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Tableaux 

1 The Robinson-Schensted Correspondence 

We start by explaining some combinatorial aspects of representation theory by giving 
a beautiful combinatorial analogue of the decomposition of tensor space y*^" = 

Recall that in Chapter 9, §10.3 we have shown that this decomposition can be 
refined to a basis of weight vectors with indices pairs of tableaux. In this chap
ter tableaux are taken as the main objects of study, and from a careful combina
torial study we will get the applications to symmetric functions and the Littlewood-
Richardson rule. 

1.1 Insertion 

We thus start from a totally ordered set A which in combinatorics is called an alpha
bet. We consider A as an ordered basis of a vector space V. 

Consider the set of words of length n in this alphabet, i.e., sequences aia2 > ..an, 
at e A. If I A| = m, this is a set with m" elements in correspondence with the induced 
basis of y®". 

Next we shall construct from A certain combinatorial objects called column and 
row tableaux. Let us use pictorial language, and illustrate with examples. We shall 
use as an alphabet either the usual alphabet or the integers. 

A standard column of length k consists in placing k distinct elements of A in a 
column (i.e., one on top of the other) so that they decrease from top to bottom: 

Example. 
s 

P 
10 

9 
e 6 

* : ' 
a 1 
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A sequence of columns of non-increasing length, placed one next to the other, iden
tify a tableau and its rows. If the columns are standard and the elements in the rows 
going from left to right are weakly increasing (i.e., they can be also equal) the tableau 
is semistandard: 

Definition 1. A semistandard tableau is a filling of a diagram with the letters from 
the alphabet so that the columns are strictly increasing from bottom to top while the 
rows are weakly increasing from left to right (cf. Chapter 9, §10.1).̂ ^^ 

Example. 

t 

8 8 J 

e f f 
b e d u 

s 

p 
8 h p 

e f 8 
d e f 

10 

9 

6 

5 5 5 

a b b f c d e 1 1 1 1 1 

The main algorithm which we need is that of inserting a letter in a standard column. 
Assume we have a letter x and a column c; we begin by placing x on top of 

the colunm. If the resulting column is standard, this is the result of inserting x in 
c. Otherwise we start going down the column attempting to replace the entry that 
we encounter with x and we stop at the first step in which this produces a standard 
colunm. We thus replace the corresponding letter y with jc, obtaining a new column 
c' and an expelled letter >'. 

Example. 
t t 
8 h 

Inserting h in e, we obtain e, expelling g. 
b b 
a a 

It is possible that the entering and exiting letters are the same. For instance, in 
the previous case if we wanted to insert g we would also extract g. A special case is 
when c is empty, and then inserting x just creates a column consisting of only x. 

The first remark is that, from the new column c' and, if present, the expelled 
letter y one can reconstruct c and x. In fact we try backwards to insert y in c' from 
bottom upwards, stopping at the first position that makes the new column standard 
and expelling the relative entry. This is the reconstruction of c, JC. 

The second point is that we can now insert a letter JC in a semistandard tableau T 
as follows, r is a sequence of columns ci, Q , . . . , c/. We first insert JC in ci; if we get 
an expelled element jci we insert it in C2\ if we get an expelled element JC2 we insert 
itinc3, etc. 

^̂ ^ Notice that we changed the display of a tableau! We are using the French notation. 
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Example. 

1) Insert t/ in 

get 

2) Insert d in 

t 

8 
e 

b 

a 

8 

f 
c 

b 

J 
f 
d 

b 

u 

f 

t 

8 
d 

b 

a 

g J 
e f 
c d 

b b 

s 

P 
8 h 

e f 
d e 

c d 

u 

f /• 

P 

8 

f 
e 

and get 

s 

P 
g h p 

e f 8 
d e f 
c d d e. 

In any case, inserting a letter in a semistandard tableau, we always get a new 
semistandard tableau (verify it) with one extra box occupied by some letter. By the 
previous remark, the knowledge of this box allows us to recursively reconstruct the 
original tableau and the inserted letter. 

All this can be made into a recursive construction. Starting from a word w = 
a\a2 .. .Uk = a\W\ of length k, we construct two tableau T{w), D{w) of the same 
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shape, with k entries. The first, called the insertion tableau, is obtained recursively 
from the empty tableau by inserting a\ in the tableau T(w\) (constructed by recur
sion). This tableau is semistandard and contains as entries exactly the letters appear
ing in w. 

The tableau D{w) is the recording tableau, and is constructed as follows. At the 
i^^ step of the insertion a new box is produced, and in this box we insert /. Thus 
D{w) records the way in which the tableau T{w) has been recursively constructed. 
It is filled with all the numbers from \iok. Each number appears only once and we 
will refer to this property as standard.^^^ 

D{w) is constructed from D{w\), which by inductive hypothesis has the same 
shape as T{w\), by placing in the position of the new box (occupied by the procedure 
of inserting ai), the number k. 

An example should illustrate the construction. We take the word standard and 
construct the sequence of associated insertion tableaux T(wi), inserting its letters 
starting from the right. We get: 

n 

r r d r ^ r 

" d ad ad ^ j 

the sequence of recording tableaux is 

5 

2 2 2 4 2 4 

1 1 1 3 1 3 1 3 

n 

d r 

a a 

5 

2 4 

1 3 

d 

6 

t 

n 

d r 

a a 

1 

5 

2 4 

1 3 

d 

6 

s 

n t 

d r 

a a d\ 

1 

5 8 

2 4 

1 3 6. 

Theorem (Robinson-Schensted correspondence). The map w -^ (D(w),T(w)) 
is a bijection between the set of words of length k and pairs of tableaux of the same 
shape of which D(w) is standard and T(w) semistandard. 

Proof The proof follows from the sequence of previous remarks about the reversibil
ity of the operation of inserting a letter. The diagram D(w) allows one to determine 
which box has been filled at each step and thus to reconstruct the insertion procedure 
and the original word. D 

Definition 2. We call the shape of a word w the common shape of the two tableaux 
{D(w), Tiw)). 

