . A w/J = euj^A.. .A Uj^_^, 

where / i , . . . , /̂ t, 7i, • • •, jm-k is a permutation of 1 , . . . , m, and 6 is the sign of this 
permutation. 

It is better to show one case explicitly in a hyperbolic basis, which explains in a 
simple way some of the formulas we are using. We do the even case in detail. Let V 
be of even dimension 2n with the usual hyperbolic basis et, ft. Then, 

(6.6.3) *(^i A ̂ 2 A . . . A ̂ it) = A-fl A fk+2 A... A fn A ex A 62 A... A en. 

Proof. By definition, taking the exterior products of the hyperbolic basis as the basis 
ofA (^) we see that the only nonzero scalar product of *(^i A 2̂ A. . . A ^^) with 
the basis elements is (*(^i A 2̂ A . . . A ek), ĵt+i A ^̂ +2 A . . . A ^„ A / i A . . . A /„) = 
^1 A ^2 A . . . A . . . A ^„ A / i A . . . A / „ = 1. D 

In particular, notice that this implies that fk+\ A fk+2 A. . . A /„ A ̂ 1 A ̂ 2 A. . . A ̂ „ 
is a highest weight vector of A^''" V. 

In general let us understand what type of intertwiners we obtain on traceless ten­
sors using this new invariant. By the same principle of studying only new invariants 
we start by looking at SO{V) equivariant maps y : V^P -> V®^ which induce 
nonzero maps y : T^{V®P) -^ T^{V®^). 

We may restrict to a map y corresponding to an 5 0 (V) but not to 0(y)-invariant 
{y(u\ (g) • • • 0 Up), fi (g) • • • (g) Vq), which is the product of one single determinant 
and several scalar products. We want to restrict to the ones that give rise to oper­
ators T : V®P -^ V®^ which do not vanish on traceless tensors and also which 
cannot be factored through an elementary extension. This implies that the invariant 
(r(wi (g) • • • (g) Up), v\ ^ " • ^ Vq) should not contain any homosexual contraction. 
Thus, up to permuting the u's and v's separately, we are reduced to studying the 
maps yu from r^(V^+0 to T^{y^n-k^t^ induced by the invariants: 

(n(Wl 0 • • • 0 Uk+t). 1̂1 0 • • • 0 V2n+t-k) 

t 

(6.6.4) = ]~[(W)t+/, V2n-k+i)[U\. ...,Uk,Vu..., V2n-kl 
i=\ 

Lemma 2,Ifk is the length of the first column ofX, then y^ maps Tx(V) to TyiV), 
where X' is obtained from X substituting the first column k with In — k. 

ThusT^(V)(^€ = TyiV). 
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Proof. First, it is clear, from 6.6.1, that we have 

Y{UX (8) W2 0 • • • <8) Wjt 0 • • • 0 Uk-^t) 

= *(MI 0 M2 0 • * • <S) Wjt) 0 Uk-^\ 0 • • • (8> Wjt+f-

In the lemma we have two dual cases, k < 2n — k or k > 2n ~ k. For instance 
in the second case, leik = n -\- s, s <n. Let us compute using 6.6.3: 

y[(ei A ^2 A . . . A ^„ A / „ A fn-i A . . . A fn-s+\) 0 (^1 A ^2 A . . . A en-t) 

(8)---<8)(^l A^2 A . . . A^/iJ] 

= [*(^1 A ^2 A . . . A ^„ A / „ A fn-i A . . . A / „ - , + i ) ] 

0 (ei A ^2 A . . . A ^„_^) 0 . . . 0 (^1 A ^2 A . . . A Ch,) 

= (ei A 62 A . . . A es) (S) {e\ A €2 A . . . A Cn-t) 0 . . . 0 (^1 A 62 A ... A Ch^), 

Thus y maps a highest weight vector of Tx{V) to one of Tx'{V). Since these two 
representations are irreducible as 0(y)-modules, the claim follows. n 

We will say that the two partitions A, A' are associated. By definition X = k' if 
and only only if the first column has length n. If the two associated partitions are 
distinct, one of them has the first column of length < n and the other > n. Thus we 
have: 

Proposition 1. TxiV) is isomorphic (as an 0(V) module) to Tx{V) 0 e if and only 
ifX is self-associated, i.e., X = X'. 

Proof We have already seen that Tx{V) 0 6 = 7\'(V). • 

In the case X = X\ from Clifford's theorem T^iV) decomposes as the direct sum 
of two irreducible representations under 50(V). It is interesting to write explicitly 
the two highest weight vectors of SO(V). 

Proposition 2. In / \" V, dim V = 2nwe have the two highest weight vectors: 

ei Ae2 A ... ACn, ^1 A ^2 A . . . A ^„_i A / „ , 

with weights: 2s± = J^Hl ^i ± «n- f̂ / Chapter 10, §5.1.1) 
If dim V = 2n -\- I, choose a hyperbolic basis ^ 1 , . . . , ^„, / i , . . . , / „ , w. 
/\" V = A"^^ ^ ^^^ irreducible under SO(V) with highest weight vectors 

1̂ A^2A.. .Aen, 1̂ A^2A.. .A^„AM andweight2s = Yll=\ ^t- (^f- Chapter 10, §5.1.2). 

Proof. By definition we have to check that the two vectors are killed by the Cheval-
ley generators of SO(V). We then use the formulas in 4.1.21 of Chapter 10 (un­
fortunately we have a certain overlap of symbols). The analysis in the odd case is 
similar. D 
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For general A = A' we construct the highest weight vectors as follows. 
We build a tensor as in the pattern of 6.5. We insert ei in the i^^ row for / < « — 1, 

then the n^^ row; in one case we insert ^„, in the other /„. 
Summarizing we have: 

Theorem, //"dim V = 2n-\- \ is odd, the irreducible representations of SO {V) are 
the Tx(y) indexed by partitions X of height < n. 

If dim V = 2n is even, the irreducible representations ofSO(V) are of two types: 

(1) The restriction to SO (V) of the irreducible representations 7A (V) of 0{V) in­
dexed by partitions k of height < n which are not self-associated. 

(2) For each self-associated partition X = X\ the two irreducible representations in 
which Tx(V) splits. 

In both cases their highest weights are linear combinations of the fundamental 
weights where the spin weights appear with even coefficients. 

Remark. From the formulas of Chapter 10, §4.1.3 and our discussion it follows that, 
in the odd case 2n + 1, the exterior powers /\^ V, i < n, are fundamental repre­
sentations. For S0(2n -\- I), /\^ V is irreducible corresponding to twice the spin 
representation which is fundamental. 

On the other hand, when the dimension is even 2n, the exterior powers /\^ V, 
/ < « — 1, are fundamental representations. The other two fundamental weights 
±s belong to spin representations which do not appear in tensor powers. The ex­
terior power / \" V decomposes as a direct sum of two irreducible representations 
corresponding to twice the half-spin representations. The exterior power /\"~ V ap­
pears as the leading term of the tensor product of the two half-spin representations 
(cf.§7.1). 

The explanation is that in tensor powers we find the Lie algebra representations 
which, integrated to the spin group, factor through the special orthogonal group. 

6.7 Fundamental Representations 

We give here a complement to the previous theory by analyzing the action of the 
symplectic group of a space V on the exterior algebra in order to describe iht funda­
mental representations. 

We start with the symplectic case which in some way is more interesting. Assume 
dimV = 2n. 

First, by Theorem 6.4 we have that the traceless tensors T^(V^'^) contain a rep­
resentation associated to the full antisymmetrizer (the sign representation of Sm) if 
and only if m <n. This is a new representation in V'^^, hence it appears only in the 
traceless tensors and, by 6.4.1, with multiplicity 1. 

Let us denote by Ao^(^) this representation which, by what we have just seen, 
appears with multiphcity 1 also in /\"^(V). The element ei A^2 A.. .ACm is its highest 
weight vector. Its weight is the fundamental weight cOm (cf. Chapter 10, §5.1.3). 

Remark next that, by definition, /\^ V contains a canonical bivector 
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n 

1=1 

invariant under Sp{V). 
We want to compute now the Sp{V) equivariant maps between /\^ V and f\ V. 
Since the skew-symmetric tensors are direct summands in tensor space, any 

Sp{V) equivariant map between /\^ V and /\^ V can be decomposed as / \ V A-
y^k _ ^ y^h -U /\^y where / is the canonical inclusion, p is some equivariant 
map and A is the antisymmetrizer. 

We have seen, in 3.1, how to describe equivariant maps V®^ —> V®^ up to the 
symmetric group action. 

If we apply the symmetric groups to / or to A, it changes at most the sign. In par­
ticular we see that the insertion maps A^ ^ "^ A^^^ ^ ^^^' ^P ^̂  ^^8^' ^^ identified 
with u -^ ^ Au, which we shall also call xl/. For the contraction, we have a unique 
map (up to constant) which can be normalized to 

(6.7.1) C : Vi A V2 A . . . A Vk -^ y^{—iy^-^~^{Vi, Vj)Vi AV2 AVi . . .Vj .. . A Vk. 

i<j 

The general formula of 3.1 gives in this case that 

Lemma. All the maps between /\ V and /\ V are linear combinations ofx/r^c^. 

Definition. The elements 

/\^{V):=[ae/\V\c{a) = 0] 

are called primitive. 

In order to understand the commutation relations between these two maps, let 
us set h := [c, V ]̂. Go back to the spin formalism of Chapter 5, §4.1 and recall the 
formulas of the action of the Clifford algebra on the exterior power: 

i(v)(u) := V Au, j((p)(v\ A i;2 . . . A u/:) 

k 

:= Y^i~iy~^{(p\Vt)Vi AV2...Vt'--^Vk 

t=\ 

together with the identity 

i(vf = j{^f = 0, i(v)j((p) + j((p)i{v) = {(p\v). 

Now clearly as an operator we have ij/ '-—J^i ^(^i)^(fi)- Using the dual basis let 
us show that c = J^t jif^)j(^^)' Let us drop the symbols /, j and compute directly 
in the Clifford algebra of V 0 V* with the standard hyperbolic form: 
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J ] fe'v, A 1̂2 A . . . A V, = Y,Y.'<-^^'^'^(e'\v,){f\Vs) - {f\v,){e'\vs) 
i / s<t 

X Vi A V2 A Vs . . . Vt - • ' ^ Vk 

= ^(-1)'"^'"^{Vs\vt)vi A i;2 A i; , . . . u , . . . A Ufc. 
s<t 

Now we can use the commutation relations 

e^e^ + e^et = 0, / ^ j , etf^ + f'ei = 0, fie^ + e^ft = 0, 

fiP + /^7;- = 0, / ^ i, ete^ + e'e, = 1, fif + r / ; • = 1 

to deduce that 

h = [c, Vr] = E t / ' ^ ' ' '̂̂ -^ = Yl^fe\eifi] = Y^ifeUifi - etfife') 

= J2^-feie'fi + ffi - ete' + affie') 
i 

= J^i-feie-fi + ffi + e'e, + fae'fi) Y,{f fi + e'a). 

Now we claim that on /\^ V the operator J^iir ft + e^et) acts as 2n — k. In fact 
when we consider a vector u := v\ A vi.. • A v^ with the vt from the symplectic 
basis, the operators / ' / / , e^ei annihilate u if ^/, // is one of the vectors v\,.. .,Vk. 
Otherwise they map u into u itself. 

Proposition. The elements c,\l/,h satisfy the commutation relations of the standard 
generators e,f,hofsl(2,C). 

Proof We need only show that [h, c] = 2c, [c, ir] = —2\l/. This follows immedi­
ately from the fact that c maps /\^ V to /\^~^ V, yjr maps f^ V to /\̂ "^^ V, while h 
has eigenvalue 2n — kon /\ V, • 

We can apply now the representation theory of 5/(2, C) to deduce 

Theorem. We have the direct sum decomposition: 

(1) A ^ = Ao(^)®^^(A^) ' 

(3) A'^-e...-„Ar(^)-^'-
Proof For every finite-dimensional representation M of 5/(2, C), we have a decom­
position M = A ^ ^ 0 j > o / ' ^ ' M^ := {m € M I ^m = 0}, by highest weight 
theory. Let M = /\V. Since all the contractions reduce to c on skew-symmetric 
tensors, the traceless skew-symmetric tensors ©^<„ Ao (^) ^^ ^̂ ^ kernel of c or 

Ao(^) = ®m<n Ao (^)- Thus, A ' V = © , Ao("^) ^ V '̂' Comparing degrees in 
this formula finally gives all the statements. • 
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We can interpret the first part of the previous theorem as saying that: 

Corollary. The quotient algebra f\V/ir A (/\V) = 0m<« Ao(^ ) ^^ ̂ ^^ ^^^^^^ 
sum of the trivial and the fundamental representations of Sp(V) in the same way as 
the exterior powers /^ V, I < i < dim V, are the fundamental representations of 
SLiV). 

6.8 Invariants of Tensor Representations 

When one tries to study invariants of representations different from sums of the defin­
ing representation, one finds quickly that these rings tend to become extremely com­
plicated. The classical theory of 5L(2, C), which is essentially the theory of binary 
forms, (Chapter 15) shows this clearly. Nevertheless, at least in a rather theoretical 
sense, one could from the theory developed compute invariants of general represen­
tations for classical groups. 

One starts from the general remark that for a linearly reductive group G and an 
equivariant surjective map U ^^ V, we have a surjective map of invariants U^ -^ 
V^. Thus if M D Â  are two linear representations, it follows that the invariants of 
degree m on Â  are the restriction to TV of the invariants of degree m on M. 

For classical groups, up to the problem of the determinant, one can embed repre­
sentations into a sum 0 . V® '̂ of tensor powers of the defining vector space V. An 
invariant of degree m on 0 - V^^' is thus an invariant linear form on 5''"(0- V®^'). 
which we may think of as being embedded into ( 0 - v'^^')'^^. We are thus led to 
study linear invariants on such a tensor power. This last space is clearly a (possibly 
very large) direct sum of tensor powers and we know, for SL(V), 0{V), Sp{V) all 
the linear invariants, given by various kinds of contractions. These contractions are 
usually expressed in symbolic form on decomosable tensors, giving rise to the sym­
bolic method (Chapter 15). For GL{V) one will have to work with direct sums of 
tensor powers V^^ <S> (V*)®^ and the relative contractions. 

In principle, these expressions give formulas of invariants which span the 
searched-for space of invariants for the given representation. In fact, it is almost im­
possible to make computations in this way due to several obstacles. First, to control 
the linear dependencies among the invariants given by different patterns of contrac­
tion is extremely hard. It is even worse to understand the multiplicative relations 
and in particular which symbolic invariants generate the whole ring of invariants, 
what the relations among them are, and so on. In fact, in order to give a theoretical 
answer to these questions Hilbert, in an impressive series of papers, laid down the 
foundations of modem commutative algebra (cf. Chapter 14). 

7 Spinors 

In this section we discuss some aspects of the theory of spinors, both from the point 
of view of representations as well as from the view of the theory of pure spinors. 
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7.1 Spin Representations 

We now discuss the spin group, the spin representations and the conjugation action 
on the Clifford algebra of some orthogonal space W. We use the notations of Chap­
ter 5, §4 and §5. Since /\^ W is the Lie algebra of the spin group and clearly / \ W 
generates the even Clifford algebra C"^(W), we have that any irreducible representa­
tion of C^iW) remains irreducible on its restriction to Spin(Vy). 

We treat the case over C, and use the symbol C(«) to denote the Clifford algebra 
of an n-dimensional complex space. Recall that 

C^(n) = C(n - 1), dimC(n) = 2\ C{2m) = End(C^'"), 

C(2m + 1) = EndiC^'") 0 End(C^'"). 

In the even-dimensional case we identify 

W = V^V\ C^(W) = End(C2'""') 0 End(C2'""'). 

Since C+(V 0 V*) C End(/\ V) and it has only two nonisomorphic irreducible 
representations each of dimension 2^~^, the only possibility is that /\^^ V, /\^^^ V, 
are exactly these two nonisomorphic representations. 

Definition 1. These two representations are called the two half-spin representations 
of the even spin group, denoted SQ, Si. 

The odd case is similar; C" (̂2m -f 1) = C(2m) = End(C^'") has a unique irre­
ducible module of dimension 2^. To analyze it let us follow the spin formalism for 
C(2m) followed by the identification of C+(2m + 1) = C(2m) as in Chapter 5, §4.4. 
From that discussion, starting from a hyperbolic basis ^ i , . . . , ^„, / i , . . . , / „ , w, we 
have that C" (̂2m + 1) is the Clifford algebra over the elements at := etu, bi := ufi. 
Now apply the spin formalism and, if V is the vector space spanned by the ai, we 
consider / \ V as a representation of C^(2m + 1) and of the spin group. 

Definition 2. This representation is called the spin representation of the odd spin 
group. 

In the even case, we have the two half-spin representations. 
Recall that the formalism works with 1/2 of the standard hyperbolic form on 

W = y 0 y*. We take ^ i , . . . , e„, / i , . . . , / „ to be the standard basis with {ei ,ej) = 
(fi,fj) = 0Aei,fj) = 8l/2. 

