
Symmetric Functions 

Summary. Our aim is to alternate elements of the general theory with significant examples. 
We deal now with synmietric functions. 

In this chapter we will develop some of the very basic theorems on symmetric functions, 
in part as a way to give a look into 19* century invariant theory, but as well to establish some 
useful formulas which will show their full meaning only after developing the representation 
theory of the linear and symmetric groups. 

1 Symmetric Functions 

1.1 Elementary Symmetric Functions 

The theory of symmetric functions is a classical theory developed (by Lagrange, 
Ruffini, Galois, and others) in connection with the theory of algebraic equations in 
one variable and the classical question of resolution by radicals. 

The main link is given by the formulas expressing the coefficients of a polyno­
mial through its roots. A formal approach is the following. 

Consider polynomials in variables jci, JC2, . . . , JC„ and an extra variable t over the 
ring of integers. The elementary symmetric functions ei := ^/(xi, ^ 2 , . . . , x„) are 
implicitly defined by the formula 

n n 

(1.1.1) p{t) := Y[(l + txi) := 1 + ^ e , r ' . 
/=i / -I 

More explicitly, ^/(jci, JC2,..., Jc„) is the sum of (") terms: the products, over all 
subsets of {1, 2 , . . . , Az} with / elements of the variables with indices in that subset. 
That is, 

(1.1.2) Ci = ^ Xa,Xa2-"Xar 
l<ai<a2<-<ai<n 
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If a is a permutation of the indices, we obviously have 
n n 

i = l i=l 

Thus the elements et are invariant under permutation of the variables. 
Of course the polynomial t^p{— j) has the elements xt as its roots. 

Definition. A polynomial in the variables (jci, JC2, . . . , JC„), invariant under permuta­
tion of these variables, is called a symmetric function. 

The functions et are called elementary symmetric functions. 

There are several obviously symmetric functions, e.g., the power sums -^k •= 
Yl^i=\ -̂ f ^^^ the functions Sk defined as the sum of all monomials of degree k. These 
are particular cases of the following general construction. 

Consider the basis of the ring of polynomials given by the monomials. This basis 
is permuted by the symmetric group. By Proposition 2.5 of Chapter 1 we have: 

A basis of the space of symmetric functions is given by the sums of monomials 
in the same orbit, for all orbits. 

Orbits correspond to non-increasing vectors A, := (/zi > /z2 > • • • > hn), hi G N, 
and we have set m^ to be the sum of monomials in the corresponding orbit. 

As we will soon see there are also some subtler symmetric functions (the Schur 
functions) indexed by partitions, and this will play an important role in the sequel. 
We can start with a first important fact, the explicit connection between the functions 
Ci and V̂ .̂ To see this connection, we will perform the next computations in the ring 
of formal power series, although the series that we will consider also have meaning 
as convergent series. 

Start from the identity n"=i(^^/ + l) = Yll=o^i^' and take the logarithmic deriva­
tive (relative to the variable t) of both sides. We use the fact that such an operator 
transforms products into sums to get 

The left-hand side of this formula can be developed as 
n oo oo 

i = \ h=0 h=0 

From this we get the identity 

E(-̂ )V/.+i E '̂H^E '̂̂ '̂ ' 
\h=0 / \i=0 

which gives, equating coefficients: 

(1.1.3) i-irifm-^i -̂  E ( - ! ) ' > ' • ^-+1- ' = E (- i)>'+i^7 = ('^ + i)^-+i 
/=1 i-\-j=m 

where we take et = 0 if / > n. 
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It is clear that these formulas give recursive ways of expressing the ij/i in terms of 
the ej with integral coefficients. On the other hand, they can also be used to express 
the et in terms of the X/TJ, but in this case it is necessary to perform some division 
operations; the coefficients are rational and usually not integers.^ 

It is useful to give a second proof. Consider the map: 

, ^ 2 , . . . , Xfi—l\ 

given by evaluating Xn at 0. 

Lemma. The intersection of Ker(7r„) with the space of symmetric functions of de­
gree < n is reduced to 0. 

Proof Consider m(hi,h2,...,h„)^ ^ sum of monomials in an orbit. If the degree is less 
than n, we have /z„ = 0. Under 7r„ we get TCn(m^h,,h2,...,hn_uO)) = ^{h.M^-.Mn-x)' Thus 
if the degree is less than n, the map 7r„ maps these basis elements into distinct basis 
elements. 

Now we give the second proof of 1.1.3. In the identity 0/̂ =1 (̂  — xt) \— 
Y^^i^oi—^yeit^~\ substitute t with jc,, and then sunmiing over all / we get (remark 
that V̂o = w)-

n n 

0 = Y^(-iyeiifn-i, oriA, = Y.^-iy-'eiifn-i. 
i=0 i=\ 

By the previous lemma this identity also remains valid for symmetric functions in 
more than n variables and gives the required recursion. 

1.2 Symmetric Polynomials 

It is actually a general fact that symmetric functions can be expressed as polynomials 
in the elementary synmietric functions. We will now discuss an algorithmic proof. 