Given a semistandard tableau T we call its content the set of elements appearing 
in it with the respective multiplicity. Similarly, we speak of the content of a given 

^̂ ^ Some authors prefer doubly standard for this restricted type, and standard in place of semi-
standard. 
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word, denoted by c(w). It is convenient to think of the content as the commutative 
monomial associated to the word, e.g., w = abacbaa gives c{w) — a^b^c. The 
Robinson-Schensted correspondence preserves contents. 

There is a special case to be observed. Assume that the recording tableau D{w) 
is such that if we read it starting from left to right and then from the bottom to the 
top, we find the numbers 1, 2 , . . . , / : in increasing order, e.g.. 

7 8 

5 6 

1 2 3 4 

Then the word w can be very quickly read off from T{w). It is obtained by reading 
T{w) from top to bottom and from left to right (as in the English language), e.g.,̂ ^^ 

s 8 

p u 6 7 

n t 4 5 

a t u 1 2 3 

spuntatu 

Such a word will be called a semistandard word. 

1.2 Knuth Equivalence 

A natural construction from the R-S correspondence is the Knuth equivalence. 
Let us ask the question of when two words w\,W2 have the same insertion 

tableau, i.e., when T{wi) — T{w2). As the starting point let us see the case of words 
of length 3. 

For the 6 words w in a, b,c with the 3 letters appearing we have the simple table 
of corresponding tableaux T{w)\ 

c 
c b b c 

abc -> , ; acb -> ; bac -^ ; bca -^ ; cab -> ; cba -^ b. 
a b c a b a c a c a b 

a 

We write acb | cab, bac | bca to recall that they have the same insertion tableau. For 
words of length 3 with repetition of letters we further have aba^ baa and bab^ bba. 

At this point we have two possible approaches to Knuth equivalence that we will 
prove are equivalent. One would be to declare equivalent two words if they have the 
same insertion tableau. The other, which we take as definition, is: 

119 I tried to find a real word; this is maybe dialect. 



480 12 Tableaux 

Definition. Knuth equivalence on words is the minimal equivalence generated by 
the previous equivalence on all possible sub words of length 3. We will write wi^W2. 

In other words we pass from one word to another in the same Knuth equiva
lence class, by substituting a string of 3 consecutive letters with an equivalent one 
according to the previous table. 

Proposition. Knuth equivalence is compatible with multiplication of words. It is the 
minimal compatible equivalence generated by the previous equivalence on words of 
length 3. 

Proof This is clear by definition. D 

The main result on Knuth equivalence is the following: 

Theorem. Two words if i, u;2 cire Knuth equivalent if and only if they have the same 
insertion tableau, i.e., when T(wi) = T{w2)' 

Proof We start by proving that if w\,W2 are Knuth equivalent, then Tiwx) = 
T(w2). The reverse implication will be proved after we develop, in the next section, 
the jeu de taquin. 

By the construction of the insertion tableau it is clear that we only need to show 
that if If 1, If 2 are Knuth equivalent words of length 3, and z is a word, then T(wiz) = 
T{w2z). In other words, when we insert the word wi in the tableau T{z) we obtain 
the same result as when we insert W2. 

The proof is done by case analysis. For instance, let us do the case w\ = 
wuv ^ uwv = w;2 for 3 arbitrary letters u < v < w. We have to show that in
serting these letters in the 2 given orderings in a semistandard tableau T produces 
the same result. 

Let c be the first column of T, and T' the tableau obtained from T by removing 
the first column. 

Suppose first that inserting in succession wiff in c, we place these letters in 3 
distinct boxes, expelling successively some letters f, g,e. From the analysis of the 
positions in which these letters were, it is easily seen that e < f < g and that, 
inserting wuv, we expel / , e, g. Thus in both cases the first column is obtained from 
c replacing e, / , g with M, U, if. 

The tableau T^ now is modified by inserting the word egf or gef, which are 
elementary Knuth equivalent. Thus we are in a case similar to the one in which we 
started for a smaller tableau and induction applies. 

Some other cases are possible and are similarly analyzed. 
If the top element of c is < M, the result of insertion is, in both cases, to place 

M, If on top of c and insert u in ^^ The analysis is similar if if or M expels v. n 

The set of words modulo Knuth equivalence is thus a monoid under multiplica
tion, called by Schiitzenberger le monoide plactique. We will see how to use it. 
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There is a very powerful method to understand these operations which was in
vented by Schiitzenberger and it is called jeu de taquin^^^ [Sch]. In order to explain 
it we must first of all discuss skew diagrams and tableaux. 

2 Jeu de Taquin 

2.1 Slides 

In our convention (the French convention) we draw our tableaux in the quadrant 
Q = {(/, j) I /, j £ N"^}. We refer to the elements of Q as boxes. In Q we have the 
partial order (/, j) < (h, k) ^^F=^ i < h, and j < k. Given c < J, c, (i G (g the set 
R{c, d) := {a e Q\c < a < d} is a. rectangle, the set Re ''= {a e Q\a < c] is the 
rectangle R((l, 1), c) while the set Qc '-= {a e Q\c < a} is itself a quadrant. 

Definition 1. A finite set 5 C 2 is called: 

1) A diagram, if for every c G 5 we have Re C S. 
2) A skew diagram if given c <d, both in 5, we have R(c, d) c S. 
3) A box c is called an outer (resp. inner) box of 5 if 5 fl 2^ = 0 (resp. 5 fi /?c = 0). 

Observe that, in our definition, it is possible that a box is at the same time inner 
and outer. 

We will usually denote diagrams with greek letters. If /x c A are diagrams we 
see that A. — /x is a skew diagram, indicated by A//x. Each skew diagram can be 
expressed in this way although not uniquely. A skew diagram is also called a shape 
and one refers to a diagram as a normal shape. 

Definition 2. A standard (resp. semistandard) skew tableau T is a filling of a skew 
diagram A,//x satisfying the restrictions as for diagrams (strictly increasing upwards 
on columns and nondecreasing from left to right on rows). We call X//x = sh{T) the 
shape of the tableau. 