Let us now compute the highest weight vectors. We have to interpret the Cheval-
ley generators: 

(7.1.1) e. := etj+i - ^„+/+i,„+/, i = I,... ,n - I, e^ := en-\,2n - ^n,2n-i 

/ . '= ^/+l,/ - ^n+/,«+/ + l, / = 1, . . . , n - 1, / ^ : = e2n,n-l " ^2n-l,n 

in terms of the spin formahsm and formulas 4.4.1, 4.4.2 of Chapter 5: 
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[a Ab,c] = (b, c)a — (a, c)b, 

[c /\d,a Ab] = (b, d)a A c + (A, d)c Ab — (a, c)d Ab — (b, c)a A d. 

We deduce (recall we are using 1/2 the standard form): 

(7.1.2) 
ei A Cj - eiCj = Ci^n+j - ej,n+i, et A fj = etfj = etj - en+j,n+i, i ¥" j , 

(7.1.3) 
fi ^ fj = fifj = ^n+ij - ^n+jj, et A fi = etfi - 1 / 2 = ei^i - en+l^n+i-

Hence 

We deduce that 

e\ A 62 A . . . A en, ^ i A ^2 A . . . A ^ „ _ i 

are highest weight vectors. In fact it is clear that they are both killed by e^ but also 
by the other £., / < n, by a simple computation. 

For the weights, apply 

n 

^n-\-i,n-\-i) tO €{ A ^2 A . . . A ^„ a n d e\ A ^2 A . . . A 6^-1 

i i 

to obtain the weights 1/2 X!" xt, l/2(Xlp^ xt - Xn) respectively. We have the two 
half-spin weights s± determined in Chapter 10, §5.1.1. 

In the odd case consider the Chevalley generators in the form 

( 7 . 1 . 4 ) - ^2n+l,2n = ^ n " = « n , 

from which it follows that ai A tZ2 A . . . A (2„ is a highest weight vector. 
As for its weight, apply, as in the even case, 

Y^Xi '' ' = "^xtet A fi = Y^Xiieij - en+i,n+i) 
i i i 

and obtain the weight 1/2 Yll=i ^/' which is the fundamental spin weight for the odd 
orthogonal group. 

7.2 Pure Spinors 

It may be slightly more convenient to work with the lowest weight vector 1 killed by 
et A fj^i ^ 7, f A fj, with (ei A / i ) l = - 1 / 2 . 
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Definition. A vector in one of the two half-spin representations is called a pure 
spinor if it is in the orbit, under the spin group, of the line through the highest weight 
vector. 

This is a special case of the theory discussed in Chapter 10, §6.2. If G is the spin 
group and P is the parabolic subgroup fixing the line through 1, in projective space 
a pure spinor corresponds to a point of the variety G/P. 

We now do our computations in the exterior algebra on the generators et, which 
is the sum of the two half-spin representations. 

Tiieorem 1. The two varieties G/P for the two half-spin representations corre­
spond to the two varieties of maximal totally isotropic subspaces. If a is a nonzero 
pure spinor, the maximal isotropic subspace to which it corresponds is Na '= 
{x eW \xa = 0}. 

Proof Let us look for instance at the even half-spin representation. Here 1 is a lowest 
weight vector and xl = 0 if and only if x is in the span of / i , / i , . . . , / „ , so that we 
have Ni = {f\, fi,. ^., fn)- If « is any nonzero pure spinor, a = gX\, g e Spin(2«), 
A G C, and hence the set ofxeW with xa = Ois g{Ni); the claim follows. D 

The parabolic subalgebra p stabilizing 1 is the span of the elements f A fj, 
Ci A fj, which in matrix notation, from 7.1.2 and 7.1.3 coincides with the set of 

\A 0 I 
block matrices L, ^A,B^ = —B.\i follows that the parabolic subgroup fixing 

1 coincides with the stabilizer of the maximal isotropic space A î. 
Thus the unipotent group, opposite to p, has its Lie algebra spanned by the el­

ements Ci A ej. Applying the exponential of an element cox := Yli<j ^ij^i ^ ^j ^^ 
1, one obtains the open cell in the corresponding variety of pure spinors. This is 
described by formula 3.6.3 of Chapter 5, involving the Pfaffians [/i, ii,..., iikY-

(7.2.1) exp(a;x) = ^ ^ [/i,/2,... 
k ii<i2<--<i2k 

Remark that exponentiating the toral subalgebra ^ " xtct A f we have a torus, 
whose coordinates we may call tt such that the vector e/, A ,̂2 ^ . . . A /̂̂  has weight 

^/i ^/2 • • • ^ik ' 

To obtain all the pure spinors we may apply the Weyl group. To understand 
it take one of the 5//(2, C), / < n, generated by ^̂  = eif^i, / . = ^z+i/i, 
hi =eif -et+xfi+i. 

We see by direct computation that all the vectors are killed by this Lie algebra 
except for the pairs ei Au^et^i AM, with u a product not containing ei, ^/+i. These 
pair of vectors transform as the standard basis of the basic representation of 5/(2, C). 
It follows that the reflection st maps ,̂ A w to — ̂ /+i A M, and e/+i A M, to /̂ AM. 

In the special linear group SL(n, C) which acts on /\(Yli ^^i)^ the elements st 
defined by Si(ej) = ej, j i^ /, 7 / / + 1, 5/(^/) = -^/+i, 5/(^/+i) = /̂ are the 
usual elements we choose to generate a group V^ which induces, by adjoint action, 
the synmietric group 5„. 
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The last case is 5/„(2, C) generated by ^ = en-\en, f = fnfn-\, h.n — 
en-\fn-\ — fn^n- Now the vectOFs killed by e^ are all the vectors that contain 
either ^„_i or „̂ or both. 

We are left with two types of nontrivial representations: ^„_i A w, ̂ „ A w or 
w, ̂ „_i A „̂ A M. The simple reflection 5„ sends (u does not contain n): 

e^-x AM h^ —en AM, en AU h-> en-\ Au,u \-^ —^n-\ Aen Au, en-i Aen Au !->• M. 

At this point we can easily check: 

Proposition. 

(i) The exterior products of the elements ei are extremal vectors (for the two repre­
sentations), 

(ii) The stabilizer in the Weyl group of the weight of 1 is 5„ and has index 2"~^ 
(Hi) The half-spin representations are minuscule. 

Proof Let us denote by W„ the group generated by the elements st, / = 1 , . . . , /i. It 
contains the subgroup W generated by the ̂ ,, / = 1 , . . . , n — 1, which acts on weights 
as the symmetric group. Let us compute the orbit of 1 under W. We claim that it is 
formed by all the vectors dî /j A ,̂2 ^ . . . A /̂+2)t. In fact, this set of vectors is stable 
under the action of W, The elements sf, i = 1 , . . . , n — 1, change the sign of the 
elements ^/, ^/+i, while s]; changes the sign of ^„_i, ^„. Thus the subgroup generated 
by the sf is the group of diagonal transformations which changes an even number of 
signs. The group W permutes transitively the vectors ±ei^ A et^ A ... A ei^2k for a 
given k up to sign. Finally, Sn allows us to pass from a suitable product with k factors 
to one with A: — 2 or A:+2 factors. This shows that the 2"" ̂  vectors et^ Aei^A.. .A ei^2k 
are extremal. 

For the other half-spin representation we may start from e\ instead of 1. Thus (i) 
and (iii) follow. Also (ii) follows from the fact that the Weyl group of Spin(2n) is a 
quotient of W and has order n !2"~^ D 

It is useful to do some computations directly inside the Clifford algebra. We 
consider the even case and the usual basis et, f. Set / := fnfn-i • • • / i . e := 
1̂̂ 2 • • • ^n- Set furthermore A = 0^^o ^k to be the (graded) subalgebra generated 

by the ^/'s, isomorphic to the exterior algebra / \ V, V = (^1 , . . . , ^„). 

Proposition 1. The left ideal in C(2n) generated by f is minimal and equals Af. 
The mapping a \-^ af,a e /\V is an isomorphism of representations ofC(2n). 

Proof. Since / / = 0, for all / we see that C(2n)f = Af. Since A is irreducible 
and the map av-^af nonzero, we must have that A maps isomorphically to Af. D 

Notice in particular that fei^ei-^...ei^f = 0 unless k = n and fef = 
fe\e2...enf = / . This allows us to define a nondegenerate bilinear form on 
l\y = Af invariant under the spin group. We use the principal involution which 
is the identity on the generators ^/, f and consider, given a,b e A, the element 
(af)*bf = f*a*bf. We can assume both elements a and b are homogeneous. Since 
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/ * = (—i)«(«-i)/2y we deduce that (af)*bf = 0 unless a'^b has degree n, hence 
it is a multiple, p(a, b)e of e. Then (afybf = ^(a, b)f. The number P(a, b) is a 
biUnear form on / \ V. 

Theorem 2. 

fij r/z^ /<9rm P is nondegenerate. It pairs in a nondegenerate way f\ V and 

(2) P satisfies the symmetry condition P(a, b) = (-1)" '̂'~^^/^^(Z7, a). 
(3) P is stable under the spin group. 
(4) The principal involution is the adjunction with respect to the form p. 

Proof. (1) On the decomposable elements et^ei^... /̂̂  it is clear that ^ pairs, with 
some sign, elements of complementary indices, proving 1. 

(2) If a*b has degree «, then b^'a = (a^b)* = (-ly^^'-^^/^a^b. 
(3) If 5 € Spin(2n), we have P{sa, sb) is computed by 

{safTsbf = ra's'sbf = fa'^bf. 

(4) If c G C{2n) we see that P(ca,b)f = (cafTbf = Pia,c''b)f. So the 
principal involution is the adjunction with respect to the form ^. D 

There are several interesting consequences of the previous theorem. 

Corollary. 

(1) Under the form p, the even and odd spinors are maximal totally isotropic ifn is 
odd and instead orthogonal to each other ifn is even. 

(2) The two half-spin representations are self-dual ifn is even, and each is the dual 
of the other ifn is odd. 

(3) If n = 2k the form P is a nondegenerate form on each of the two half-spin 
representations. It is symmetric ifk is even, skew symmetric ifk is odd. 

Proof If fl, ̂  are homogeneous, and a*b has degree n, we must have that a, b have 
different parity ifn is odd, and the same ifn is even, proving (1). (2) follows from (1). 
(3) follows from (2) and part (2) of Theorem 2. n 

Remark. We could have worked also with B = 0^^o ^^' ^̂ ^ algebra generated by 
the //, and the minimal left ideal Be. 

Now that we have seen that the spin representation /\V = Af is self-dual we 
can identify A ^ ^ A ^ ^i^h End(A ^) = C{2n), thought of as a representation of 
the spin group under conjugation. This is best done using the internal map: 

Theorem. The map i : Af <^Be ^^ C{2n),af <^be i-> af(be)*, is an isomorphism 
as representations of the spin group. 

Proof. Since A/, Be are minimal left ideals, (Be)* = eB is SL minimal right ideal. 
Af{BeY = AfeB, a two-sided ideal. Since C(2n) is a simple algebra and the two 
spaces have the same dimension, / is an isomorphism. If 5̂  G Spin(2n), we have 
s{ae(bfy)s-^ = s(ae(bfy)s* = {sae){sbfy. D 
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Remark. Notice that Be = Afe so we can use the isomorphism / in the form 
fli 0<^2 -̂> a\fefal =a\fal. 

For a set / := [ix < /2 • • • < 4}, set ej :== /̂, ei^... et,, fj := ^/,^/,_, .. • /̂i • 

Lemma 1. We have 

Proof. By induction 

yc[l,2,...,n] 

fe = fn( J2 (-^y'^^jfXn = Y. (-^y'^^jfnenfj 
^yc[l,2,...,n-l] / yc[l,2,...,n-l] 

7C[l,2,...,n-l] yc[l,2,...,n] 

WeusetwobasesforC(2n),^y//i:, ej fex, 7, ̂  C [1, 2 , . . . , « ] . The first basis 
ej fx is adapted to the filtration by the degree of the monomials in the et, fj. 

Lemma 2. The spaces Cj :== ®|yM |/̂ |</ Cejfx are representations under the con­

jugation action of the spin group. Ci/Ci-\ is isomorphic f o / \ ' (V0V*) . 

Proof. Since the spin group conjugates the space spanned by all the et, f, / = 
! , . . . , « , into itself inducing the standard representation of the orthogonal group, the 
lemma follows by the commutation relations. D 

The second basis ejfcK is adapted to the tensor product decomposition. 
Under the tensor product the two summands SQ^SQ®S\^S\, SQ^SX^SX^SQ, 

correspond to Cl^{2n), Cl~{2n) when n is even and the other way if n is odd. 
It is useful to describe the base change explicitly. Let J^ define the complement 

of / in [1, 2 , . . . , n] and €j the sign of the permutation such that / = 6y/y/yc Thus: 

ejfcK = ̂ KejfKfKcCK = {-ly^'^'^^^^^KejfKeKfK^ 

= (-ir(-i^i).^o(E(-i)'"^A^)/^^ 
Mc/f ^ 

(7.2.2) = (-ir^'-l'^l'e^ Yl (-l)'^'o«A/^/if-
ACKDJ' 

Notice that the leading term of this sum is 

(-1) ^A:(-1) ejeKDj^jKHj^jK'' 

Proposition 2. The conjugation action of the spin group on CI (W) factors through 
an action of the special orthogonal group and it is isomorphic to ^ j ^ ! ^ A ^ -
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Proof. We have a homomorphism T{W) -^ Cl{W) which, restricted to the direct 
sum 0 ^ f\ {W)of antisymmetric tensors, is a linear isomorphism of representations 
of the orthogonal group. D 

If dimW = 2«,2« + 1, the even Clifford algebra Cl^{W) decomposes as 
0 L o A^^ ^ - l^vi,V2....,Vke W, we have ui A i;2 A . . . A i;̂  = ^̂  Ha^s^ ^^^^(D 
Vail) ' ' ' Vo{k)' 

Lemma 3. If vi, V2,.. ^, Vk G W are orthogonal we have v\ A V2 /\ ... ^ Vk = 
VxV2...Vk. 

Proof From the commutation relations Va{\)Va{2).. .Va{k) = ^aV\V2.. .Vk. • 

If the elements are not orthogonal, this is only the leading term in the filtration. 
In particular if v\,V2,... ,V2n form an orthogonal basis of W the element 

v\V2. >. V2n is a generator of the 1-dimensional vector space A '̂  ̂  ^^^ i^' under 
the conjugation action, invariant under SO{W). 

Choose as basis M2/-1 '= /̂ + ft, "2/ := et — f, i = \,... ,n. These vectors are 
an orthogonal basis of W, and so anticommute. Moreover W2/-1 — 1' " I ~ ~^' 

The element z := M1W2 • • • W2n anticommutes with each element of W, commutes 
with the even Clifford algebra, and generates /\'^ W. 

Theorem 3.z^ = l,fz = f and /\^ Wz = A^"~^ ^ • 

Proof The permutation 2«, 2« — 1 , . . . , 2, 1 has sign (—1)", so 

Z^ = (-iyUiU2 . . . U2nU2nl^2n-\ • • • "2^1 = ( - 1 ) " ( - 1 ) " = 1. 

For fz let us see the first multipUcations. From f^ei H- //)(^/ — ft) = —ft ^^ have 

fz = {-\TfU2nU2n-\ ...W2W1 = ( - l ) " ~ V l • • •/n-1/«W2n-2W2n-3 • • • "2^1 

= (—1)" / l • • • /«-l«2n-2"2Ai-3 • • . « 2 W I / A I -

Then work by induction. Since z is an invariant, the map w h-> MZ is an SOiW)-
equivariant map, so it maps /\^ W, which is irreducible ifk < n, to an isomorphic 
irreducible representation. Thus to prove that z /\^ W = /^^n-/: ^ -̂  -̂  enough to see 
that there is an element v e f\!^ W with vz e /\^"~^ w. We can take v = u\U2.. .Uk 
for which vz = {-\)^Uk+\Uk+2 . . . W2n- We know, by §6.6, that f\^ W decomposes 
as the direct sum of two irreducible representations of highest weights twice the two 
half-spin representations which are not isomorphic to the representations / \ W for 
k <n.\i follows that z induces on / \" W a linear map with eigenvalues -hi and —1, 
preserving these two irreducibles. • 

We will see presently that the two summands / \" W+, /^ W- of / \" W relative 
to the eigenvalues -hi, —1 coincide with the irreducibles of weights 25+, 2s- respec­
tively. 
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For k < n'WQ also decompose the direct sum /\^ W 0 /\^"~^ W = L^ ® L^ as a 
sum of the two eigenspaces of eigenvalues ibl for z. Notice that, as representations, 
both L^, L^ are isomorphic to A^ ^ = A^''"^ ^^ 

Notice that we also have /\^ W ^ A^"~^ W = L^ ® /\^ W = L^ ® /\^ W. 
We can now analyze SQ <Si SQ, Si <Si S\ by analyzing their images in C(2n). 
Take an element afb*, a,beS.lfbeSo,we have afb'^z = afzb"^ = afb*. 

IfbeSi is odd, we have afb*z = —afzb* = —afb*. It follows that for each k we 
do have A^ ^ ^ ^f^o and /\''W (;t SfSi. Otherwise multiplication by z on A^ ^ 
would equal ±1 , while A^ ^z = A^"~^ ^ • 

Theorem 4. 

(i) The image of So 0 So in C(2n) is A" ^+ 0)t ^jt' k < n and k = n, mod 2. 
(ii) A" ^ + is the irreducible representation with highest weight 25+. 

(Hi) The image of S\ (g) 5"! in C(2n) is A" ^ - ®)t ^k^ k < n and k = n, mod 2. 
f/vj A" ^ - "̂̂  ^̂ ^ irreducible representation with highest weight 2s-. 

Proof Under the equivariant map / : S<S>S -> C{2n), i (a (S) b) = afb"" we have that 
5o (8) 5o 0 5i 0 ^i maps to the even or odd part of the Clifford algebra, depending on 
whether n is even or odd. 

Conversely, 5o 0 ^i 0 5i (g) 5o maps to the even or odd part of the Clifford algebra, 
depending on whether n is odd or even. 

In both cases, the odd or even part of the image belonging to 5 0 5o is the set of 
elements u with uz = u, and the image belonging to S (S) Si is the set of elements u 
with uz = —u. The first claim follows now from the definitions. Next we know that 
5o 0 So contains (as leading term) the irreducible representation of highest weight 
2s^ which appears in A" ^ so it must coincide with A" ^+- A similar argument on 
Si 0 Si shows that A'̂  ^ - "lust be the irreducible representation of highest weight 
2s- which appears in A" ^ - ^ 

We have that the image of 5o 0 ^o, 5i 0 ^i is in the even or odd Clifford algebra 
according to whether n is even or odd. Let us assume n is even to simplify the nota­
tion; the other case is similar. Let us denote by C^_j the part of C(2n)'^ of filtration 
degree < n — 1. Then: 

Proposition 3. We have a direct sum decomposition 

C(2«)+ = 5o 0 5o 0 C^_i 0 / \ " W. 

and also 
C(2n)+ = 5i 0 5i 0 C+_i 0 / \ " W+. 

Proof Let us prove one of the two statements, the other being similar. 
We have 5o 0 5o = A" ^+ ©2/<n ^J -
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c(2n)-=e„„ Â ' ^=A" ^ e.<„(A'' ^ * A""' ^) 
= A"^.®A"^-e.<„(A'>®^2^)-

The claim follows. D 

From this corollary we have a more explicit way of computing the quadratic 
equations defining pure spinors. We do it for SQ; for ^i it is similar. Given u = 
Ylj^j^j ^ So we know, by Chapter 10, §6.6, that the property of being a pure 
spinor is equivalent to the fact that u <S}u e /\^ W^. This means, using the previous 
proposition, that when we project ufu* to C(2n)/Cn the image must be 0. This is 
quite an explicit condition since projecting to C(2n)/Cn is the same as imposing the 
condition that in the expansion of ufu*, all terms of degree > n must vanish. Now 

"/«* = (E^^^^)/(E^-i)'"^^^^)-
This sum can be computed using formulas 7.2.3. Notice that when applied to a pure 
spinor given by formula 7.2.1, one obtains some identical quadratic equations sat­
isfied by Pfaffians. The theme of quadratic equations will be revised in Chapter 13 
when we use such equations to develop standard monomial theory for tableaux. 

Remarks. 

(1) All the representations of Spin(V) which do not factor through SO(V) appear 
in the spaces 5 0 V^P. 

(2) In order to study intertwiners between these representations one must use the 
structure of EndC^). 

7.3 Triality 

There is one special case to be noticed: Spin(8). In this case we have three funda­
mental representations of dimension 8. One is the defining representation, the other 
two are the half-spin representations. Since in each of the half-spin representations 
we have a nondegenerate quadratic form ^ preserved by the spin group, and since 
the Lie algebra of the spin group is simple, we get: 

Proposition. In each of the 3 fundamental 8-dimensional representations Spin(8) 
induces the full special orthogonal group. 

There is a simple explanation of this phenomenon which is called triality and 
it is specific to dimension 8. This comes from the external automorphism group of 
the spin group or its associated Lie algebra. We have that the symmetric group ^3 
of permutations of 3 elements acts as symmetry group of the Dynkin diagram. Thus 
(Chapter 10, §6.10) it induces a group of external automorphisms which permutes 
transitively the 3 outer vertices, which correspond to the 3 fundamental representa­
tions described. 

Notice the simple: 
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Corollary. The set of pure spinors in a half-spin representation equals the set of 
isotropic vectors for the form p. 

8 Invariants of Matrices 

In this section we will deduce the invariant theory of matrices from our previous 
work. 

8.1 FFT for Matrices 

We are interested now in the following problem: describe the ring of invariants of the 
action of the general linear group GL(n,C) acting by simultaneous conjugation on 
m copies of the space M„(C) of square matrices. 

In intrinsic language, we have an ^-dimensional vector space V and GL(V) acts 
onEnd(V)®'". 

We will denote by (Xi, X2 , . . . , X^) an m-tuple ofnxn matrices. 
Before we formulate and prove the main theorem let us recall the results of Chap­

ter 9, §1. The theorem proved there can be reformulated as follows. Suppose we are 
interested in the multilinear invariants of m matrices, i.e., the invariant elements of 
thedualofEnd(y)®'". 

First, remark that the dual of End( V)'^'" can be identified, in a GL(y)-equivariant 
way, with End(y)®'" by the pairing formula: 

(Ai^A2...^Am\Bi^B2...^ Bm) 

:= tr(Ai 0 A2 . . . (8) A^ o 5i 0 B2 . . . 0 B^) = ]~[tr(A,jB/). 

Therefore under this isomorphism the multilinear invariants of matrices are iden­
tified with the GL(V)-invariants of End(y)®'" which in turn are spanned by the ele­
ments of the symmetric group. We deduce from the theory of Chapter 9 and formula 
6.1.3 there: 

Lemma. The multilinear invariants ofm matrices are linearly spanned by the func­
tions: 

(t)a{Xx, X2, . . . , Xm) : = tr(or-^ O Xi (g) X2 0 • • • 0 Xm). O G 5 ^ . 

Recall that if cr = (/1/2 • • • ih)(J\J2 . . . A ) . . . (̂ 1̂ 2 • • • •S'm) is the cycle decompo­
sition of a, then from Chapter 9, Theorem 6.1.3, we have that 

0,(Xi, X2 , . . . , Xm) = triXi^Xi,... Xi,)iT{Xj,Xj,... Xj,)... tr(X,,X,,.. . X , J . 

This explains our convention in defining 0^ • 
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Theorem (FFT for Matrices). The ring of invariants of matrices under simultane­
ous conjugation is generated by the elements 

tr(A/j A/2 . . . A/^_j A/^), 

where the formula means that we take all possible noncommutative monomials in the 
Xi and form their traces. 

Proof The proof of this theorem is an immediate consequence of the previous 
lemma and the Aronhold method. 

The proposed ring of invariants is in fact clearly closed under polarizations and 
coincides with the invariants, by the previous lemma, for the multilinear elements. 
The claim follows. n 

Exercise. It is easy to generalize this theorem when one considers as a representa­
tion End(y)®^ 0 V^ 0 (V*)^ 

One gets as generators of invariants besides the elements tr(M) also the elements 
(0 I Mv) = {M^(j) I u), 0 € V*, f G V and M 3. monomial. 

One can compute also the 5'L(V)-invariants and then add the invariants 

M{0i A . . . A M^0„, MiVi A . . . A MnVn, (t>i € V*, U/ G V 

and M a monomial. 

8.2 FFT for Matrices with Involution 

There is a similar theorem for the orthogonal and symplectic groups. 
Assume that V is equipped with a nondegenerate form (M, V) (symmetric or skew 

symmetric). Then we can identify End(V) = V<S)V* = V(S}Vby 

u 0 v(w) := {v, w)u . 

Let 6 = ±1 according to the synmietry, i.e., {a,b) = e{b,a). We then get the 
formulas 

(a<S>b) o(c<S>d) =a<S) {b, c)d, ir{a ^b) = {b, a) 

{(a(^b)c,d) = {b,c)(a,d) = €{c,(b ^ a)d). 

In particular, using the notion of adjoint X* of an operator, {Xa, b) := {a, X*b) we 
see that (a 0 b)* = e{b 0 a). 

We can now analyze first the multilinear invariants of m matrices under the group 
G (orthogonal or symplectic) fixing the given form, recalling the FFT of invariant 
theory for such groups. 

Compute such an invariant function on End(V)®'" = V̂ ^̂ m ^ ^ t e a decompos­
able element in this space as 

Xi 0 X2 . . . 0 X;„ = Ml 0 fi 0 W2 <̂  1̂2 0 • • • Wm 0 l̂ m. Xi = Ui 0 f/. 
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Then the invariants are spanned by products of m scalar products (jc/, yi) such that 
the 2m elements jc,, yt exhaust the list of the w,, Vj. 

Of course in these scalar products a vector u can be paired with another w or a f 
(homosexual or heterosexual pairings, according to Weyl). 

The previous formulas show that, up to a sign, such an invariant can be expressed 
in the form 

MXu . . . , X^) := tr(F,- Yt,... F/J tr(r,- Yj,... Yj,)... tr(F,, 7 , , . . . F .J , 

where, for each /, the element 7/ is either X, or X*. 

Combinatorially this can be pictured by a marked permutation a, e.g., 

a = {3, 2, T, 5,4}, (t>^{Xi,..., X5) := iT(X3X;X2) iriX^X;). 

We deduce then the: 
Theorem (FFT for Matrices). The ring of invariants of matrices under simultane­
ous conjugation by the group G (orthogonal or symplectic) is generated by the ele­
ments 

Proof Same as before. D 

Exercise. Generalize this theorem when one considers as a representation 
End(y)®^0 V^. 

One gets as generators of invariants, besides the elements tr(M), also the ele­
ments (u , Mv) = (M'^u , v),v e V and M a monomial in the X/, XJ. 

The computation of the 5'0(V)-invariants is more complicated but can also be 
performed. In this case one should observe that the only new case is when dim V is 
even. In fact, when dim V is odd, —I e SO(V) is Sin improper orthogonal transfor­
mation which acts as 1 on matrices. Thus, in this case we have no further invariants 
when we restrict to SO(V). 

Instead, when dim(y) = 2n, given a skew-symmetric matrix Y we have that 
PfiY) is invariant under 50(V), but for A e 0(V) we have PfiAYA'^) = 
PfiAYA') = det(A)P/(y), from Chapter 5, §3.6.2. 

Of course we may think of Pf{^^^Y~) ^^ ^^ invariant of matrices of degree n. 
When we polarize it we obtain a symmetric multihnear invariant 2 ( X i , . . . , X„) 

which under an improper orthogonal transformation is multiplied by — 1. When we 
specialize the matrices X, := M/ (g) vi we get a special orthogonal, but not an orthog­
onal invariant of the In vectors M,, VJ. We know that, up to a scalar, this invariant 
must be equal to MI A fi A M2 A i;2 A . . . A M„ A i;„. If we set Ui := et, Vt := f 
we have that the constant is 1. Now we have more general invariants, given by the 
functions QiMi, M2, . . . , M„) where the M-s are monomials in the X/, X-, and we 
see this, by the same symbolic method. 

Theorem (FFT for Matrices). The ring of invariants of matrices under simultane­
ous conjugation by the group SO(V), dim V = 2n is generated by the elements 

tr(M), Q(M\, M2,..., Mn), M, Mi are monomials in X/,X[. 
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8.3 Algebras with Trace 

It is useful to formalize the previous analysis, in the spirit of universal algebra, as 
follows. 

Definition. An algebra with trace is an associative algebra R equipped with a unary 
(linear) map ir : R ^^ R satisfying the following axioms: 

(1) tv(a)b = biT(a), Wa,be R. 
(2) tr(iT{a)b) = tr(a) tr(Z7), Va, b e R. 
(3) tT(ab) =iT(ba), Wa^be R. 

An algebra with involution is an associative algebra R equipped with a unary (linear) 
map * : / ? - > / ? , jc->jc* satisfying the following axioms: 

(jc*)* = jc, {xyy = y*jc*, VJC, y e R. 

For an algebra with involution and a trace we shall assume the compatibility condi­
tion tr(x*) = tr(x), Vx. 

As always happens in universal algebra, for these structures one can construct 
free algebras on a set S (or on the vector space spanned by S). 

Explicitly, in the category of associative algebras, the free algebra on S is ob­
tained by introducing variables Xs,s e S and considering the algebra having as basis 
all the words or monomials in the jĉ . For algebras with involution we have to add 
also the adjoints JC* as an independent set of variables. 

When we introduce a trace we have to add to these free algebras a set of com­
muting indeterminates t{M) as M runs over the set of monomials. 

Here, in order to preserve the axioms, we also need to impose the identifications 
given by cyclic equivalence: t(AB) = t(BA), and adjoint symmetry: t(A*) = t(A), 
for all monomials A, B. 

In all cases the free algebra with trace is the tensor product of the free algebra 
(without trace) and the polynomial ring in the elements t(A). This polynomial ring 
will be called the free trace ring (with or without involution). 

The free algebras F5, by definition, have the universal property that given ele­
ments fs ^ Fs, s e S, there is a unique homomorphism Fs -^ Fs (compatible with 
the structures of trace, involution) which maps Xs to fs for all s. 

In particular we can rescale independently the Xs and thus speak about multiho-
mogeneous, in particular multilinear, elements in Fs. 

Let 5 = {1, 2 , . . . , m}. We describe the multilinear elements in the various cases. 

1. For the free associative algebra in m variables, the multilinear monomials (in all 
the variables) correspond to permutations in Sm as xt^Xi^... xi^. 

2. For the free algebra with involution the multilinear monomials (in all the vari­
ables) correspond to marked permutations in Sm as: yt^ytj • • • yi,rt where yt = xi 
if / is unmarked, while yt = x* if / is marked. 
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3. For the free associative algebra with trace in m variables the multilinear monomi­
als (in all the variables) correspond to permutations in Sm+\ according to the fol­
lowing rule. Take such a permutation and decompose it into cycles isolating the 
cycle containing m + 1 as follows: if a = (/1/2 • • • ih)ij\J2 • • • A) • • • (''1 • • • ^p) 
(s\S2...Sgm -h 1), set 

i/a(x\,X2, ...,x^) = tr(x,-,x/2... Xi^) ir(Xj,Xj^... Xj^)... 

X ITyXf^ Xj-^ . . . X^p JX5J Xs2 ' ' • Xs^ . 

4. For the free associative algebra with trace and involution in m variables the 
multilinear elements (in all the variables) correspond to marked permutations 
in Sfn-\.\, but there are some equivalences due to the symmetry of trace under 
involution. 

In fact it may be interesting to isolate, in the case of trace algebras, the part T^+i 
of the multilinear elements in m + 1 variables lying in the trace ring and compare it 
with the full set A^ of multilinear elements in m variables using the map Cm '• Am -^ 
Tfn+\, given by Cm (M) := t (Mjc^+i). We leave it to the reader to verify that this map 
is a Hnear isomorphism. 

Example. The correspondence between A2 and ^3, in the case of involutions: 

XiX2JiXiX2X3); X2Xut(X2XiX3); XiX2,t(XiX2X3); X2XutiX2XiX3y, 

X*JC2, Kx*JC2X3); JC2JC1, ^(jC2JCiJC3); JC1JC2, K-^1-^2-^3); •^2-^p K-^2-^*-^3); 

tiXi)X2, t(Xi)t{X2X3); t(X2)Xut(X2)tiXiX3); t{Xi)X2, t{Xi)t(X2X3); 

t(X2)x*, t(X2)t(x'lx3); t(Xi)t{X2), t{Xi)t{X2)t(X3); tiXiX2), t(XiX2)tiX3)-

t(XiX2),t(XiX2)t(X3). 

Let us also denote for convenience by R the free algebra with trace in infinitely 
many variables and by Tr the polynomial ring of traces in R. The formal trace in R 
is denoted by t : R ^^ Tr. 

We formalize these remarks as follows. We define maps 

vl/ : C[Sm^,] -^ R, vi/(a) := i/r,; cD : C[Sm] -> Tr, cD(or) := 0 , . 

We have a simple relation between these maps. If cr e Sm-\-i, then 

0 ( a ) = r(^(or)x^+i). 

We remark finally that for a permutation a e Sm and an element a G €[5^] we have 

<l^(aaa~^) = 0 ( a ) ( X a ( l ) , ^^(2), • • • , ^a(m)). 
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8.4 Generic Matrices 

We shall now take advantage of this formalism and study more general algebras. We 
want to study the set of G-equivariant maps 

/ : End(V)®^ -^ End(V). 

Here n = dim V and G is either GL(V) or the orthogonal or symplectic group of a 
form. 