If ^ = 0 and sh{T) = A we say that the tableau is in normal shape. 

Example. Let A = 4, 4, 3, 2, /x = 2, 2, 2. We show A,//x and a semistandard diagram 
of this shape: 

a a 

f 
d u 

b f 
Given a semistandard skew tableau, its row word or reading word is the word 

one obtains by successively reading the rows of the tableau, starting from the top 
one, and proceeding downwards. 

^̂ ^ // gioco del 15. Sam Loyd (1841-1911) was the creator of famous mathematical puzzles 
and recreations. One of his most famous was the "15 Puzzle," which consisted of a 4 x 4 
square of tiles numbered 1 to 15, with one empty space. The challenge was, starting from 
an arbitrary ordering and sliding tiles one by one to an adjacent empty space, to rearrange 
them in numerical order. 
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In the previous example, the row word is aafdubf. 
Conversely, given any word w there is a unique way of decomposing it as a 

product of maximal standard rows w = w\W2.. .Wr. For instance, ̂ ^̂  

pr\e\ cip \it\ev\o\ liss \im\ev\o\lm\ ent \ e 

we can inmiediately use this decomposition to present the word as a semistandard 
skew tableau, stringing the standard rows together in the obvious trivial way: 

P r 

e 

c i p 

i t 

e V 

o 

I 

i s s 

i m 

e V 

o 

I m 

e n t 

e 

There is also another trivial way that consists of sliding each row as far to the left as 
is possible, maintaining the structure of semistandard tableau: 

P r 
e 

c i p 

i t 

e V 

o 

I 

i s s 

i m 

e V 

o 

I m 

e n t 

e 

121 This is the longest word in Italian. 
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The word we started from is a standard word if and only if, after this trivial slide, it 
gives a tableau (not a skew one). In general this trivial slide is in fact part of a more 
subtle slide game, the j^w de taquin, which eventually leads to the standard insertion 
tableau of the word. The game is applied in general to a semistandard skew tableau 
with one empty box, which we visualize by a dot, as in 

g g 
e . / 

b d u 

b f 

When we have such a tableau we can perform either a forward or a backward slide. 
For a backward slide we move one of the adjacent letters into the empty box from 
right to left or from top to bottom and empty the corresponding box, provided we 
maintain the standard structure of the tableau. One uses the opposite procedure for a 
forward slide: 

g g g g 

e • f e f . 

b d u b d u 

b f b f 

backward. 

It is clear that at each step we can perform one and only one backward slide until the 
empty box is expelled from the tableau. Similarly for forward slides. 

A typical sequence of slides comes from Knuth equivalence. Consider for in
stance the equivalences bca | bac and acb § cab. We obtain them through the 
backward slides: 

be be b . a c . c c . 

. a a . a c , b a b a b 

Definition 3. An inner comer (resp. an outer comer) of a skew diagram S is an inner 
(resp. outer) box c such that S U [c] is still a diagram. 

A typical step oijeu de taquin consists in picking one of the inner comers of a 
skew diagram and perform the backward slides until the empty box (the hole) exits 
the diagram and becomes an outer comer. We will call this a complete backward 
slide, similarly for complete forward slides. 

Example. We have 2 inner comers and show sequences of complete backward slides: 

/ 

• 

t 

e 

i 

V =^ e 

o 

t 

• 

i 

V =^ e 

o 

• 

t 

i 

V =^ e 

o 

t 

0 

i 

V ^ e 

• • 

t 

o 

i 

=^ • 

V e 

t 

o 

=^ i 

V e 

t 

0 V 
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We could have started from the other inner comer: 

i t i t i t i t i i 

. e V =^ . e V =^ . e =^ e . z^ e t =^ . t =^ i t 

. . o . o . . o V . o V . o V e o V e o v 

In this example we discover that, at the end, we always obtain the same tableau. 

One should also take care of the trivial case in which an inner comer is also outer 
and nothing happens: 

We want to introduce a notation for this procedure. Starting from an inner comer c 
of a semistandard tableau T, proceed with the corresponding backward slides on T. 
As the final step we vacate a cell d of T obtaining a new semistandard tableau ^^ 
We set 

r := MT), d := vAT). 

Then d is an outer comer of T^ and if we make the forward slides starting from it, 
we just invert the previous sequence, restore T and vacate c. We set 

T := / ( n , c := v\r). 

We thus have the identity T = j^jdT) if d = VC(T).WQ have a similar identity if 
we start from forward slides. 

We see in this example the fundamental results of Schiitzenberger: 

Theorem 1. Two skew semistandard tableaux of row words W\,W2 can be trans
formed one into the other, performing in some order complete backward slides start
ing from inner comers or complete forward slides from outer comers, if and only if 
the two row words are Knuth equivalent. 

Corollary. Starting from a skew semistandard tableau of row word w, if we perform 
in any order, complete backward slides starting from inner comers, at the end we 
always arrive at the semistandard insertion tableau of w. 

In order to prove this theorem we first need a: 

Lemma. Let a\a2 .. .anbe a standard row (i.e., at < fl,+i, Vij. 

(i) Ify S ci\ we have a\a2 ...any ~ ci\ya2 .. .an. 
(ii) Ify > an we have yaia2 ...an i ^1^2 • • • cin-iyan. 
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Proof. By induction on n. If n = 2 we are just using the definition of Knuth equiv
alence on words of length 3. Otherwise, in the first case li y < a\ {or y = a\)hy 
induction a\a2 . . . any i cixa^y . . .«„. Next we use the equivalence a\ya2 i a\a2y. 

In the second case y > an {ox y = an). By induction ya\a2 .. .an ~ «i«2 . • • 
yan-ian and then we use the equivalence yan-\an S a„_iyfl„. D 

The reader should remark that this inductive proof corresponds in fact to a se
quence of backward, respectively forward, slides for the tableaux: 

a\ ^2 a^ . . . an 
y <ai: ai 

y a2 as ... 

a\ a2 «3 . 