We shall denote this space by Rm(n) in the GL(V) case, and by R^in), R^^(n), 
respectively, in the orthogonal and symplectic cases. 

First, observe that the scalar multiples of the identity CIy C End(V) form the 
trivial representation, and the equivariant maps with values in Cly can be canoni-
cally identified with the ring of invariants of matrices. We shall denote this ring by 
Tfn(n), T^(n), T^{n) in the 3 corresponding cases. 

Next remark that End(V) has an algebra structure and a trace, both compatible 
with the group action. We deduce that under pointwise multiplication of the values 
the space Rm{n) is a (possibly noncommutative) algebra, and moreover, applying the 
trace function, we deduce that: 

Rm{n) is an algebra with trace and the trace takes values in Tm(n). 
For the orthogonal and symplectic case End( V) has also a canonical involution, 

so R^(n) and R^^(n) are algebras with trace and involution. 
Finally, observe that the coordinate maps (Xi, X2,..., Xm) -^ Xi are clearly 

equivariant. We shall denote them (by the usual abuse of notations) by Xt. We have: 

Theorem. In the case ofGL{V), Rm(n) is generated as an algebra over Tm{n) by 
the variables Xi. 

R^(n) and R^^(n) are generated as algebras over T^(n), T^(n) by the variables 
Xi,x;. 

Proof. Let us give the proof of the first statement; the others are similar. 
Given an equivariant map f(X\,..., X^) in m variables, we construct the invari­

ant function of m + 1 variables g(X\,..., Xm, Xm+i) := t r ( / ( Z i , . . . , Xm)Xfn+i). 
By the structure theorem of invariants, g can be expressed as a linear combination 

of elements of the form tr(Mi) tr(M2)... ir(Mk), where the M/'s are monomials in 
the variables X/, / = 1 , . . . , m + 1. 

By construction, g is linear in Z^+i; thus we can assume that each term 

tr(Mi)tr(M2)...tr(M^) 

is linear in X^_ î and in particular (using the cyclic equivalence of trace) we may 
assume that Xm-\-i appears only in Mk and Mk = NkXm+i^ThQn Nk does not contain 
Xm+i and 

tr(Mi) tr(M2).. .tr(M^_i)tr(M^) = tr((tr(Mi)tr(M2).. .tr(M^_i)A^^)Z^+i). 

It follows that we can construct a polynomial / i (Xi , . . . , Z^) (noncommutative) in 
the variables X,, / < m, with invariant coefficients and such that 
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tr( / i(Zi, . . . , Xm)Xm^i) = t r ( / ( X i , . . . , X^)X^+i). 

Now we can use the fact that the trace is a nondegenerate bihnear form and that 
Xm-\~\ is an independent variable to deduce that h{Xi,..., Xm) = f{X\,..., X^), 
as desired. D 

Definition. The algebra Rm(n) is called the algebra of m-generic n x n matrices 
with trace. 

The algebra R^ (n) (resp. /?^ (n)) is called the algebra ofm-generic nxn matrices 
with trace and orthogonal (resp. symplectic) involution. 

8.5 Trace Identities 

Our next task is to use the second fundamental theorem to understand the relations 
between the invariants that we have constructed. For this we will again use the lan­
guage of universal algebra. We have to view the algebras constructed as quotients 
of the corresponding free algebras, and we have to deduce some information on the 
kernel of this map. 

Recall that in an algebra R with some extra operations an ideal / must be stable 
under these operations, so that R/I can inherit the structure. In an algebra with trace 
or involution, we require that / be stable under the trace or the involution. 

Let us call by Fm, F^ the free algebra with trace in m-variables and the free 
algebra with trace and involution in m-variables. We have the canonical maps (com­
patible with trace and, when it applies, with the involution) 

7t:Fm^ Rm{n), n':Fi^^ R'Jn), n': F^^-^ R'Jn). 

We have already seen that in the free algebras we have the operation of substitut­
ing the variables Xs by any elements fs. Then one has the following: 

Definition. An ideal of a free algebra, stable under all the substitutions of the vari­
ables, is called a T-ideal (or an ideal of polynomial identities). 

The reason for this notation is the following. Given an algebra R, a morphism of 
the free algebra in R consists of evaluating the variables Xs in some elements r^. The 
intersection of all the kernels of all possible morphisms are those expressions of the 
free algebra which vanish identically when evaluated in R, and it is clear that they 
form a T-ideal, the ideal of polynomial identities of R. Conversely, if / C F^ is a 
T-ideal, it is easily seen that it is the ideal of polynomial identities of Fs/1. 

Of course an intersection of T-ideals is again a T-ideal and thus we can speak of 
the T-ideal generated by a set of elements (polynomial identities, or trace identities). 

Going back to the algebra Rm (n) (or R^(n), R^^{n)) we also see that we can com­
pose any equivariant map f(X\,..., X^) with any m maps gi (Xi,..., X^) getting 
a new map f(gi(Xu • . . , Xm), • . . , gm(Xi,..., Xm)). Also in Rm(n), we have the 
morphisms given by substitutions of variables. 
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Clearly substitution in the free algebra is compatible with substitution in the al­
gebras Rm(n), R^(n), R^^(n), and thus the kernels of the maps n, TT ,̂ TT̂  are all 
T-ideals. They are called respectively: 

The ideal of trace identities of matrices. 
The ideal of trace identities of matrices with orthogonal involution. 
The ideal of trace identities of matrices with symplectic involution. 
We can apply the language of substitutions in the free algebra and thus define po­

larization and restitution operators, and we see immediately (working with infinitely 
many variables) that 

Lemma. Two T-ideals which contain the same multilinear elements coincide. 

Thus we can deduce that the kernels of TT, TT ,̂ TT̂  are generated as T-ideals by 
their multilinear elements. We are going to prove in fact that they are generated 
as T-ideals by some special identities. So let us first analyze the case of R(n) := 
UmRmin). T(n):=UmTm(n). 

The multilinear elements of degree m (in the first m variables) are contained in 
Rm (n) and are of the form 

creSm+\ 

From the theory developed we know that the map 

^ :C[Sm+i]-^ Rm(n), J^ ^^^ ^ ^ «aiA^(Zi, X2 , . . . , Z^) 
aeSm+i (jeSm+i 

has as its kernel the ideal generated by the antisymmetrizer in n + 1 elements. Thus, 
the multilinear identities appear only for m > n and form = n there is a unique iden­
tity (up to scalars). So the first step consists of identifying the identity A„ (x i , . . . , x„) 
corresponding to the antisymmetrizer 

(jeS„+i 

with 6̂  the sign of the permutation. 
For this, recall that there is a canonical identity, homogeneous of degree n in 1 

variable, called the Cayley-Hamilton identity. Consider the characteristic polynomial 
ofZ,xx(0 :=det ( r -Z) = r" - t r (X)r" -^- | - •+( - ! )" det(Z), we have xx(Z) = 0 . 

We want to interpret this as a trace identity. Remark that tr(X') is the i^^ New­
ton function in the eigenvalues of X. Hence, by Chapter 2, §1.1.3 we can interpret 
each coefficient of the characteristic polynomial as a well-defined polynomial in the 
elements tr(Z^). 

Thus we can consider C//„ (jc) := jc" - r {x)x^~^ H h (-1)" det(x) as a formal 
element of the free algebra. If we fully polarize this element we get a multilinear trace 
identity CH{x\,..., x„) for n x n matrices, whose terms not containing traces arise 
from the polarization of x" and are thus of the form XlTe5„ ^T(1)^T(2) • • • ^xin)-
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By the uniqueness of the identities in degree n we must have that the polarized 
Cayley-Hamilton identity is a multiple of the identity corresponding to the antisym-
metrizer. To compute the scalar we may look at the terms not containing a trace in 
the two identities. 

Clearly A:IX2 . . . JC„ = iA(i2...nn+i) and (̂12...««+!) = (—1)", and thus we have 
finally: 

Proposition. A„(jci,..., x„) = ( - 1 ) " C / / ( J C I , . . . , jc„). 

Example, n = 2 (polarize P2U)) 

M = ^1^2 -i-XiXi - t(Xi)X2 - t(Xi)X2 - t{XiX2) + t(Xi)t(X2); 

P2{x) = jĉ  - t(x)x + det(jc) =x^ - t(x)x + -{t(xf - t{x^)). 

Exercise. Using this formal description (and restitution) write combinatorial expres­
sions for the coefficients of the characteristic polynomial of X in terms of tr(Z') (i.e., 
expressions for elementary synmietric functions in terms of Newton power sums). 

It is particularly interesting to see what the polarized form is of the determinant. 
The terms corresponding to the determinant correspond exactly to the sum over all 
the permutations which fix n + 1. Therefore we deduce: 

Corollary. The polarized form o/det(X) is the expression 

(8.5.1) ^€a<j)a{Xi,...,Xn). 
aeSn 

Let us look at some implications for relations among traces. 
According to the general principle of correspondence between elements in R and 

T, we deduce the trace relation 

Tn+liXi, . . . ,Xn,Xn+l) := ^ €(j(t>a(X\, X2, . . . , Xn, Xn^l) 
creSn+i 

= t(An(Xu...,Xn)Xn+l). 

Recall that 

(t)a{X\,X2, ,..,Xm)= HXi^Xi^ . . . Xi,) tviXj^Xj^ . . . Xj^) . . . iv(Xs,Xs2 • • • X^J. 

Example, (n = 2) 

T3 := t{XiX2X3) + t(X2XiX3) - t(Xi)tiX2X3) - t(Xi)t(X2X3) - t(XiX2)t(X3) 

-\-t{Xi)t(X2)tiX3). 

Observe also that when we apply the operator of restitution to Tn+i we get 
n\t(Pn(x)x) = Tn+i{x,x,..., jc); the Vanishing ofthis cxprcssiou for n X « matriccs 
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is precisely the identity which expresses the n -f 1 power sum of n indeterminates as 
a polynomial in the lower power sums, e.g., n = 2: 

Before we pass to the general case we should remark that any substitution map in R 
sends the trace ring Tr into itself. Thus it also makes sense to speak of a T-ideal in 
Tr. In particular we have the T-ideal of trace relations, the kernel of the evaluation 
map of Tr into T(n).WQ wish to prove: 

Theorem. The T-ideal of trace relations is generated (as a T-ideal) by the trace 
relation r„+i. 

The T-ideal of (trace) identities ofnxn matrices is generated (as a T-ideal) by 
the Cayley-Hamilton identity. 

Proof From all the remarks made it is sufficient to prove that a multilinear trace 
relation (resp. identity) (in the first m variables) is in the T-ideal generated by r„+i 
(resp. An). 

Let us first look at trace relations. By the description of trace identities it is 
enough to look at the relations of the type ^(i^iYlaeSn i ^o^)y)^ 'C,y ^ ^m+i-

We write such a relation as ^{y'^iy^C^o^s ^acr))y). We have seen that con­
jugation corresponds to permutation of variables, an operation allowed in the T-ideal; 
thus we can assume that y = \. 

We start with the remark (m > n): 
Splitting the cycles. Every permutation r in Sm+\ can be written as a product 

r = Of o ^ where p e Sn+\ and, in each cycle of of, there is at most 1 element in 
l , 2 , . . . , n + l. 

This is an exercise on permutations. It is based on the observation that 

{xxxxx a yyyyy b zzzz c . . . ) = {xxxxx a){yyyyy b)(zzzz c)(...)(abc...). 

From the remark it follows that (up to a sign) we can assume that r has the 
property that in each cycle of r there is at most 1 element i n l , 2 , . . . , « + l. 

Assume that r satisfies the previous property and let a e Sn-\-\. The cycle de­
composition of the permutation ra is obtained by formally substituting in the cycles 
of a, for every element a e [ 1 , . . . , n + 1], the cycle of r containing a as a word 
(written formally with a at the end) and then adding all the cycles of r not containing 
elements < n -\-1. 

If we interpret this operation in terms of the corresponding trace element 
0^ (x i , . . . , Xm+\) we see that the resulting element is the product of a trace element 
corresponding to the cycles of r not containing elements < n + 1 and an element 
obtained by substituting monomials in </>CT(JCI, . . . , Jc^+i) for the variables xt (which 
one reads off from the cycle decomposition of r). 

As a result we have proved that a trace relation is in the T-ideal generated by 

Let us pass now to trace identities. First we remark that, by the definition of an 
ideal in a trace ring, the relation r„+i is a consequence of Cayley-Hamilton. 
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A trace polynomial / (x i , JC2,..., JC;„) is a trace identity for matrices if and only 
if f ( /(xi, X2,.. . , Xm)Xm-\-i) is a trace relation. Thus from the previous proof we have 
that t{f(xi,X2,..., x^)jc^_|-i) is a linear combination of elements of type 

Now we have to consider two cases: the variable x^+i appears either in A or in one 
of the Mi. In the first case we have 

A r „ + i ( M i , . . . , Mn+\) = t{Tn+\(Mu . . . , Mn+l)BXm-^i), 

and Tn+\ (Mi , . . . , Mn+i)B is a consequence of Cayley-Hamilton. In the second, due 
to the antisymmetry of r„+i, we can assume that jc^+i appears in M„+i = Bxm+iC. 
Hence 

AtiAniMu . . . , Mn)Mn+i) = At{An{Mu . . . , Mn)Bxm+xC) 

= t(CAA,{Mu...,Mn)B 

CAAn (Ml , . . . , M„)B is also clearly a consequence of Cayley-Hamilton. a 

8.6 Polynomial Identities 

We now want to discuss polynomial identities of matrices. A polynomial identity is 
a special type of trace identity in which no traces appear. In fact these identities were 
studied before the trace identities, although they turn out to be harder to describe. 
Under the map ^ : C[Stn+\] -^ R{m) the elements that correspond to polynomials 
without traces are the full cycles (/i, ẑ , • • •, '̂m, ^ + 1) and 

^ ( ( / l , / 2 , . - . , « m , ^ + 1)) =Xi,Xi^ "'^im' 

Thus: 

Theorem. The space Mn{m) of multilinear polynomial identities of n x n matri­
ces of degree m can be identified with Pm-^\ H /„, where Pm+\ is the subspace of 
C[5^+i] spanned by the full cycles, and In is the ideal ofC[Sm^-\\ generated by an 
antisymmetrizer onn-{-\ elements. 

A more precise description of this space is not known. Indeed we have only 
asymptotic information about its dimension [RA]. One simple remark is useful. Con­
sider the automorphism r of the group algebra defined on the group elements by 
r (a) := 6(j0r (Chapter 9, §2.5). r is multiplication by (—1)^ on P^+i and trans­
forms In into the ideal Jn of C[Sm+\\ generated by a symmetrizer on n + 1 elements. 
It follows that 

M„(m) = p^n/„ny„. 

The ideal /„ is the sum of all blocks corresponding to partitions A, with height > n+1 , 
while Jn is the sum of all blocks corresponding to partitions X with height of X 
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> n + 1. Thus In n Jn is the sum of blocks relative to partitions which contain the 
hook n + 1, r . It follows that Mn{m) = 0 if m < 2n}^^ As for degree In, we 
have the famous Amitsur-Levitski identity, given by the vanishing of the standard 
polynomial Sin ' 

SlniXl, . . . ,X2n) = J^ ^(T-^CT(I) • • -^ailn)' 

(re Sin 

This can be deduced from the Cay ley-Hamilton identity as follows: consider 

/ , ^(TCH(Xa(i)Xcr(2), • • • , Xa(2n-l)Xa(2n))' 

oeSin 

The terms of CH which do not contain trace expressions give rise to a multiple of 
the Amitsur-Levitski identity, but the terms which contain trace expressions can be 
grouped so as to contain each a factor of the form tT{S2n(x\,..., X2m))' Now we 
claim that tv(S2n(xi,..., X2m)) = 0 identically as a formal expression. This can be 
seen, for instance, by the fact that tr(jc/,x/2... xt^^) = tT(Xi^... xt^^xt^), and these two 
permutations have opposite sign and so cancel in the expression. 

It can be actually easily seen that M„(2n) is 1-dimensional, generated by 52 .̂ 

8.7 Trace Identities with Involutions 

One can also deduce a second fundamental theorem for invariants of matrices and 
trace identities in the case of involutions. To do so, it is just a question of translating 
the basic determinants or Pfaffians into trace relations. 

As usual we will describe the multilinear relations and deduce the general re­
lations through polarization and restitution. In order to study the multilinear rela­
tions involving m — 1 matrix variables X/ we may restrict to decomposable matrices 
Z/ := w/ (g) Vi, A monomial of degree m — 1 in these variables in the formal trace 
algebra is of the type tr(Mi) tr(M2)... iT(Mk-\)Nk, where M/, Â^ are monomials in 
Z/, X* and each index / = 1 , . . . , m — 1, appears exactly once. To this monomial 
we can, as usual, associate the trace monomial tr(Mi) tr(M2)... iT(Mk-\) iT(NkXni). 
Extending from monomials to linear combinations, a multilinear trace identity in 
m — 1-variables corresponds to a multilinear trace relation in m variables. 

Let us substitute in a given monomial, for the matrices Z,, / = 1 , . . . , m, their 
values Hi 0 Vi and expand the monomial according to the rules in 8.2. 

To each trace monomial we associate a product 0/11(-^" yt)^ where the list of 
variables x i , . . . ,Xm,yi, --- ,ym isjust a reordering of MI, ... ,Um,vi,... ,Vm. Con­
versely, given such a product, it is easily seen that it comes from a unique trace 
monomial (in this correspondence one takes care of the formal identities between 
expressions). 

For us it may be convenient to consider the scalar products between the M/, VJ as 
evaluations of variables Xij = (i\j) which satisfy the symmetry condition (i\j) = 

111 This fact can be proved directly. 
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6(71/), with 6 = 1 in the orthogonal case and - 1 in the symplectic case. We consider 
the variables (/17) as entries of an €-symmetric 2m x 2m matrix. 

Consider next the space Mm spanned by the multilinear monomials 
= (h\h)(i3\U)... (iimliim), where /i, 12, '̂3, 

permutation of 1, 2 , . . . , 2m. 
With a different notation^ ̂ ^ this space has been studied in §6.2 as a representation 

of 52m. 
We have a coding map from M^ to the vector space of multilinear pure trace ex­

pressions / ( X i , . . . , Xm+i) of degree m + 1 in the variables X/, X* or the noncom-
mutative trace expressions g{x\,..., X^) of degree m, with / ( X i , . . . , X^+i) = 
tr(g(Xi,...,Xm)X^+i). 

It is given formally by considering the numbers / as vector symbols, the basis of a 
free module F over the polynomial ring in the variables {i\j), X/ := (2/ — 1) (8) 2/ e 
F 0 F C End(F), and (i\j) as the scalar product {i\j), with the multiplication, trace 
and adjoint as in 3.1.1., deduced by the formulas: 

/ 0 ; o /i(g) A: = / (g) U\h)k, tr(/ <S> j) = € (/ |;), (/ (g) 7)* = 6 7 0 /. 

For instance, for m = 2 we have 15 monomials. We list a few of them for € = — 1: 

(1|2)(3|4)(5|6) = -tr(Xi)tr(X2)tr(X3), 

(l|2)(3|5)(4|6) = -tr(Xi)tr(X*X3), 

(l|2)(3|6)(4|5) = tr(Xi)tr(X2X3), 

(1|3)(2|5)(4|6) = -tr(XtX2X3*) = -tr(X3X*Xi) 

and in nonconmiutative form: 

(1|2)(3|4)(5|6) = -tr(Xi)tr(X2), (12)(35)(46) = -tr(Xi)X*, 

(1|2)(3|6)(4|5) = tr(Xi)X2, (1|3)(2|5)(4|6) = -X*Xi. 

Under this coding map the subspace of relations of invariants corresponds to the trace 
identities. Thus one can reinterpret the second fundamental theorem as giving basic 
identities from which all the others can be deduced. 

The reinterpretation is particularly simple for the symplectic group. In this case 
the analogue of the Cayley-Hamilton identity is a characteristic Pfaffian equation. 

• 0 i J 
Thus consider M2n the space of 2n x 2n matrices, J := 

-In 0 
the stan­

dard matrix of the symplectic involution and A* := —JA^J the symplectic involu­
tion. 

Let M2^ denote the space of symmetric matrices under this involution. Under the 
map A -> 5 := A / we identify M2n with the space of skew-symmetric matrices, 
and we can define the characteristic Pfaffian as 

1̂2 We called it P^", P^" 
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(8.7.1) PfA(X):=Pf((kI-A)J). 

We leave it to the reader to verify that P / A ( A ) = 0. 

Hint, A generic symmetric matrix is semisimple and one can decompose the 2n-
dimensional symplectic space into an orthogonal sum of stable 2-dimensional sub-
spaces. On each such subspace A is a scalar. 

If we polarize the identity PfA(A) — 0, we obtain a multilinear identity 
P ( Z i , . . . , X„) satisfied by symmetric symplectic matrices. In another form we may 
write this identity as an identity P(Xi -h X*, . . . , Z„ + X*) satisfied by all matrices. 
This is an identity in degree n. On the other hand, there is a unique canonical pure 
trace identity of degree « + 1 which, under the coding map, comes from the Pfaffian 
of a (2n + 2) X (2/i + 2) matrix of skew indeterminates; thus, up to a scalar, the 
polarized characteristic Pfaffian must be a multiple of the noncommutative identity 
coded by that Pfaffian. For instance, in the trivial case /2 = 1 we get the identity 
tr(Zi) = Xi + X*. As for the Cayley-Hamilton one may prove: 

Theorem. All identities for matrices with symplectic involution are a consequence 
^ / P ( Z i - f X * , . . . , X , + Z„*). 

Proof. We will give the proof for the corresponding trace relations. Consider the 
matrix of (skew) scalar products: 

S:= 

0 

[U2, U\ 

[ M 1 , W 2 ] 

0 

[ « m , W l ] [Wm,W2] 

[Vx.Ux] {Vi,U2\ 

[V2,Ux] [V2,U2\ 

[Ux,Um\ [U\,Vx] [Wi,U2] 

[U2,Um] [U2,Vi] [Ml, 1̂ 2] 

0 [Um,Vi] [Um.V2] 

[V\,Um] 0 [1^1,1^2] 

[V2,Um] [1^2,1^1] 0 

[W2, Vrr^ 

[V2, Vm] 

\[Vm,Ui] [Vm,U2] . . . [Vm, Um] [Vm, Vl] [Vm. Vl] 

A typical identity in m — 1 variables corresponds to a polynomial 

[wi, w;2,..., W2n-^2][x\,yi]... [xs, ys] 

of the following type, m = n-\-\ -\-s, the elements w\, W2,. •., W2n+2^ xi, y i , . . . , x^, 
ys are given by a permutation of wi , . . . , w^, vi,.. .,Vm and [wi, W2,. •., W2n+2] 
denotes the Pfaffian of the principal minor of S whose row and column indices cor­
respond to the symbols w\,W2,..., W2n+2' To understand the corresponding trace 
relation we argue as follows: 
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1. Permuting the variables X, corresponds to permuting simultaneously the w/ and 
Vi with the same permutation. 

2. Exchanging Xi with Xf corresponds to exchanging M, with u/. Performing these 
operations we can reduce our expression to one of type 

[Ml, . . . , M ,̂ Ui, . . . , Vk, Vk-^-U • . . , V2n+2-k][X\. >^l] • • • fc, ^5 ] -

If /: = n 4- 1, the Pfaffian [MI, . . . , M„+I, i^i,..., î n+il corresponds to the identity 
of the characteristic Pfaffian. The given expression is a product of this relation by 
trace monomials. Otherwise we look at the symbol ujc+i which does not appear in 
the Pfaffian but appears in one of the terms [jc/, y,]. We have that Uk+\ is paired 
with either a term M, or a term Vj. If M^+I is paired with Vj, let us use the for­
mula 

XjXk+\ = Uj (8) [Vj, Uk+\\vk+\. 

If Mjt+i is paired with Uj, we use the formula 

In the first case we introduce a new variable Xj := XjXk+\', in the second Xj := 

XjXk+\ 

Xj := Uj (g) Vj, Uj := Uj, Vj : = [Vj, Uk+\]vk+i, 

or 

Uj : = -Vj, Vj := [uj, Uk+\]vk+i. 

Let us analyze for instance the case [uj, u^^i], the other being similar. We substitute 
[Vj, Mfc+i] inside the Pfaffian: 

[ M 1 , ...,Uk,Vi, , . . , Vk, Vk+l, . . . , V2n+2-k][l^j ^ "fc+ll 

= [Ui, ...,Uk,Vi, ...,Vk, [Uj, Uk-^i]Vk-^u . . . , V2n+2-k] 

= [Uu...,Uk,Vu ...,Vk,Vj, . . . , V2n+2-k]-

We obtain a new formal expression in m — 1-variables. The variable Xk+i has 
been suppressed, while the variable Xj has been substituted with a new vari­
able Xj. In order to recover the old m-variable expression from the new one, 
one has to substitute Xj with XjXk+\ or XJXk+i. By induction the theorem is 
proved. D 

8.8 The Orthogonal Case 

The orthogonal case is more complicated, due to the more complicated form of the 
second fundamental theorem for orthogonal invariants. 
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Consider the matrix of (symmetric) scalar products: 

| ( M 1 , W I ) ( W I , M 2 ) . - . (UuUm) (Uu Vi) (Ui,V2) 

S:= 

(U2,Ui) ( M 2 , M 2 ) 

(VuUi) (VuU2) 

( U 2 , M i ) ( i ;2 ,M2) 

iU2,Um) (U2,Vi) (Ml, 1̂ 2) 

iUm^Um) {Um.Vx) (Um, V2) 

(VuUm) {V\,Vi) {VUV2) 

(1^2, Wm) (1^2,1^1) (1^2,1^2) 

(W2, Vm) 

(V2, Vm) 

\(Vm,Ui) {Vm,U2) . . . (Vm,Um) (Vm, Vi) (Vm, V2) . . . {Vm, Vm)\ 

A relation may be given by the determinant of any (n -\- I) x (n -\- I) minor times a 
monomial. Again we have that: 

1. Permuting the variables X, corresponds to permuting simultaneously the M/ and 
Vi with the same permutation. 

2. Exchanging Z/ with Z* corresponds to exchanging M, with Vf. 

In this case the basic identities to consider correspond to the determinants of scalar 
products, which we may denote by 

(Ui, Ui, . . . Ui, Vj, Vj, . . . Vj^^,_, I Ui,_^, Ui^_^, . . . W In+l ""Jn+l-k ^Jn+3-k ' 

where the condition that they represent a multilinear relation in the matrix variables 
X i , . . . , Xn+i means that the indices / i , . . . , in+\ and also the indices y' l , . . . , jn+i 
are permutations of 1, 2 , . . . , n + 1. 

Using the previous symmetry laws we may first exchange all «/, vi for all the 
indices for which M, appears on the left but vt does not appear. After reordering the 
indices we end up with a determinant 

( M I W 2 - - >UkV\V2. ..Vn+\-k \Uk+\Uk+2' • 'Un+\Vn+2-kVn+?>-k • • • l^n+l) . 

n^-\-k>k. 

From the coding map, the above determinant corresponds to some trace relation 
which we denote by Fk{X\,..., Z^+i). Unlike the symplectic case these basic iden­
tities do not have enough synmietry to consider them as polarizations of 1-variable 
identities. 

We have, exchanging w/, u/, 

PkiXx^ . . . , Xj, . . . , Xn^x) 

(a) = - F ^ ( Z i , . . . , Z j , . . . , X „ + i ) , if i >n + k - \ , oxi <k. 

If a is a permutation of 1, 2 , . . . , n -f-1 which preserves the subsets (1,2, 
(A: + 1 , . . . ,/i + 1 — A:); («! — /: + 1, . . . ,/2 + 1) we have 

, / :); 

(b) Fk(X\, . . . , Z / , . . . , Xn+\) = Fk(Xa(l), . . . , Xcr (0' • . Xa(n+l))' 
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This means that Fk can be viewed as polarization of an identity in 3 variables 
Fk{X, Y, Z). Moreover, from the first relation, the first and third variable can be 
taken to be skew-symmetric variables ^ ^ ^ , ' ^ ^ • 

Finally, exchanging all M/, U, and transposing the determinant we get 

{^k+\^k+2 • • • ̂ n+\Un+2-kUn+?>-k • • • "n+l | t'll^Z • • • VkUiU2 . • . W„+i_jt) 

= (w„+iM„+3_^ . . . Un+2-kVn+\ • • • Vk+lVk+x \ Un+l-k - • • U2UiVk . . . 1^2l̂ l) 

(c) = Fk{X[,..., X j , . . . , X[_^^) = Fjt(X„+i,..., Xn+i-i,..., Xi). 

We need to make a remark when we pass from the trace relation to the noncommu-
tative trace relation. We pick a variable X, and write 

Fk(Xi,..., X / , . . . , X„+i) = tr(G^(Xi,. . . , X j , . . . , X„+i)X/). 

It is clear that G[ depends on i only up to the symmetry embedded in the previous 
statements (a), (b), (c). 

From the synmietry (b) it appears that we obtain 3 inequivalent identities GI,GI, 

GI from the 3 subsets. From (c) we obtain a different deduction formula from the 
identity in the first and the third subset. 

FkiXu . . . , X„+i) = tr(G^(X2,..., X„+i)Xi), 

gives 

Fkix[,..., x;,^i) = tr(G^(x^,..., x;,^i)x;) 
= tr(G^(X^,..., X;,^i)^Xi) = tr(G^(X„+i,..., X2)Xi). 

Hence 

G^(X2,..., X„_ î) = G^(X„+i,..., X2). 

In this sense only G^ and Gj should be taken as generating identities. 

8.9 Some Estimates 

Both the first and second fundamental theorem for matrices are not as precise as the 
corresponding theorems for vectors and forms. Several things are lacking; the first is 
a description of a minimal set of generators for the trace invariants. At the moment 
the best result is given by the following: 

Theorem (Razmyslov). The invariants ofnxn matrices are generated by the ele­
ments tr(M) where M is a monomial of degree < n^. 

Proof. The precise question is: for which values of m, can we express the trace 
monomial tr(XiX2 . •. X^+i) as a product of shorter trace monomials? This in turn 
is equivalent to asking for which values of m, in the free algebra with trace R{n), the 
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monomial XiX2...Xm lies in the ideal T(n)^R(n), where as usual T(ny denotes 
the trace invariants without constant term. 

If F denotes the free algebra with trace and T the trace expressions, by the gen­
eral correspondence between the symmetric group and the trace expressions, we have 
that the elements of 5^+i which map to T^F are not full cycles. Let Qm+\ denote the 
subspace that they span in C[Sm-^i]. Let Pm-\-i be the subspace of C[5';„+i] spanned by 
the full cycles so that Qm+i 0 Pm-\-\ = C[5'^+i]. By symmetry, the requirement that 
modulo the identities of nxn matrices we have X1X2.. .Xm € T{n)^R{n) is equiv­
alent to requiring that P _̂̂ i c <2m-t-1+ /«; in other words, that C[5^+1 ] = Qm+i+h-

So let us prove that this equality is true for m = n^. Consider the automorphism 
r(a) = €acr. r is (—1)'" on Pm-\-\- It preserves Qm-\-\ and maps /„ to Jn the ideal 
generated by a symmetrizer on n +1 elements. Therefore r((2m+i+4) = Qm+\ + Jn 
so that Qm+\ + In = Gm+i +/« + /„. Finally, if m > n^, every diagram with m + 1 
cases belongs either to In or to Jn so that 5'„2+i = In -\- Jn, and the theorem is 
proved. n 

If one computes explicitly for small values of «, one realizes that n^ does not 
appear to be the best possible estimate. A better possible estimate should be ("^^). It 
is interesting that these estimates are related to a theorem in noncommutative algebra 
known as the Dubnov-Ivanov-Nagata-Higman Theorem. 

8.10 Free Nil Algebras 

To explain the noncommutative algebra we start with a definition: 

Definition. (1) An algebra R (without 1) is said to be nil of exponent n if for every 
r € Rwe have r" = 0 

(2) An algebra R (without 1) is said to be nilpotent of exponent mif R^ = 0. 

To say that R is nilpotent of exponent m means that every product ri r2 . . . r^ = 0 , 
rt e R. Of course an algebra R which is nilpotent of exponent m is also nil of 
exponent m. The converse is not true. 

Theorem 1. 

(i) The algebra R(n)^/ T(n)^ R(n) is the free nil algebra of exponent n. In other 
words, it is the free algebra without 1, modulo the T-ideal generated by the 
polynomial identity z" = 0. 

(ii) In characteristic 0 an algebra R, nil of exponent n, is nilpotent of exponent < n^. 

Proof (i) In the free algebra with trace without 1 we impose the identity t (z) = 0, 
that is the trace of every element is 0. We obtain the free algebra without trace. Thus 
the free algebra without 1 modulo the polynomial identity z" = 0 can be seen as the 
free algebra with trace without 1 modulo the two identities t{z) = z" = 0. Now the 
Cayley-Hamilton identity plus the identity t{z) = 0 becomes z" = 0. Hence the free 
algebra without one modulo the polynomial identity z^ = 0 can be seen also as the 
free algebra with trace without 1 modulo the two identities t{z) — CHniz) — 0. 
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But clearly this last algebra is R(n)^/T{n)^R(n). 
(ii) To say that X1X2 . . . X^ lies in the ideal T{n)^R{n) is the same as saying 

that X1X2 ...Xm = 0 in R{n)^/Tin)-^Rin). Since this is the free algebra modulo 
z" = 0, to say that X1X2 . . . X^ = 0 is equivalent to saying that X1X2 . . . X;„ = 0 is 
an identity in R{ny/T{n)'^R(n) or that Rin)"^/ T (n)-^ R{n) is nilpotent of exponent 
< m. 