. an 

•• >' 

.. an 

y 
y > an'. 

ai a2 as ... an 
Proof of the Theorem. We must show that the row words we obtain through the 
slides are always Knuth equivalent. The slides along a row do not change the row 
word, so we only need to analyze slides from top to bottom or conversely. Let us 
look at one such move: 

to 

. . .U Ci C2 . . 

ax a2 . . 

. . .U C\ C2 . 

a\ a2 . 

. Cn X d\ d2 . . 

. an . bx b2 .. 

. . Cn . dx d2 . 

.. an X bx b2 . 

. dm 

• bm 

. . d, 

.. br 

. . i; 

Since Knuth equivalence is compatible with multiplication, we are reduced to ana
lyze: 

to 

cx 

ax 

Cx 

ax 

C2 .. 

«2 .. 

C2 .. 

a2 .. 

. Cn 

. an 

. Cn 

. an 

X 

X 

dx 

bx 

dx 

bx 

d2 .. 

b2 .. 

d2 .. 

b2 .. 

. d, 

. b, 

, . d, 

, . b, 

Here a„ <c„ < x < bx.lfn = m = 0 there is nothing to prove. Let n > 0. Perform 
the slide which preserves the row word: 

the slide: 

Cx 

. C2 .. 

ax a2 .. 

. Cn X dx d2 . . 

. an . bx b2 .. 

. d, 

. b, 
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Cl 

ai C2 .. 

. a2 .. 

. Cn X di d2 .. 

. an . bi b2 .. 

. d, 

,. br 

is compatible with Knuth equivalence by the previous Lemma (i) applied to >' = 
ai < Cl and the standard row C1C2...Cnxd\d2.. .dm. Now we can apply induction 
and get Knuth equivalence for the slide: 

C\ 

a\ C2 .. 

. a2 .. 

. Cn . d\ 

. Gn X b\ 

d2 .. 

b2 .. 

. d, 

. b, 

Next we slide 

C\ 

. C2 ... Cn . d\ d2 .• 

a\ a2 . . . an x b\ ^2 • • 

, . dm 

• bm 

C\ 

a\ 

C2 .. 

a2 .. 

. Cn . d\ 

. an X b\ 

d2 . . 

b2 .. 

. dr 

. br 

To justify that the first slide preserves Knuth equivalence, notice that we can slide to 
the left: 

. C2 ... Cn d\ d2 ... dm 

ax a2 ... an X b\ b2 ... bm 

The same argument as before allows us to take away bm and analyze the same type 
of slide as before but in fewer elements, and apply induction. 

In the induction we performed we were reducing the number n, thus we still have 
to justify the slide in the case n = 0, m > 0. In this case we have to use the second 
part of the lemma. Slide: 

X d\ ^2 • • 

. bx b2 .. 

. dm ^ dx 

. bm ^ ' bx 

d2 .. 

b2 . . 

. dm-X 

. bm-\ 

dm X dx 

. => . bx 

bm 

d2 .. 

b2 . . 

. dm-\ 

. bm-\ dr 

br 

The last slide preserves Knuth equivalence by the previous case. Now by induction 
we pass to the | equivalent: 

. dx d2 ... dm-x . 

X bx b2 ... bm-i dm 

bm 

Apply next Lenmia (ii) to y = dm > bm and the standard row xbxb2 ... bm-\bm, 
obtaining 

. dx 

x bx 

d2 .. 

b2 .. 

. dm-X 

' bm-X 

dm . dx 

• =^ X bx 

bm 

d2 .. 

b2 .. 

• dm-X 

. bm-\ 

dr 

br 

completing the required slide and preserving Knuth equivalence. 
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We can now complete the proof of: 

Theorem 2. Two words w\, wi are Knuth equivalent if and only ifT{wi) = T(w2). 

Proof. We have already proved one part of this statement. We are left to show that 
if T(wi) = T(w2), then wi | W2. The algorithm given by jeu de taquin shows that, 
starting from u;i, we can construct first a semistandard tableau of row word w\ then, 
by a sequence of slides, a standard tableau P, of semistandard word s\, which is 
Knuth equivalent to M;I. Then P — T{s\) = Tiwi). Similarly for W2, we construct 
a semistandard word 52. Since T(s\) = T(wi) = T{w2) = r(52)we must have 
1̂ = ^2- Hence wi § W2 by transitivity of equivalence. D 

We can finally draw the important consequences for the monoid plactique. We 
start by: 

Remark. In each Knuth equivalence class of words we can choose as canonical rep
resentative the unique semistandard word (defined in 1.1). 

This means that we can formally identify the monoid plactique with the set of 
semistandard words. Of course the product by juxtaposition of two semistandard 
words is not in general semistandard, so one has to perform the Robinson-Schensted 
algorithm to transform it into its equivalent semistandard word and compute in this 
way the multiplication of the monoide plactique. 

2.2 Vacating a Box 

Suppose we apply a sequence of complete backward slides to a given skew tableau T 
and in this way n boxes of T are vacated. We can mark in succession with decreasing 
integers, starting from n, the boxes of T which are emptied by the procedure. We call 
the resulting standard skew tableau the vacated tableau. 

We can proceed similarly for forward slides, but with increasing markings. 
One explicit way of specifying a sequence of backward (resp. forward) slides for 

a semistandard skew tableau T of shape A//x is to construct a standard skew tableau 
U of shape /x/y (resp. v/X). The sequence is determined in the following way. Start 
from the box of U occupied by the maximum element, say n. It is clearly an inner 
comer of T, so we can perform a complete backward slide from this comer. The re
sult is a new tableau T^ which occupies the same boxes of T, except that it has a new 
box which previously was occupied by n in L̂ . At the same time it has vacated a box 
in the rim, which becomes the first box to build the vacated tableau. Then proceed 
with Ui, which is U once we have removed n. Let us give an example-exercise in 
which we write the elements of U with numbers and of T with letters. In order not 
to cause confusion, we draw a square around the boxes, the boxes vacated at each 
step. 
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g g 