If the free algebra modulo z" = 0 is nilpotent of exponent m, then so is every 
nil algebra of exponent n, since it is a quotient of the free algebra. Finally, from the 
previous theorem we know that m = n^ satisfies the condition that X1X2 . . . X;„ lies 
in the ideal r(n)"^/^(n). D 

Remark. We have in fact proved, for fixed n, (over fields of characteristic 0) that for 
an integer m the following conditions are equivalent: 

(i) C[Sm+i] = Qm+l + In-
(ii) The invariants ofnxn matrices are generated by the elements tr(M) where M 

is a monomial of degree < m. 
(iii) An algebra R that is nil of exponent n is nilpotent of exponent < m. 

We have shown that there is a minimum value mo for which these three conditions 
are satisfied and mo <n^. 

It is known that the minimum value of m is > ("^^). One may conjecture that it 

is exactly ("^^). This is true by expHcit computations forn < 5. 

One can also interpret Theorem 8.7 on symplectic involution in a similar way 
and obtain: 

Theorem 2. 

(i) The algebra R^(2n)'^/T^{2n)^R^{2n) is the free nil algebra with involution 
in which every symmetric element is nilpotent of exponent n; in other words, 
it is the free algebra without 1 with involution modulo the polynomial identity 
{z + z*)" = 0. 

(//) In characteristic 0 if an algebra R with involution satisfies {z + z*)" = 0, then 
it satisfies z^" = 0. 

Proof The first part is like the case of nil algebras. For the second part, it is enough 
to remark that 2n x 2n symplectic matrices satisfy the Cayley-Hamilton theorem in 
degree 2n, which then can be deduced from the Pfaffian identity. D 

8.11 Cohomology 

We can apply the theory developed to the computation of the cohomology of the 
classical Lie algebras. Given a semisimple Lie algebra L, we apply Cartan's theorem 
that the cohomology space i / ' (L, C) with constant coefficients can be identified to 
the space of invariant multilinear and alternating functions ofk variables in L. These 
spaces are the summands of a graded algebra under A product. 
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Let us start thus from sl(n, C), and even start computing the space of invariant 
multilinear and alternating functions of k matrix variables X, (we restrict to trace 0 
only later). 

By definition one can obtain such a function by alternating any given multilin­
ear function f(xu . . . , Xk). Let us call Af(xu . • •, ^it) •'= ^ Jlaes, ^crfixan), • • •, 
X(j(k))' Moreover, if a multilinear function is a product 

h(Xu . . . , Xa-^-b) = f(Xl, . . . , Xa)g(Xa+U • • • , Xa+b), 

one has by definition that Ah = Af A Ag. 
We want to apply these to invariant functions of matrices. A multilinear invariant 

function of matrices is up to permuting the variables a product of functions 

tr(XiX2 . . . X,) tr(X,+i . . . X ,+ , ) . . . r r ( X ,X ,+ l . . . X,+,). 

Therefore we see: 

Lemma. The algebra of multilinear and alternating functions ofnxn matrices is 
generated (under A) by the elements iT(S2h+i(Xi,..., X2/1+1)), h = I,... ,n — I. 
S2h+i is the standard polynomial. 

Proof When we alternate one of the factors tr(XiX2.. .X^) we then obtain 
tr(5'a(Xi,..., Xa)). We have noticed in 8.6 that this function is 0 if a is even, and it 
vanishes onn x n matrices if a > 2n by the Amitsur-Levitski theorem. The claim 
follows. D 

Theorem. The algebra A(n) of multilinear and alternating functions ofnxn ma­
trices is the exterior algebra A(C\, ... ,C2n-\) generated by the elements 

Ch := tr(52;,+i(Xi,..., X2;,+i)), /z = 0 , . . . , « - 1, of degree 2h + 1. 

Proof We have seen that these elements generate the given algebra. Moreover, since 
they are all of odd degree they satisfy the basic relations ChACk = —Q A Ch. Thus we 
have a surjective homomorphism n : / \ ( c i , . . . , C2n-i) -^ A(n). In order to prove 
the claim, since every ideal of / \ ( c i , . . . , C2n_i) contains the element ci A. . . Ac2n-i, 
it is enough to see that this element does not map to 0 under n. If not, we would have 
that in A(n) there are no nonzero elements of degree Yll=\(^^ ~ 1) = ^^- Now the 
determinant Xi A X2 A. . . A X„2 of n^ matrix variables is clearly invariant alternating, 
of degree n^, hence the claim. D 

In fact the elements Ci have an important property which comes from the fact 
that the cohomology //*(G, M) of a group G has extra structure. From the group 
properties and the properties of cohomology it follows that //*(G, R) is also a Hopf 
algebra. The theorem of Hopf, of which we mentioned the generalization by Milnor-
Moore in Chapter 8, implies that //*(G, R) is an exterior algebra generated by the 
primitive elements (cf. Chapter 8, §7). The comultiplication A in our case can be 
viewed as follows, we map a matrix X/ to X/ 0 1 + 1 0 X,, and then 
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Atr(52/,+i(X,,...,X2,,+i)) 

= tr(52fc+i(Xi 0 1 + 1 O X i , . . . , X2A+1 0 1 + 1 O XzA+i)). 

When we expand the expression 

tr(52A+i(Xi ® 1 + 1 ® X i , . . . , Xih+i ® 1 + 1 ® X2h+i)) 

we obtain a sum: 

tr(52fc+i(Xi,..., X2A+1)) ® 1 + 1® tr(52A+i(Xi,..., X2A+1)) 

+ Y. c,tr(5„(X;,,,...,X,J)®tr(5i,(X„,...,X^,)). 
a+b=2h-\ 

The first two terms give c/i (g) 1 + 1 0 c/,; the other terms with a,b > 0 vanish since 
either a or bis even. We thus see that the c, are primitive. 

In a similar way one can treat the symplectic and odd orthogonal Lie algebras. 
We only remark that in the odd case, the element — 1 acts trivially on the Lie algebra, 
hence instead of 5 0 (2n+1, C)-invariants we can work with O (2/1+1, C)-invariants, 
for which we have the formulas tr(M) with M a monomial in X,, X*. Since the vari­
ables are antisynmietric the variables X* disappear and we have to consider the same 
expressions c/̂ . In this case we have a further constraint. Applying the involution we 
have 

^^(Sih+ii^i,..., X2/1+1)) = tr(52/i+i(Xi,..., X2/1+1)*) 

= tr(-5'2/z+i(X2/r+i,..., Xi)) 

= tr(-(-l)'^52/.+i(Xi,...,X2/.+i)). 

Therefore ĉ  = 0 unless h is odd. We deduce that for Spiln, C), S0{2n-\-l,C) the 
corresponding cohomology is an exterior algebra in the primitive elements 

dh := t r (%+3(^ i , . . . , ^4/1+3)), /i = 0 , . . . , n - 1, of degree 4h + 3. 

The even case S0{2n, C) is more complicated, since in this case we really need 
to compute with S0(2n, C)-invariants. 

It can be proved, and we leave it to the reader, that besides the elements 
dh := tr(54;i+3(Xi,..., X4h+3))^ /z = 0 , . . . , n - 2 of degree 4h -f- 3, we also have 
an element of degree 2n — 1 which can be obtained by antisymmetrizing the invari­
ant Q(Xi, X2X3, X4X5,.. . , X2„-2X2„-i) (cf. 8.2). In order to understand this new 
invariant, and why we construct it in this way, let us recall the discussion of §8.7. 

0 In 
-In 0 

synmietric. Generically XJ has n-distinct eigenvalues Ai , . . . , A„, each counted with 

multipHcity 2. Then Pf{X) = H/ ^i- To see this in a concrete way, let A be the diag­

onal nxn matrix with the A./ as eigenvalues. Consider the matrix XA : 

Let 7 = . We have seen that if X is skew-symmetric, XJ is symplectic-

0 

Then X^J = 
- A 0 
0 - A 

. Finally Pf{X) = det(X) = Y\. A/. 
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Next observe that 

iT((XJ)') = 2(-l)'J2^i 

We deduce that if Pn(t\,..., tn) is the polynomial expressing the ŵ^ elementary 
symmetric function in terms of the Newton functions, we have 

Pf{X) = Pn(Tvi-XJ)/2, tr{(-Xjf/2,..., t r ( ( -Xy)72) . 

It is important to polarize this identity. Recall that in Corollary 8.5.1 we have seen 
that the polarization of the determinant is the expression 

aeSn 

We deduce that the polarization of Pf(X) is the expression 

(8.11.1) Q(Xu ...,X„)=Y^ 6a2- l^ '0^(-Xi7, . . . , -XnJ), 
aeSn 

where we denote by \a\ the number of cycles into which a decomposes. As in the 
proof of the Amitsur-Levitski theorem we see that when we perform the antisym-
metrization of Q(Xi, X2X3,..., X2„-2^2n) only the terms corresponding to full cy­
cles survive, and we obtain iT(S2n-i(—Xi/,..., —X2n-\ J))- It is easy to see, as we 
did before, that tr(5'2n-i (—^1 ̂ , • . . , —X2„-i / ) ) is a primitive element. One can now 
take advantage of the following easy fact about Hopf algebras: 

Proposition. In a graded Hopf algebra, linearly independent primitive elements 
generate an exterior algebra. 

We have thus found primitive elements for the cohomology of so(2n, C) of de­
grees 2n — l, 4/z + 3, /z = 0 , . . . , « — 2. Their product is a nonzero element of degree 
2n^ — n = dimso(2n, C). Therefore there cannot be any other primitive elements 
since there are no skew-symmetric invariants in degree > dimso(2n, C). We have 
thus completed a description of cohomology and primitive generators. 

Remark. A not-so-explicit description of cohomology can be given for any simple 
Lie algebra (Borel). We have generators in degrees 2/z/ — 1 where the numbers hi, 
called exponents, are the degrees of the generators of the polynomials, invariant un­
der W in the reflection representation. 

9 The Analytic Approach to WeyFs Character Formula 

9.1 Weyl's Integration Formula 

The analytic approach is based on the idea of applying the orthogonality relations for 
class functions in the compact case and obtaining directly a formula for the charac­
ters. 

We illustrate this for the unitary group U{n,C), leaving some details to the reader 
for the general case of a compact Lie group (see [A]). 
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The method is based on Weyl's integration formula for class functions. 
Let dfi, dz, respectively, denote the normalized Haar measures onU{n, C) and 

on r , the diagonal unitary matrices. We have 

Theorem (Weyl's Integration Formula). For a class function f on U(n,C) we 
have 

(9.1.1) f f(g)dfi = - [ f(t)V(t)V(t)dT, 
Ju(n,C) ^' JT 

where V(r i , . . . , r„) := ni<;(^« ~ 0) ^^ ^^^ Vandermonde determinant. 

Assuming this formula for a moment we have: 

Corollary. The Schurfunctions Sx{y) are irreducible characters. 

Proof By Weyl's formula, we compute 

^ f Sdy)'S^iy)V{y)Viy)dT = ^ j A,(y)A^{y)dr = 5,,^, 

where the last equality follows from the usual orthogonality of characters for the 
torus. It follows that the class functions on U{n,C), which restricted to T give the 
Schur functions, are orthonormal with respect to Haar measure. 

The irreducible characters restricted to T are symmetric functions which are 
sums of monomials with positive integer coefficients, and we have proved (Chap­
ter 10, §6.7) that they span the symmetric functions. It follows that the Schur func­
tions are zb irreducible characters. The sign must be plus since their leading coeffi­
cient is 1. 

By the description of the ring of symmetric functions with the function e„ = f] yi 
inverted, it follows immediately that the characters S^e^, ht(X) < n, k e Z, are a 
basis of this ring, and so they exhaust all possible irreducible characters. D 

Let us explain the proof of 9.1.1. The idea is roughly the following. Decompose 
the unitary group into its conjugacy classes. Two unitary matrices are conjugate if 
and only if they have the same eigenvalues; hence each conjugacy class intersects the 
torus in an orbit under Sn. Generically, the eigenvalues are distinct and a conjugacy 
class intersects the torus in n\ points. Therefore if we use the torus T as a parameter 
space for conjugacy classes we are counting each class n\ times. Now perform the 
integral by first integrating on each conjugacy class the function fig), which now 
is a constant function, then on the set of conjugacy classes, or rather on T, dividing 
by n!. 

If we keep track of this procedure correctly we see that the various conjugacy 
classes do not all have the same volume and the factor V(t)V(t) arises in this way. 

Remark that given an element t e T, its conjugacy class can be identified with 
the set U(n, C)/Zt where Zt = {g e U(n, C) \ gt = tg}. If t has distinct eigen­
values we have Zt = T, and so the generic conjugacy classes can be identified with 
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U(n, C)/T. In any case we have a global mapping it : U(n, C)/T x T ^^ U(n, C) 
given by 7t(gT, y) := gyg'K 

Under this mapping, given a class function f(g) on U(n,C), we have that 
f{7t(gT, y)) depends only on the coordinate >' and not on gT. 

Now the steps that we previously described are precisely the following: 

1. U(n,C)/T is Si compact manifold over which U(n,C) acts differentiably and 
transitively, that is, it is a homogeneous space. U(n,C)/T has a measure invari­
ant under the action of U(n,C), which we normalize to have volume 1 and still 
call a Haar measure. 

2. Consider the open sets mT^,U(n, C)^ made of elements with distinct eigenval­
ues in T,U(n,C), respectively. 
(i) The complements of these sets have measure 0. 

(ii) 7T induces a mapping n^ : U(n, C)/T x T^ -> U(n, C)^ which is an un-
ramified covering with exactly n\ sheets. 

3. Let d/ji denote the Haar measure on U(n, C) and dv, dx the normahzed Haar 
measures on U(n,C)/T and T, respectively. Let n*(dij.) denote the measure 
induced on U(n, C)/T x T^ by the covering n^. Then 

(9.1.2) 7r*(J/x) = V(t)V{t)dv x dx. 

From these 3 steps Weyl's integration formula follows immediately. From 1 and 2: 

j f(g)dfi=: j f(g)dn = ^ j f{gtg'')n\dii). 

U(n,C) U(n,C)^ U{n,C)/TxT^ 

From 3 and Fubini's theorem we have 

j figtg-')V{t)V(t)dvxdx 

U(n,C)/TxT^ 

= fv(t)Vit) I f{gtg-')dvdx 

-I 
T" U(n,C)/T 

V(t)Vit)f(t)dr. 

Let us now explain the previous 3 statements. 

1. We shall use some simple facts of differential geometry. Given a Lie group 
G and a closed Lie subgroup / / , the coset space G/H has a natural structure of 
differentiable manifold over which G acts in an analytic way (Chapter 4, §3.7). 

On an oriented manifold M of dimension n a measure can be defined by a differ­
ential form of degree n, which in local coordinates is f{x)dx\ A dx2 A . . . A Jx„. 

In order to define on the manifold G/H di G-invariant metric in this way we need 
a G-invariant top differential form. This form is determined by the nonzero value it 
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takes at a given point, which can be the coset H. Given such a value V̂o the form 
exists if and only if V̂o is invariant under the action of H on the tangent space of 
G/H at H itself. This means that H acts on this space by matrices of determinant 1. 
If H is compact, then it will act by orthogonal matrices, hence of determinant ±1 . 
If, furthermore, H is connected, the determinant must be 1. This is our case.̂ ^^ 

This tangent space of G/H at H is g/f) where g, f) are the Lie algebras of 

In our case the Lie algebra of U(n, C) consists of the matrices iA with A Her-
mitian, the Lie algebra of T corresponds to the subspace where A is diagonal, and 
we can take as the complement the set HQ of anti-Hermitian matrices with 0 in the 
diagonal. 

Ho has basis the elements i{ehj + ejh), ehj — Cjh with h < j . 

2. (i) Since T,U(n, C) are differentiable manifolds and the Haar measures are 
given by differential forms, to verify that a set S has measure 0, it is sufficient to work 
in local coordinates and see that S has measure 0 for ordinary Lebesgue measure. 
For T, using angular coordinates, the condition on our set S is that two coordinates 
coincide, clearly a set of measure 0. For U{n,C) it is a bit more complicated but 
similar, and we leave it as an exercise. 

(ii) We have Uin,C)/T xT^ = 7t~^U{n, C)^ and since clearly n is proper, also 
TT̂  is proper. The centralizer of a given matrix X in T^ is T itself and the conjugacy 
class of X intersects T at exactly n! elements obtained by permuting the diagonal 
entries. This implies that the preimage of any element in U(n, C)^ under n^ has n\ 
elements. Finally in the proof of 3 we show that the Jacobian of TT̂  is nonzero at every 
element. Hence TT̂  is a local diffeomorphism. These facts are enough to prove (i). 

3. This requires a somewhat careful analysis. The principle is that when we 
compare two measures on two manifolds given by differential forms, under a lo­
cal diffeomorphism, we are bound to compute a Jacobian. Let us denote 7r*((i/x) = 
F(g, t)dv dr and let coi,co2, (03 represent, respectively, the value of the form defining 
the normalized measure in the class of 1 for Uin, C)/T, T,U{n, C), respectively. 