4 6 / 

2 5 d u 

I 3 b f 

g 0 

/ g @ 

2 d u 

1 b f 

g g g g g 0 

4 / 0 4 / [6] f g {e} 

2 5 d u ' 2 d u [S] ' 2 d u {5} 

I 3 b f I 3 b f \ 3 b f 

^ S g [4] 

/ B E / 0 @ 
0 ' d g « g ' rf^[r][5] 

0 1 ^ / S b f u \3\ 
Let us give some formal definitions. Let T be a semistandard skew tableau of shape 
A,//x, and U, V standard of shapes /x/y, v/X. We set 

ju(T), Vu(T); / ( r ) , u^CD 

to be the tableaux we obtain by performing backward slides with U or forward slides 
with V on T. If Q := vu(T); R := v^(T) we have seen: 

Proposition. T = jQjv{T), T = ji,f(T) 

From the previous theorem it follows, in particular, that a skew tableau T can be 
transformed by jeu de taquin into a tableau of normal shape, and this normal shape 
is uniquely determined. We may sometimes refer to it as the normal shape ofT. 

3 Dual Knuth Equivalence 

3.1 Dual equivalence 

A fundamental discovery of Schiitzenberger has been the following (cf. [Sch2]). 

Consider a permutation a of 1, 2 , . . . , « , as a word a ( l ) , a ( 2 ) , . . . , a(n). We 
associate to it, by the Robinson-Schensted correspondence, a pair of standard 
tableaux P,Q. 

Theorem 1. If a permutation o corresponds, by R-S, to the pair of tableaux A, B, 
then a~^ corresponds, by R-S, to the pair of tableaux B, A. 

We do not prove this here since we will not need it (see [Sa]); what we shall use 
instead are the ideas on duality that are introduced in this proof. 

Let us start by defining and studying dual Knuth equivalence for words. 

Definition 1. We say that two words are dually Knuth equivalent if they have the 
same recording tableau. 
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For our purposes it will be more useful to study a general dual equivalence of 
semistandard tableaux. Let us consider two semistandard skew tableaux T, T' of 
shape A//X, having the same content. 

Definition 2. A sequence of slides for a tableau 7 is a sequence of boxes ci, 
C2^ " ' ^Cm, satisfying the following recursive property: 

c\ is either an inner or an outer comer of T. Set T\ := jc^ (T) if ci is inner or 
Ti := j^^ (T) if ci is outer. We then have that C2,. . . , C;„ is a sequence of slides for Ti. 

The definition is so organized that it defines a corresponding sequence of tableaux 
Ti with Ti+i = jc-^^Ti or 7;+i = / '+ ' Ti. 

Now we give the notion of dual equivalence for semistandard tableaux. 

Definition3. Two tableaux T, T' are said to be dually equivalent, denoted T ^T' if 
and only if any given sequence of slide operations that can be done on T can also be 
performed on ^^ thus producing tableaux of the same shape.̂ ^^ 

We analyze dual equivalence, following closely Haiman (see [Hai]). 
Let us take a sequence of diagrams A D /x D v. Let P be a standard tableau of 

shape X/v. We say that P decomposes as P\ U Pi with Pi of shape /x/v and P2 of 
shape X//X if the entries of P2 are all larger than the entries of Pi. 

Let us observe how decompositions arise. If n = | P | is the number of boxes of P 
and /c = IP2I, then P2 is formed by the boxes in which the numbers 1 , . . . , /: appear. 
Conversely, any number k with \ <k <n determines such a decomposition. 

We have the converse, starting from diagrams v C /x C X. Consider two standard 
tableaux Pi, P2 with shapes A//x (a diagram with h boxes) and /x/v (a diagram with 
k boxes). By definition, Pi, P2 have respectively entries 1, 2 , . . . , /z and 1, 2 , . . . , /c. 
We then can form the tableau Pi U P2 by placing the tableau P2 in /x/v and the 
tableau Pi in A//x, but with each entry shifted by k. 

Remark. Since all the numbers appearing in Pi are strictly larger than those appear
ing in P2, one easily verifies the following: when we perform a slide, for instance 
a complete backward slide from some cell c on Pi U P2, we first have to apply the 
complete slide to P2 which leave some cell d of P2 vacant, and then we apply the 
slide determined by J on Pi. In other words 

j , (PiUP2) = ;^(Pi)U7V(P2). 

For forward slides we have with similar notation the following: 

/ ( P l U P 2 ) = / ( P i ) U / ( P 2 ) . 

^̂ ^ In fact, requiring that any sequence performed on T can also be performed on T' implies 
that the two shapes must be the same. 
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Lemma 1. Consider two standard skew tableaux of the same shape and decomposed 
as P = XUSUY, Q = XUTUY. 

If SiT, then also P^Q. 

Proof This follows from the jeu de taquin and the previous remark. Start from a 
slide, for instance a complete backward slide from some cell c. In both cases (of 
standard skew tableaux) we first have to apply the slide to 7, which leaves some cell 
J of y vacant. Then, in the first case we have to apply the backward slide from d to 
S, and in the second case we have to apply it to T. 

By hypothesis of equivalence, this will leave the same cell vacant in both cases. 
Next we have to apply the slide to Z. So we see that under this slide, the two tableaux 
are transformed into tableaux P' = riJS'VJY', Q' = r\JT'\J Y\ with S' | T'. We 
can thus repeat the argument for any number of backward slides; for forward slides 
the proof is similar. D 

We want to start the analysis with the first special case. 
We say that a shape A.//X is miniature if it has exacdy three boxes. So the first 

result to prove is: 

Proposition 1. Two miniature tableaux of the same shape are dual equivalent if and 
only if they produce an insertion tableau of the same shape and with the same record
ing tableau. 

Proof Assume the two tableaux dual equivalent: If we apply the jeu de taquin to 
the first tableau, in order to construct the insertion tableau, we have to apply a se
quence of backward slides, which, by assumption, can also be appUed to the second 
tableau, which then results in an insertion tableau of the same shape and with the 
same recording tableau. 

As for the converse, we need first a reduction to some basic cases by applying 
translations; then we must do a case analysis on the reading word. We leave the 
details to the reader. 

For the basic example for anti-chains we have the following equivalence: 

1 
(3.0.1) 

with recording tableau 

2 3 
(3.0.2) 1 I 1 

with recording tableau 

3 2 

3 
1 2 
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The other two form single dual equivalence classes 

1 3 
2 , 2 

with recording tableaux 

For the main reduction we use: 

3 1 

3 
1 2 3, 2 

1 

Definition 4. An elementary dual equivalence is one of the form XUS'UF ^ XUTUF 
in which S and T are miniature. 

Lemma 2. Let U ^V be an elementary dual equivalence. Applying any slide to U 
and V respectively yields U' and V so that U' ̂ V is elementary. 

Proof. This follows from the description of the slide given in Lemma 1. D 

Proposition 2, If S,T are two standard tableaux having the same normal shape X, 
then S and T are connected by a chain of elementary dual equivalences. 

Proof. The proof is by induction on n = |A|. We may assume n > 3, otherwise the 
two tableaux would be identical and there would be nothing to prove. 

Consider the box in which n is placed. If it is the same in both tableaux, we 
remove it, thus obtaining tableaux of the same shape to which we now can apply 
induction. Otherwise, n appears in two distinct boxes, c and c': they are both comers 
of A., and we may assume that c lies in a row higher than c\ We can then find another 
box c^' in the next row which is lower than the one where c is and as far to the right 
as possible. We now place w — 2 in c'^ and n, n — 1 in c, c' in two possible ways. We 
fill the remaining boxes with the numbers 1, 2 , . . . , n — 3 so as to make the tableaux 
standard. We obtain two standard tableaux of shape A, say S^ and T\ which are 
elementary dual equivalent by construction. The first S' has n in box c, and thus by 
induction is connected by a chain of elementary dual equivalences to 5; the second, 
by the same reasoning is connected to T, and the claim follows. D 

Corollary. Two tableaux of the same normal shape are dual equivalent. 

The main theorem which we will need about dual equivalence is the following. 

Theorem 2. Two standard tableaux S,T of the same shape are dual equivalent if 
and only if they are connected by a chain of elementary dual equivalences. 

Proof In one direction the theorem is obvious. Let us prove the converse. Let X//x 
be the shape of 5, T, and choose a standard tableau U of normal shape ii which we 
will use to define the sequence of slides to put both S and T in normal shape. 
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By the dual equivalence of S, T we obtain two standard tableaux of the same nor
mal shape S' = ju(S), T' = ju(.T), and in so doing we obtain the same tableau that 
was vacated, i.e., V = vu (T) = vu (S). We know that S\ T\ which can be connected 
by a chain of elementary dual equivalences, yields S^ iRi^R2^ . . . ^Rk^T'. Now 
we can apply Lenmia 2; using the forward slides y^, we have T = j^(T') • S = 
7^(50, and thus 

is the required chain of elementary equivalences. D 

Let us now apply the theory to permutations. 
First, write a permutation as a word, and then as a skew tableau as a diagonal as 

in 
3 

4 
(3 ,4 ,1 ,5 ,2 )= 1 

5 
2 

We call such a standard tableau a permutation tableau. 

Theorem 3. Two permutation tableaux S, T are dual equivalent, if and only if the 
recording tableaux of their words are the same. 

Proof. If the two tableaux are dual equivalent, when we apply the Robinson-
Schensted algorithm to both we follow the same sequence of slides and thus produce 
the same recording tableaux. Conversely, let f/ be a standard tableau, which we add 
to 5̂  or r to obtain a triangular tableau, which we use to define a sequence of slides 
of ŷM de taquin that will produce in both cases the corresponding insertion tableaux 
jxiS), jx(T). Let A be the shape of jx(S). 

Consider the tableau Y = vx(S), which was vacated. We know that jx and 
j ^ establish a 1-1 correspondence between dual equivalent permutation tableaux 
and tableaux of normal shape X. By the Schensted correspondence, jx establishes a 
1-1 correspondence between tableaux of shape X and the set R(S) of permutation 
tableaux whose recording tableau is the same as that of S. 

Now we claim that by the first part, R{S) contains the class of permutation 
tableaux dually equivalent to S. Since by the previous remark j ^ produces as many 
dually equivalent tableaux as the number of standard tableaux of shape A, we must 
have that R(S) coincides with the dual equivalence class of S. D 

But now let us understand directly the elementary dual equivalences on words; 
we see that the two elementary equivalences given by formulas 3.0.1, 3.0.2 are 

...k...k + 2...k-\-l...i...k-\-l...k-\-2...k... 

...k-\-l...k...k-\-2...i...k-\-2...k...k-\-l... 
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Now we have the remarkable fact that the two previous basic elementary dual 
Knuth relations for a permutation a correspond to the usual elementary Knuth rela
tion for (j~^. We deduce that: 

Theorem 4. Two permutations cr, r are dually Knuth equivalent if and only if 
a~^ T~̂  are Knuth equivalent. 

We have up to now been restricted to standard tableaux or words without repeated 
letters or permutations. We need to extend the theory to semistandard tableaux or 
words with repeated letters. Fortunately there is a simple reduction to the previous 
case. 

Definition 5. Given a standard tableau T with entries 1,2,... , n, call / a descent if 
/ + 1 is in a row higher than /. 

We say that a word a\ <a2 < • -- <an'\^ compatible with the descent set ofT if 
it is such that at < a,+i if and only if / is a descent of T. 

Proposition 3. Replacing the entries of T with « i , . . . , (2„ gives a semistandard 
tableau. This is a bijection between semistandard tableaux S and pairs (standard 
tableau T, word a compatible with the descent set ofT). 

Proof. In one direction, given a standard tableau filled with 1, 2 , . . . , n we replace 
each / with a,. In the reverse direction we read the semistandard tableau as follows. 