Locally U(n, C)/T can be parameterized by the classes e^T, A e HQ. 

Given g e U{nX).y e T consider the map ig,y : U(n,Q/T x T -> 
U(nX)/T X T defined by multiplication ig^y : (hT,z) H^ ighT,yz). It maps 
(r , 1) to (gT, y). Its differential induces a linear map of the tangent spaces at these 
points. Denote this map dg^y. 

By construction (0\ A C02 is the pullback under the map dg^y of the value of dv dr 
at the point (gT, y)', similarly for (/(«, C), the value of d/ji at an element h is the 
pullback of (03 under the map Vh \ x -^ xh~^. 

On the other hand d7t(gT,y) induces a linear map (which we will see is an iso­
morphism) between the tangent space of U(n,C)/T x T at (gT, y) and the tan-

^̂ ^ The orientabihty follows. 
^̂ ^ There is also a more concrete realization of U(n,C)/T for which one can verify all the 

given statements. It is enough to take the set ofnxn Hermitian matrices with n prescribed 
distinct eigenvalues. 
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gent space of U(n,C) at gyg~\ By definition 7r*(t//x) at the point (gT,y) is 

Consider the composition of maps 

TA : U(n, C)/T x T - ^ U(n, C)/T xT ^ U(n, C) 

-^^^-> U(nX), f{TA) = 1. 

We get that the puUback of 0)3, (at 1) under this map V̂  is F{g, t)co\ A 0)2. 
In order to compute the function F(g, 0 . we fix a basis of the tangent spaces of 

U{n, C ) / r , r , U{n, C) at 1 and compute the Jacobian of rgyg-\ntg^y in this basis. 
This Jacobian is F(g, 0 up to some constant, independent of g,t, which measures 
the difference between the determinants of the given bases and the normalized in­
variant form. 

At the end we will compute the constant by comparing the integrals of the 
constant function 1. Take as local coordinates m U{n,C)/T x T the parameters 
exp(A)r, exp(D) where A e HQ and D is diagonal. Since we need to compute the 
linear term (differential) of a map, we can compute everything in power series, saving 
at each step only the linear terms (set O to be the higher order terms): 

^|r{{\ + A)T^ 1 + D) = ^(1 + A)y{\ + D){g{\ + A))-'gy-'g-' 

= \-^g[D + A-yAy-']g-'+0. 

The required Jacobian is the determinant of (D, A) \-^ g[D + A — yAy~^\g~^. 
Since conjugating by g has determinant 1 we are reduced to the map {D, A) -^ 
(D, A — yAy~^). This is a block matrix with one block the identity. We are reduced 
to y : A h^ A — yAy~^. 

To compute this determinant we complexify the space, obtaining as basis the 
elements etj, i ^ j . We have yietj) = (1 — y/y~^)^/,y. In this basis the determinant 
is 

0(1 - yivi') = n^i - >''̂ 7')(i - ;̂-̂ r') 

Y[(yj-yi)(yi'-yi') = ViyW(y) 

since y is unitary. ̂ ^̂  
At this point formula 9.1.1 is true, possibly up to some multiplicative constant. 
The constant is 1 since if we take / = 1 the left-hand side of 9.1.1 is 1. 

As for the right-hand side, remember that the monomials in the yi (coordinates 
of T) are the irreducible characters and so they are orthonormal. It follows that 
h IT y(y)y(y)dr = 1, since Viy) = J2aes„ ^̂ >̂ aa)>̂ "(2̂  • • • ycT(n-ih and the proof 
is complete. 

^̂ ^ Note that this formula shows that U(n, Q/T x T^ is the set of points of U{n, Q/T xT 
where dn is invertible. 
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We have used the group U{n,C) to illustrate this theorem, but the proof we gave 
is actually quite general. Let us see why. If ^ is a connected compact Lie group 
and T a maximal torus, we know from Chapter 10, §7.3 that K = Ug^KgTg'^ and 
the normalizer Nj modulo T is the Weyl group W. The nonregular elements are the 
union of a finite number of submanifolds, thus a set of measure 0. The quotient K/T 
is the flag variety (Chapter 10, §7.3) and, when we complexify the tangent space of 
K/T in the class of T we have the direct sum of all the root spaces. Therefore, the 
determinant of the corresponding Jacobian is Haeo^^ ~^")- When t is in the compact 
torus, t~" is conjugate to t", so setting 

v(t):= Y[ii-n, 

one has the general form of Weyl's integration formula: 

Theorem (Weyl's Integration Formula). For a class function f on K we have 

(9.L3) [ f(g)dfi = - | - f fit)V(t)Vit)dr 

where V(t):=Y\ae^-(^-n^ 

10 Characters of Classical Groups 

10.1 The Symplectic Group 

From the theory developed in Chapter 10 we easily see the following facts for 
Sp(2n, C) or of its compact form, which can be proved directly in an elementary 
way. 

Fix a symplectic basis ^/, / l , / = 1 , . . . , n. A maximal torus in Sp{ln, C) is 
formed by the diagonal matrices such that if xi is the eigenvalue of ^/, x^^ is the 
eigenvalue of ft. 

Besides the standard torus there are other symplectic matrices which preserve the 
basis by permuting it or changing sign. In particular 

(i) The permutations 5„ where or(^/) = CaH). crift) = fad)-

(ii) For each /, the exchange 6/ which fixes all the elements except €i(ei) = 

fi.^iifi) = -^/ . 

These elements form a semidirect product (or rather a wreath product) 
Sn K Z/(2)". 

The normalizer NT of the standard torus T is the semidirect product of T with 
the Weyl group 5„ K Z / ( 2 ) \ 

Proof. If a symplectic transformation normalizes the standard torus it must permute 
its eigenspaces. Moreover, if it maps the eigenspace of a to that of )6, it maps the 
eigenspace of a"^ to that of )6~^ Therefore the group of permutations on the set of 
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the 2n eigenspaces Cei, C/i induced by the elements of Nj is the group 5„ K Z/i^lY, 
hence every element of NT can be written in a unique way as the product of an 
element of Sn ix Ij/iiy and a diagonal matrix that is an element of T. D 

It is important to remark that the same analysis applies to the compact form of the 
symplectic group Sp{n, H) = Sp(2n, C) nU(2n,C). The compact maximal torus 
Tc is formed by the unitary matrices of T which are just the diagonal matrices with 
\ai 1 = 1. The matrices in Sn ix Z/(2)" are unitary and we have the analogues of the 
previous facts for the compact group Sp(n, H). 

The normalizer of T acts on T by conjugation. In particular the Weyl group acts 
as cr(xi) = x^(/) and €i(xj) = Xj, i ^ j , 6/(x/) = x^^. One can thus look at 
the action on the coordinate ring of T. As in the theory of symmetric functions we 
can even work in an arithmetic way, considering the ring of Laurent polynomials 
A := Z[xi,xr^l / = 1 , . . . , «, with the action of 5„ K Z / ( 2 ) " . 

When we look at the invariant functions we can proceed in two steps. First, look 
at the functions invariant under Z/(2)". We claim that an element of A is invariant 
under Z/(2)" if and only if it is a polynomial in the elements xt -\- x^^. This follows 
by simple induction. If R is any conmiutative ring, consider R[x,x~^]. Clearly an 
element in R[x,x~^] is invariant under x \-^ x~^ if and only if it is of the form 
J^j rj{x^ + jc~^). Now it suffices to prove by simple induction that, for every 7, 
the element x^ -\- x~^ is a polynomial with integer coefficients in x -\- x~^ {hint. 
x^ + x~^ = {x -\- x~^y-\- lower terms). The next step is to apply the symmetric 
group to the elements xi + x^^ and obtain: 

Proposition 1. The invariants of Z[xi,x~^], i = 1 , . . . , w, under the action of 
Sn K Z/(2)" form the ring of polynomials Z[ei,e2,... ,en] where the ei are the 
elementary symmetric functions in the variables JC, -\- XJ^ . 

Let us consider now invariant functions on Sp(2n, C) under conjugation. Let us 
first comment on the characteristic polynomial p(t) = t^^ + ^.^j(—l)'5/r^"~' of a 
symplectic matrix X with eigenvalues x i , . . . , x„, A:]~̂  . . . , x^^ 

It is n"=i(^ - • /̂)(̂  - ^7^) = nr=i(^^ - ^^i +^7^)t + !)• Thus it is a reciprocal 
polynomial, t^^p{t~^) = p{t). It is easy to give expHcit relations between the first n 
coefficients st of /^"~', / = 1 , . . . , n, and the elementary symmetric functions Ci of 
the previous proposition, showing that the ring of invariants is also generated by the 
elements st. We deduce the following. 

Proposition 2. The ring of invariant polynomials under conjugation on Sp(2n, C) 
is generated by the coefficients Si{X), i = ! , . . . , « , of the characteristic polynomial 
ofX. 

Proof One can give two simple proofs. One is essentially the same as in Chapter 2, 
§5.1. Another is as follows. Using the FFT of §8.2, an invariant of any matrix X under 
conjugation of the symplectic group is a polynomial in traces of monomials in X and 
X\ If the matrix is in the symplectic group, these monomials reduce to X^, A: G Z, 
and then one uses the theory of symmetric functions we have developed. D 
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We come now to the more interesting computation of characters. First, let us see 
how the Weyl integration formula of 9.1 takes shape in our case for the compact 
group Sp(n, M) and its compact torus Tc. The method of the proof carries over with 
the following change. The covering now has 2"n! sheets, and the Jacobian / express­
ing the change of measure is always given by the same method. One takes the Lie 
algebra 6 of Sp(n, M) which one decomposes as the direct sum of the Lie algebra of 
Tc and the Tc-invariant complement p (under adjoint action). Then J is the determi­
nant of 1 - Ad(0, where Ad(r) is the adjoint action of Tc on p. Again, in order to 
compute this determinant, it is convenient to complexify p, obtaining the direct sum 
of all root spaces. Hence the Jacobian is the product fjCl ~ ^(0) where a(t) runs 
over all the roots. As usual, now we are replacing the additive roots for the Cartan 
subalgebra with the multiplicative roots for the torus. Looking at the formulas 4.1.12 
of Chapter 10 we see that the multiplicative roots are 

(10.1.1) XiX7\ (XiXj)^\i^j, Xf\ 

n 
J(xu ...,Xn) = Y[(l-Xixr'xi -XiXjXl - (xiXj)-')f|(l - ^? ) (1 - ^ r ' ) -

i^j i=\ 

We collect the terms from the positive roots and obtain 
n 

A(;t,, ...,x„)^Y[{l- XiX-'){l - XiXj) Y[il - xf) 
i<j 1=1 

n 
= n^ / (^ / +^r^ - (xj-\-xJ-^))Y[(-Xi)(xi-xr^). 

i<j 1 = 1 

When we compute J for the compact torus where |jc/| = 1, we have that the 
factors Xi cancel and J = Ac Ac with 

n 

Ac(Xu . . . , ^n) = n^-^' + ^i~^ ~ ^^J "̂  ^i^^^ Yl^^' ~ '̂~̂ *̂ 

We have: 

Theorem (WeyFs Integration Formula). For a class function f on Sp(n, M) we 
have 

(10.1.2) f f{g)dfM = ^ J fix)Ac(x)Ac{x)dT 

where Ac(xu . . . , x„) = Ui<j(xi + ^r^ - U; + ^7^)) YYi=\(^i " ^7^)-

Let us denote for simplicity by Qn the group Sn x Z/(2y. As for ordinary sym­
metric functions, we also have a sign character sign for the group Qn, which is the 
ordinary sign on 5„, and sgn{€i) = —1. It is the usual determinant when we consider 
the group in its natural reflection representation. We can consider again polynomials 
which are antisymmetric, i.e., which transform as this sign representation. Clearly 
Ac(^ i , . . . , Jc„) is antisymmetric. The same argument given in Chapter 2, 3.1 shows 
that: 
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Proposition 3. 

(1) A Qn-antisymmetric Laurent polynomial f{x\,..., JC„, jcf^ . . . , x~^) is of the 
form g{x)lS.c{x) with g{x) symmetric. 

(2) A basis of antisymmetric polynomials is given by the polynomials: 

(3) A^n.n-ln-2....AM = ^Cix). 

(4) Aj^s^^j^^ is the determinant of the matrix with x/ — x- ^ in the /, j position. 

Proof ( l )Let / (x i , • • • ,Xn,x^^,..., x~^) be antisymmetric, and expand it as a sum 
J2k ̂ kxf + bkxf'^ where ak, b^ do not depend on jc/. We then see that ao = bo = 0 
and ak = —bk> This shows that / is divisible by H/C-̂ / ~ ^i^)- If we write 
f{x) = f{x)Y[i(xi — x]^^) we have that f{x) is symmetric with respect to the 
group of exchanges JC, -^ X^^ . Hence, by a previous argument, /(JC) is a polynomial 
in the variables jc/ + JC,~^ Looking at the action of 5„ we notice that fl/C-̂ / ~ ^7^) î  
symmetric, hence /(JC) is still antisymmetric for this action. Then, by the usual the­
ory, it is divisible by the Vandermonde determinant of the variables JC/ + jĉ ~̂  which 
is the remaining factor of Ac(jc). 

(2) Since the group Qn permutes the Laurent monomials, the usual argument 
shows that in order to give a basis of antisymmetric polynomials, we have to check 
for each orbit if the alternating sum on the orbit is 0. 

In each orbit there is a unique monomial M = jĉ ^ JC2^... JĈ " , k\ > k2 > . . . > 
kn > 0. Unless all the inequalities are strict there is an odd element^ ̂ ^ of Qn which 
fixes M. In this case M and its entire orbit cannot appear in an antisynmietric poly­
nomial. The other orbits correspond to the elements Af̂  ^̂  ^̂ . 

(3) By part (1) each Af̂  ^̂  ^̂  is divisible by Ac, so 5, up to some constant, 
must equal the one of lowest degree. To see that the constant factor is 1 it is enough 
to remark that the leading monomial of Ac is indeed JC"JC2~^ . . . JC„. 

= E sign(a)a I ^ sign(r)r(xf'x^' • • • -X )̂ ) 

= E signia) n (4 ' ( / ) - ^a(t))-
aeSn i=\ 

116 We use "odd" to mean that its sign is — 1. 
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We can now define the analogues of the Schur functions for the symplectic 
group: 

Proposition 4. The elements 

S^{x) := Al^^^_,JAc(x), X := ^1 - n, €2 - « + 1 , . . . , 4 - 1 

are an integral basis of the ring of Qn-invariants ofIj[xi,x^^]. 
The leading monomial ofS^(x) is x^^"^ x^^'^^"^ . . . x^^~^. 

Theorem 2. The functions S^{x) (as functions of the eigenvalues) are the irreducible 
characters of the symplectic group. S^(x) is the character of the representation 
T,(V)of§6A. 

Proof We proceed as for the unitary group. First, we prove that these characters are 
orthonormal. This follows immediately by the Weyl integration formula. Next we 
know that they are an integral basis of the invariant functions, hence we deduce that 
they must be ib the irreducible characters. Finally, a character is a positive sum of 
monomials, so by the computation of the leading term we can finally conclude that 
they must coincide with the characters. 

Part (2) follows from the highest weight theory. In §6.4 the partition X index­
ing the representation is the sequence of exponents of the character of the highest 
weight. D 

10.2 Determinantal Formula 

Let us continue this discussion developing an analogue for the functions S^{x) of 
the determinantal formulas for Schur functions described in Chapter 9, §8.3. 

Let us use the following notation. Given n-Laurent polynomials fix), in a vari­
able X we denote by 

1/1 (^), / 2 W , . . . , fn{x)\ := dti(fi(Xj)) 

= Y^ Sgnicr)fi(Xa(\)), fliXail)), . • • , fn(Xcj(n))' 
aeSr, 

The symbol introduced is antisymmetric and multilinear in the obvious sense. More­
over if g(x) is another polynomial 

n 

Y[8iXi)\Mx), hix),..., Ux)\ = \g{x)fx{x), g{x)f2{x),..., g{x)f„{x)\. 
1=1 
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Let us start from the step of the Cauchy formula transformed as 

VixWiy) 

\-̂ < -yjJ Ulj=iixi - yj) 

Substitute for xi the element xi + A:," ', and for y, the element y, +)',"'• Observe that 

Xi + x~^ -yj- yj^ = x~\l - Xiyj){\ - Xiy~^) 

and that the Vandermonde determinant in the elements x, + x[^ equals the determi­
nant |A:""' + jc~"+', jc""' + A;""+2, . . . , 11 to deduce the identity: 

i-r „_i \x"-^ + x-"+\x"-^ + x-"+^, • • •, 11 ly"-' + y-"+\ y"'^ + y~"+^ • • •. 1| 

V"" ' n,ji^-yj^iW-yi'^i) 

= det( '- - ) 
^H-yjXiKl-yr'xi)^ 

_ \x^-^ + 1, -y^"-̂  + x,..., x"-^\ |y"-' + y-"+', y"~' + y""+^ • • •, 1| 

~ n , , , ( i -3 ' , -^ . ) ( i -3 '7 '^ . ) • 

Notice that 

i = V ( / + / - 2 + . . . + y-*)x* = V ^̂  ^ -'̂  
( l - y x ) ( l - y - i ^ ) ; ^ ^ ^ ^ ^ + + >- i Z ^ ^ _ ^_ 

X . 