We start by finding the positions of ^i, then of a2, and so on, for each letter 
aj reading from left to right. At the i^^ step of this procedure, we place / in the 
corresponding case. For instance, for 

5 5 18 19 
4 4 4 14 15 16 
3 3 3 5 =:^ r = 10 11 12 20 
2 2 2 2 4 5 6 7 8 17 

1 1 1 1 2 3 1 2 3 4 9 13 

The a sequence is of course in this case 

1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4,4, 4, 5, 5, 5. 

The descent set of T is in fact 4, 9, 13, 17. D 
One checks that the jeu-de-taquin operations and elementary dual equivalences 

do not change the descent set. Now define jeu-de-taquin operations, dual equiva
lence, etc., on semistandard tableaux S to operate on T while keeping a fixed. 

It follows inmiediately that the semistandard tableaux T and U of the same nor
mal shape are dual equivalent by the corresponding result for standard tableaux. 
Also, their reading words are dual Knuth equivalent, because elementary dual equiv
alences on the underlying standard tableaux induce dual Knuth relations on the read
ing words of the corresponding semistandard tableaux. 
Example: If we switch a-\-l,a,a+2 < - > a + l , a + 2 , « i n a standard tableau, then 
both before and after the switch, a is a descent and a -\- I is not. So this translates 
into either bac ~ bca (with a < b < c consecutive) or yxy | yyx (with x < y 
consecutive) in the semistandard tableau. 
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4 Formal Schur Functions 

4.1 Schur Functions 

First, let us better understand the map which associates to a skew semistandard 
tableau T of shape A//x its associated semistandard tableau (insertion tableau of the 
row word u; of T). To study this take a fixed standard tableau P of shape /x. The^^w 
de taquin shows that the map we are studying i^T -^ U \= jp{T). Let v = sh(U) 
be the normal shape of T. If Q := vp{T) we also have that sh(Q) = X/v. 

The set Sx/^, of tableaux of shape X/fx decomposes as the union: 

^v^ = U.CX ^VM' % ••= {^ ^ ^VM- ^MypCD) = V}. 

So let now (7 be a fixed semistandard tableau of shape v and consider the set 

(4.1.3) S,/^(U) := {T G Sl/^, jp(T) = U}. 

We have not put the symbol P in the definition since P is just auxiliary. The result is 
independent of P by the basic theorem on jeu de taquin. 

For T € Sx/^(U) consider the vacated tableau Q = vp(T) (of shape k/v). Given 
another semistandard tableau U' with the same shape as U, consider the tableau 
r : = : 7 ^ ( ^ 0 . We claim that: 

Lemma. (i)sh{T') =Xlii. 
(ii) The map p^' : T ^ T' := r'^'^^U') is a bijection between S),/^(U) and 

Proof, (i) Since U, U' are semistandard tableaux of the same normal shape they 
are dually equivalent. Hence T = j^(U) and T' = j^{U') have the same shape. 
Moreover, the dual equivalence implies that the shapes are the same at each step of 
the operations leading to j^{U), j^(U'). Hence v^iU) = v^iU'). 

(ii) We shall show now that the inverse of the map p^' : S^/^iU) -> Sx/^i{U') is 
the map p%'.T -^ j'^'^^'HU). 

Since T = r'^^\U), r = r^^^HU') we have that T ^T (§3.1 Corollary to 
Theorem 2). Thus we must have Q = vp(T) = vp{T') since these tableaux record 
the changes of shape under the operations jp. So 

(4.1.4) p^p^'(r) = p^'piT') = r^^'\u) = jQ(U) = r, 

and we have inverse correspondences between Sx/^(U) and Sx/^xiU^): 

T -> T' \= r'^^\U'), r ^ T := f'^^'\U). u 

Let us then define dl ^ := \Sx/i^(U)\ for any semistandard tableau U of shape v. 
We arrive now at the construction of Schiitzenberger. Consider the monoide plac-

tique M in an alphabet and define Si formal Schur function Sx € Z[M] defined by 
Sx = ^w where w runs over all semistandard words of shape A. Similarly define 
Sx/fz to be the sum of all row words which correspond to all semistandard skew 
tableaux of shape A//x. We have in the algebra of the monoide plactique: 
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Theorem. 

(4.1.5) S,„ = Y,dl,S., 5.5, = 5]<,5.. 

for some nonnegative integers d^ ^, cl ^. 

Proof. The first statement is just a consequence of the previous lemma. As for the 
second it is enough to remark that S^S^ = Sy/p where p is a rectangular diagram 
and y is obtained from p by placing X on its top and JJL on its right, as in 

x= , /x= . . , y/p = 

Now assume that we are using as an alphabet 1, 2 , . . . , m. Then we consider the 
content of a word as a monomial in the variables JC,. Since c(ab) — c(a)c(b) and 
content is compatible with Knuth equivalence, we get a morphism: c : Z[M] -^ 
Z[X\, . . . ,Xm]-

Proposition. c(Sx) = Sx(xi,X2,... ,Xm). 

Proof This is a consequence of Chapter 9, Theorem 10.3.1, stating that 

Sx{Xi,X2,...,Xm) = ^x'^. 
T 

where the sum is indexed by semistandard tableaux T of shape X, filled with 
1 , . . . , m. x^ is, in monomial form, the content c{T). n 

It follows that Sx(x)S^{x) = Ylv^k ii^v(x). The interpretation of the symmetric 
function associated to Sx/jj, will be given in the next section. 

5 The Littlewood-Richardson Rule 

5.1 Skew Schur Functions 

The Littlewood-Richardson rule describes in a combinatorial way the multiplici
ties of the irreducible representations of GL(V) that decompose a tensor product 
Sx(V) (g) S^(V) = 0 y Cx,n^v(V). Using characters, this is equivalent to finding the 
multiplication between symmetric Schur functions. ̂ ^̂  

^̂ ^ These types of formulas are usually called Clebsch-Gordan formulas, since for SL(2, C) 
they are really the ones discussed in Chapter 3. 
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(5.1.1) Sx{x)S^ix) = J2cl,M^)-
V 

We revert first to symmetric functions. Let us consider k h n and the Schur 
function ^^Cxi, ̂ 2 , . . . , x„, zi, Z2, • • •, Zn) in a double set of variables. Since this is 
also symmetric separately in the x and z, we can expand it as a sum in the S^(x): 

SxiXuX2, . . . , X„, ZU Z2,'--,Zn) = Y^ S^(Xi,X2, . . . , Xn)Sx/t^(Z\, Z2, " , Zn)-

Sx/^l(z) is defined by this formula and it is symmetric in the z's. Now take Cauchy's 
formula for the variables jci, JC2, . . . , JC„, Zi,Z2, - -- ,Zn and y\,... ,yn'-

Expand Sx(x, z) = E/x S^i(x)S),/^(z) to get 

k /x v,/x A. 

hence 

(5.1.2) ^VMU) = E < M ^ ^ ( ^ ) -

5.2 Clebsch-Gordan Coefficients 

The last formula allows one to develop a different approach to compute the numbers 
c^^, relating these numbers to semistandard skew tableaux. 

In fact, if we consider the variables JC, as less than the Zj in the given order, 
Sxix, z) is the sum of the contents of all the semistandard tableaux of shape X filled 
with the Xi and Zj (or indices corresponding to them). In each such semistandard 
tableau the letters x must fill a subdiagram fi and the remaining letters fill a skew 
diagram of shape A//x. We can thus separate the sum according to the /x. Since, 
given /x, we can fill independently with JC'S the diagram /x and with z's the skew 
diagram A,//x, we have that this contribution to the sum S^ix, z) is the product of 
5^(jc, z) with a function 5'ĵ /̂ (z) sum of the contents of all the skew tableaux filled 
with the z's of shape A//x. We deduce finally that the skew Schur function Sx/f^iz) 
equals to the content c(Sx/fji) of the skew formal Schur function Sx/^i defined in 4.1, 
and so 

(5.2.1) S,/^iz) = ciS,/^), E < M ^ v a ) = E<.M5v(z) , < ^ = < , ^ . 

We deduce: 
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Proposition, cj;^ = d^^^ := \Sx/ ̂ {U)\ for any semistandard tableau U of shape v. 

It is convenient to choose as U the semistandard tableau with / on the /̂ r̂ow as 

4 4 

3 3 

2 2 2 2 

1 1 1 1 1 

There is a unique such tableau for each shape A; this tableau is called the supercanon-
ical tableau of shape k and denoted by Cx- It allows us to interpret the combinatorics 
in terms of lattice permutations. 

Definition. A word w in the numbers 1 , . . . , r is called a lattice permutation if, for 
each initial subword (prefix) a, i.e., such that w = ab, setting kt to be the number of 
occurrences of i ina, we have k\ > k2 > - • - > K. A reverse lattice permutation is a 
word w such that the opposite word̂ "̂̂  w^ is a lattice permutation. 

Of course the word of C^ has this property (e.g., for w = 4433222211111, we 
have K;̂  = 1111122223344). Conversely: 

Lemma. The row word of a semistandard tableau U of shape k is a reverse lattice 
permutation if and only ifU = Cx is supercanonical. 

Proof When we read in reverse the first row, we have by definition of semistandard-
ness a decreasing sequence. By the lattice permutation condition this sequence must 
start with 1 and so it is the constant sequence 1. Now for the next row we must start 
with some / > 1 by standardness, but then / = 2 by the lattice permutation property, 
and so on. D 

5.3 Reverse Lattice Permutations 

Notice that for a supercanonical tableau the shape is determined by the content. To 
use these facts we must prove: 

Proposition. The property for the row word wofa tableau T to be a reverse lattice 
permutation is invariant under jeu de taquin. 

Proof We must prove it for just one elementary vertical slide. 
Let us look at one such move (the other is similar) from the word w of: 

. . . M C\ C2 . . . Cn X d\ di . . . dm 

a\ fl2 • • • Cln . b\ ^2 • • • bm -- -V 

with an < Cn < X < bi < d\, to: 

124 The opposite word is just the word read from right to left. 
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The opposite of the row word is read from right to left and from bottom to top. The 
only changes in the contents of the prefix words of w^ (or suffixes of w) can occur in 
the prefixes ending with one of the a's or J's. Here the number of x's has increased 
by 1, so we must only show that it is still < than the number of x — 1. Let us see 
where these elements may occur. By semistandardness, no JC — 1 occurs among the 
J's and no x among the a's or the J's. Clearly if JC — 1 appears in the a's, there 
is a minimum j such that x — I = GJ = a^+i = • • • = fit„. By semistandardness 
x>Cj>aj=x — I impHes that x = Cj = Cj^\ = • • - = Cn. Let A > B (resp 
A' > B^) be the number of occurrences of JC — 1, JC in the suffix of w starting with 
bi (resp with Cj). We have A' = A-\-n — j-\-l while B^ = B -^ n - j -\-2. Hence 
A > B. This is sufficient to conclude since in the new word for the changed suffixes 
the number of occurrences of JC is always B -{-1 < A. D 

Let us say that a word has content v if it has the same content as Cy. We can now 
conclude (cf. 4.LI): 

Theorem (The Littlewood-Richardson rule). 

(0 Sx/^ (Cy) equals the set of skew semistandard tableaux of shape X/ ii and content 
V whose associated row word is a reverse lattice permutation. 

(ii) The multiplicity c^ of the representation Sx{V) in the tensor product 
S^i(V) 0 Sy(V), equals the number of skew semistandard tableaux of shape X/JJL 

and content v whose associated row word is a reverse lattice permutation. 

Proof (i) = » (ii) By Proposition 5.2, c^ ^ = dl ^ := \Sx/^(U)\ for any tableau U 
of shape v. If we choose U = C^ supercanonical, i.e., of content y, clearly we get 
the claim. 

(i) By the previous proposition Sx/^ (C^) is formed by skew semistandard tableaux 
of shape X/jx and content v whose associated row word is a reverse lattice per
mutation. Conversely, given such a tableau T, from the previous proposition and 
Lemma 5.2, its associated semistandard tableau is supercanonical of content v. 
Hence we have T e Sx/^iCy). n 