Hence the determinant det I 77;—-.— I expands as 
{\-yjXi){\~y. 'xi) ^ 

(10.2.1) Y. ^*..*2 K{x)K+^M+K...K+^^y)t\^yi-yi'y'• 
ki>k2>...>kn>0 i=l 

Next, consider the polynomial nj=i( l ~ yjZ)(^ ~ >̂ 7̂ )̂ = ^^^(1 ~ ^ ^ ) ' where A is 
a symplectic matrix with eigenvalues yt.yf^, i = I,... ,n. 

Let us define the symmetric functions pf (A) = pf{y) by the formula 

1 00 

(10.2.2) — = 1 + ^ PkiA)z'. 
det(l - zA) f^^ 

Dividing both terms of the identity by |y""^ + y~""^^ y"~^ + y"""^^,..., 1| we get 
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n / 00 \ 

k i=\ V k=\ ^ 

= ( i ^T.Pk(y)x')ix^''-' + 1), (i + J^Pkiy)x') 
\^ k=i / V k=\ ^ 

x(x̂ «-3 + x),. . . , (l + f^Pk(y)x')x'-' 
^ k=\ / 

= E Pk,Pk,'^^PkJx'^ix'''-' + l),x'^{x'^-'+x),..,.x'"x^-'\ 

ki,k2,:;k„ 

— 2 ^ PkiPk2'-' PkJX ' -\-X \X ' +X , . . . , X I 

kuk2,..;kn 

^l,/:2,...,^n 

/:i,^2,---,^n 

Iterating the procedure, 

E (Pki-2n+2 + Pki)(Pk2-2n+3 + Pk2-l) "-
k\,k2,...,kn 

(Pki-2n+i + Pki-i+2) ' • • /^fc,-n+l | x ' , . . . , X " | 

= E l/^^i-2n+2 + Pkx, P)t2-2n+3 + 7^^2-1' • • • ' Pki-2n+i 

k\>k2>...>kn 

+ /7i t , - /+2, . • • , /?it„-Ai+l I k ^ ' , . . . , X^" I, 

where the symbol \pk,-2n+2 + Pk,, Pk2-2n+3 + /?it2-i. • • •. /?)t,-2n+/+i + /?it,-/+i, • • •, 
Pk„-n+\ I equals the determinant of the matrix in which the element in the i^^ row and 
/ ^ column is Pki-2n+j + Pki-j+2-

Thus, with the notations of partitions, the function S^ (y) with X = hi,h2,... ,hn 
corresponds to the coefficient where k\ = h\ -\-n — l,k2 = h2-\-n — 2,.. .kn = hn 
and so it is 

5f (J) = 
\Phi-n+\ + P / i i + n - l , Ph2-n+l + Ph2+n-3, • • • . Phi-n+\ + /^/i,+n-2r + l , • • • . P / i ^ - n + l l -

Notice that when we evaluate for y, = 1: 
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(10.2.3) 

, V - .,^ i 1 1 , ^ / 2 n + ^ - l \ 

gives a determinantal expression in terms of binomial coefficients for S'f (1) = 
dimr,(V). 

10.3 The Spin Groups: Odd Case 

Let Spin(2n 4-1) be the compact spin group. 
Let us work with the usual hyperboHc basis et, fi,u. Consider the improper 

orthogonal transformation J : J{ei) = ei,J{fi) = fi,J(u) = — w, so that 
0(V) = SO(V)nSO{V)J. 

Its roots are <l>"̂  := a, — aj, i < j , at + ay, / ^ j , a/, cf. Chapter 10, §4.1.5. 
Its Weyl group is a semidirect product Sn K Z / ( 2 ) " as for the symplectic group. 

The character group X of the corresponding maximal torus T of the special or­
thogonal group is the free group in the variables x/. X must be of index 2 in the 
character group X' of the corresponding torus T' for the spin group, since T' is 
the preimage of T in the spin group, hence it is a double covering of T. X^ con­
tains the fundamental weight of the spin representation which we may call s with 
s^ = Y\i Xi, so it is convenient to consider X as the subgroup of the free group in 
variables x^' with the usual action of the Weyl group, generated by the elements xi 
and5 = (n"=i^/^^).Itisof course itself free on the variables jc,, / <n, s. 

For the Weyl integration formula we obtain 

(10.3.1) 

\ f{g)dii = ^ \ \ f(x)As(x)AB(x)dT + f f(x)AB(x)ABix)dT] , 
Jo(v) 2"n! VJr, JT,J J 

where AB(XU . . . , X J = Y\i<j(^i +-^r^ " (^j + V^^^ Uii^i^^-^7^^^)- ^ function 

K,^2,.:,in '= Yl sm(a)a(xl'x^2' • "4")^ £i > €2 > • • • > 4 > 0. 

is in the character group X' if the it are either all integers or all half integers. 

AB(XU . . . , X J = Ui<j(xi + ^ r - (^j + ^7) )Ui i^ i - h ') is skew-

symmetric with leading term x^ ' .. .xj so A5 = An-\/2,n-\-\/2,...,\/2' Notice 
that 

^B Y\{x]'^ + XT''^) = Y\ixi + xr' - (xj + xj-')) Y[(xi - xr i ) , 
/ i<j i 

which is the formula we found for the symplectic group (10.1). If the £/ are all 
integers, then Af̂  ^ ^̂  is divisible by A^ Y\i (^1^^ + ^i^^'^) ^i^h the quotient being 
a linear combination of characters all with integer exponents. Otherwise, if all the it 
are half integers, we multiply by ]"[/ xj^'^ and still see that all the A^ are multiples of 
Afi. We get a theorem similar to the one for the symplectic group. 
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Proposition. The elements 

S^(x) := Al^^^^JAsix), A := £i - n, £2 - « + 1,. . . , 4 - 1 

are an integral basis of the ring of Qn invariants ofZ[Xi ,x^^, Yii ^i ]• 

The leading monomial ofS^{x) is Xj'~"^ -^2^"^ . . . x„"~ . 

Theorem. The functions S^(x) (as functions of the eigenvalues) are the irreducible 
characters of the spin group. The functions S^{x) with integral weight are the irre­
ducible characters of the special orthogonal group. 

IfX is integral, S^{x) is the character of the representation Tx(V) of §6.6. 

Proof. Same as for the symplectic group. • 

10.4 The Spin Groups: Even Case 

Let Spin(2n) be the compact spin group. 
Its positive roots are O"̂  := «/ — a^, / < 7, at +oij, i ^ 7, Chapter 10, §4.1.19. 

Its Weyl group is a semidirect product 5„ K S. 5„ is the symmetric group permuting 
the coordinates. 5 is the subgroup of the sign group Z/(2)" := ( ± l , d i l , . . . , ± l ) 
which changes the signs of the coordinates, formed by only even number of sign 
changes. 

For the Weyl integration formula we obtain 

(10.4.1) f f{g)dui = — ^ f f(x)A''(x)A''ix)dr, 

where A^(x i , . . . , ;c„) = Y[i<j(^i + ^r^ ~ (^; + -^7^))' ^^^^ leading monomial 
n-\ n-2 

A1 A-̂  . . . A/i — J. 

The character ring of the maximal torus of the special orthogonal group is the 
polynomial ring Z[xf^], while that of the spin group has also the element ]~[, ̂ t • 

Now it is not always true in the orbit of a monomial under the action of the Weyl 
group W there is a monomial with all exponents positive. Thus we have a different 
notion of leading monomial. In fact it is easy to verify that, given h\ > hi > -- - > 
hn > 0, if /z„ > 0 the two monomials x\'x\^... JC "̂ and x\'x\^... Jc r̂/jc^" "̂ are 
in two different orbits and leading in each of them. In the language of weights, an 
element is leading in an orbit if it is in the fundamental chamber (cf. Chapter 10, 
Theorem 2.4). Therefore each of these two elements will be the leading term of 
an antisymmetric function. Dividing these functions by A^(jci, . . . , A:„) we get the 
list of the irreducible characters. We can understand to which representations they 
correspond using the theory of highest weights. 

10.5 Weyl's Character Formula 

As should be clear from the examples, Weyl's character formula applies to all simply 
connected semisimple groups, as well as the integration formula for the correspond­
ing compact groups. In the language of roots and weights let us use the notation that 
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if a is a weight of the Cartan subalgebra, e^ is the corresponding weight for the torus 
according to the formula e"(e^) = e^^^\ so that e^^^ = e^e^. 

The analogue of A used in the integration formula is 

(10.5.1) P'=Y1 ^/^' A := ^̂  n ^̂  ~ ~̂"̂  = n ^^""'^ ~ ^~'''^^' 

We have seen (Chapter 10, §2.4) the notions of weight lattice, dominant, reg­
ular dominant and fundamental weight. We denote by A the weight lattice. A is 
identified with the character group of the maximal torus T of the associated sim­
ply connected group. We also denote by A"̂  the dominant weights, A"̂ "̂  the regular 
dominant weights and cot the fundamental weights. 

The character ring for T is the group ring Z[A]. Choosing as generators the 
fundamental weights cot this is also a Laurent polynomial ring in the variables e^'. 

From Chapter 10, Theorems 2.4 and 2.3 (6) it follows that there is one and only 
one dominant weight in the orbit of any weight. The stabilizer in Ĥ  of a dominant 
weight Yll=i ^i^i is generated by the simple reflections st for which at = 0. Let 

P = T.i^i' 
It follows that the skew-symmetric elements of the character ring have a basis 

obtained by antisymmetrizing the dominant weights for which all at > 0, i.e., the 
regular dominant weights. Observe that p is the minimal regular dominant weight 
and we have the 1-1 correspondence A i-> X + p between dominant and regular 
dominant weights. 

We have thus a generalization of the ordinary theory of skew-symmetric polyno­
mials: 

Proposition 1. The group Z[A]~ of skew-symmetric elements of the character ring 
has as basis the elements 

A,+p := Yl sign{w)e'"^^+''\ k e A' M^nywjc , A t î  

weW 

First, we want to claim that A^+p has the leading term e^^^. 

Lemma 1. Let X be a dominant weight and w an element of the Weyl group. Then 
k — w(k) is a linear combination with positive coefficients of the positive roots 
Si^Si^... /̂̂ _j (a/J sent to negative roots by w~^. If w ^ 1 and X is regular domi­
nant, this linear combination is nonzero and w(k) < X in the dominance order. 

Proof We will use the formula of Chapter 10, §2.3 with w = st^si^... st^ a reduced 
expression, u := si^... si,, yu := si,... /̂,_, (a,J, Ph '•= Si.st^... Si^_^ (a/J. We 
have by induction 

k — w(X) = k — Si^u{k) = A + Si^(k — u(k)) — Si^k 

= k -\- SiA^nhYhj - k + {k \ a/,)a/, 

= Y^nhPh + {k\ai)ai. 
h 

Since k is dominant, {k | a,) > 0. If, moreover, k is regular {k | a,) > 0. D 
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In order to complete the analysis we need to be able to work as we did for 
Schur functions. Notice that choosing a basis of the weight lattice, the ring Z[A] = 
Z[Xĵ ^], i = 1 , . . . , n, is a unique factorization domain. Its invertible elements are 
the elements ±e^, X e A. It is immediate that the elements 1 - JC/, 1 - x^^ are 
irreducible elements. 

Lemma 2. For any root a the element I — e~" is irreducible m Z[ A]. 

Proof. Under the action of the Weyl group every root a is equivalent to a simple 
root; thus we can reduce to the case in which a = ai is a simple root. 

We claim that ai is part of an integral basis of the weight lattice. This suffices 
to prove the lemma. In fact let cot be the fundamental weights (a basis). Consider 
ofi = J2ji^i^^i)^j (Chapter 10, §2.4.2). By inspection, for all Cartan matrices we 
have that each column is formed by a set of relatively prime integers. This implies 
that Qfi can be completed to an integral basis of the weight lattice. D 

One clearly has Si(A) = —A which shows the antisymmetry of A. Moreover 
one has: 

Proposition 2. Z[A]~ = Z[A]^A is the free module over the ring of invariants 
Z[A]^ with generator A. 

(10.5.2) ^ = I ] sign(w)e''^^'^ = Ap. 
weW 

The elements Sx := A^j^pj Inform an integral basis of Z[A]^. 

Proof Given a positive root a let Sa be the corresponding reflection. By decom­
posing W into cosets with respect to the subgroup with two elements 1 and s^, we 
see that the alternating function A^+p is a sum of terms of type e^ — Saie^) = 
/̂x _ ^^-{n\a)a ^ ^M(j _ ^-(M|a)«) sj^cc (fi \ a) is au integer, it follows that 

(1 - ^-(/^ l«)«) is divisible by 1 - e~"; since all terms of Ax-^p are divisible, Ax-\-p is 
divisible by 1 — e~" as well. Now if a 7̂  ^ are positive roots, 1 — e~" and 1 — e~^ 
are not associate irreducibles, otherwise 1 — e~" = ±e^(l — e~^) implies a = ±p. 
It follows that each function Ax+p is divisible by A and the first part follows as for 
synmietric functions. 

The second formula A = Ap can be proved as follows. In any skew-symmetric 
element there must appear at least one term of type e^ with X strongly dominant. 
On the other hand, p is minimal in the dominance order among strongly dominant 
weights. The alternating function A — Ap does not contain any such term, hence it 
is 0. The last statement follows from the first. D 

Now let us extend the leading term theory also to the Sx. 

Proposition 3. Sx = e^ plus a linear combination of elements e^ where /x is less 
than X in the dominance order. 
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Proof. We know the statement for A^+p, so it follows for 

The analysis culminates with: 

Weyl's Character Formula. The element Sx is the irreducible character of the rep­
resentation with highest weight X. 

Proof The argument is similar to the one developed for U{n,C). First, we have the 
orthogonality of these functions. Let G be the corresponding compact group, T a 
maximal torus of G. Apply Weyl's integration formula: 

JG IH^I Jr 1^1 JT 

The last equality comes from the fact that if A ^ /x, the two H^-orbits of 
A, + p, )L6 4- p are disjoint, and then we apply the usual orthogonality of charac­
ters for the torus. 

Next, we know also that irreducible characters are symmetric functions of 
norm 1. When we write them in terms of the Sx, we must have that an irreducible 
character must be ±5^. At this point we can use the highest weight theory and the 
fact that e^ with coefficient 1 is the leading term of Sx and also the leading term of 
the irreducible character of the representation with highest weight A. To finish, since 
all the dominant weights are highest weights the theorem is proved. D 

We finally deduce also: 

Weyl's Dimension Formula. The value Sx{l), dimension of the irreducible repre­
sentation with highest weight A, is 

Proof Remark first that if a = ^ . n,a/ € O"̂ , we have (p, a) = Y^- ntip, a/) > 0, 
so the formula makes sense. One cannot evaluate the fraction of the Weyl Character 
formula directly at 1. In fact the denominator vanishes exactly on the nonregular 
elements. So we compute by the usual method of calculus. We take a regular vector 
V e i and compute the formula on exp(i;), then take the limit for i; -> 0 by looking 
at the linear terms in the numerator and denominator. By definition, e^(e^) = e^^^\ 
so we analyze the quotient of (use 10.5.1): 

^ sign{w)e'"^^^^^^'^ and ^ sign{w)e''^P^^'^ = e^"^'^ O ^̂  " ^~" '̂̂ ^-
w^W weW ae<I)+ 
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By duality, we work directly on the root space and analyze equivalently the quo­
tient of 

J2 sign(w)/^^'^^^^^^ and ^ signiw)e^''^'^^^^ = (̂̂ '̂ > f ] ^̂  " ^"^"'^^)-
weW weW ae^+ 

Take ^ = sp. We have J^wew s^Sn{w)e^'^'<^+^^^'^^ = J^wew ^^SnMe'^^'^^^'^^^^K 
Now substituting for jS = s(X-\- p) in the second identity we get 

Y^ sign(w)e'^^^^^^^^'^^ = J2 sign{w)e^' 
weW weW 

n<i _ ^s(p,X+p) F T Q _ ^-s(a,X+p)^ 

The character computed in sp is thus 

.sip,k+p) Q _ ^-s(a,k+p)\ 

^{p,sp) 1 1 (I _ ^-{a,sp)\ 

Its limit when ^ ^ 0 is clearly n«e4>+ {pa) ' ° 

A final remark. The computation of the character on a maximal torus deter­
mines the character on the entire group. This is obvious for the compact form since 
every element is conjugate to one in the maximal torus. For the algebraic group we 
have seen in Chapter 10, §6.7 that the set of elements conjugate to one in the maxi­
mal torus is dense and we have proved that the ring of regular functions on a linearly 
reductive group, invariant under conjugation, has as basis the irreducible characters. 