To make the proof transparent, let us also stress in our formulas the number of 
variables and denote by e^ ^ the i^^ elementary symmetric function in the variables 
jc i , . . . , jCjt. Since 

^ e f - ' V (rx„ + l) = X:^l"V\ 
^/=0 / /=0 

we have 
(n) (n-1) , (n-\) (n - l ) (n) (n-\) 

e] = e}_^ 'xn + e) or e] ' = e} ' - e]_^ 'x„. 
In particular, in the homomorphism n : Z[jci,..., jc„] -> Z[x i , . . . , Xn-\] given 

by evaluating Xn at 0, we have that symmetric functions map to symmetric functions 
and 

n{ef) = el''-'\ i < n, nie^;^)=^0. 

^ These formulas were found by Newton, hence the name Newton functions for the xj/k. 
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Given a symmetric polynomial / ( j c i , . . . , ;c„) we evaluate it at x„ = 0. If the result­
ing polynomial / ( x i , . . . , x„_i, 0) is 0, then / is divisible by Xn. 

If so, by symmetry it is divisible by all of the variables and hence by the function 
Cn. We perform the division and move on to another symmetric function of lower 
degree. 

Otherwise, by recursive induction one can construct a polynomial p'mn — \ vari­
ables which, evaluated in the « — 1 elementary symmetric functions of jc i , . . . , x„_i, 
gives f{x\,..., jc„_i, 0). Thus / — p{e\, ^2, • • •. ^A2-I) is a symmetric function van­
ishing at Xn = 0. 

We are back to the previous step. 
The uniqueness is implicit in the algorithm which can be used to express any 

symmetric polynomial as a unique polynomial in the elementary symmetric func­
tions. 

Theorem 1. A symmetric polynomial f e lL\x\,..., JC„] is a polynomial, in a unique 
way and with coefficients in Z, in the elementary symmetric functions. 

It is quite useful, in view of the previous lemma and theorem, to apply the same 
ideas to symmetric functions in larger and larger sets of variables. One then con­
structs a limit ring, which one calls just the formal ring of symmetric functions 
Z[^i , . . . ,ei,...]. It can be thought of as the polynomial ring in infinitely many 
variables et, where formally we give degree (or weight) / to Cj. The ring of symmet­
ric functions in n variables is obtained by setting Ci =0, V/ > n. One often develops 
formal identities in this ring with the idea that, in order to verify an identity which is 
homogeneous of some degree m, it is enough to do it for symmetric functions in m 
variables. 

In the same way the reader may understand the following fact. Consider the n\ 
monomials 

4' '"4-1^ 0</z/ <n-i. 

Theorem 2. The above monomials are a basis of'Ij[x\,...,Xn] over Z[^ i , . . . , ^„]. 

Remark. The same theorem is clearly true if we replace the coefficient ring Z by any 
commutative ring A. In particular, we will use it when A is itself a polynomial ring. 

2 Resultant, Discriminant, Bezoutiant 

2.1 Polynomials and Roots 

In order to understand the importance of Theorem 1 of 1.2 on elementary symmetric 
functions and also the classical point of view, let us develop a geometric picture. 

Consider the space C" and the space P„ := {t'^ -\- bit^~^ -\ -\- bn} of monic 
polynomials (which can be identified with C" by the use of the coefficients). 

Consider next the map TT : C" -^ P„ given by 
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n 

7r(ai , . . . ,a„) := ]~J(r - a,). 

We thus obtain a polynomial t^ — axt"^"^ + a2t^~^ H h (—!)"«„ = 0 with roots 
« ! , . . . , «„ (and the coefficients at are the elementary symmetric functions in the 
roots). Any monic polynomial is obtained in this way (Fundamental Theorem of 
Algebra). 

Two points in C^ project to the same point in P„ if and only if they are in the 
same orbit under the symmetric group, i.e., P„ parameterizes the ^^-orbits. 

Suppose we want to study a property of the roots which can be verified by eval­
uating some symmetric polynomials in the roots (this will usually be the case for 
any condition on the set of all roots). Then one can perform the computation without 
computing the roots, since one has only to study the formal symmetric polynomial 
expression and, using the alogrithm discussed in §1.2 (or any equivalent algorithm), 
express the value of a symmetric function of the roots through the coefficients. 

In other words, a symmetric polynomial function / on C" factors through the 
map n giving rise to an effectively computable^ polynomial function / on P„ such 
tha t / = 77r. 

A classical example is given by the discriminant. 
The condition that the roots be distinct is clearly that ]"[/<; (^/ ~ ^j) / -̂ The 

polynomial V{x) := ]"[/<;(^/ ~ ^j) î  i^ ^̂ ^̂  not symmetric. It is the value of the 
Vandermonde determinant, i.e., the determinant of the matrix: 

(2.1.1) A :--

Proposition 1. V{x) is antisymmetric, i.e., a permutation of the variables results in 
the multiplication ofV{x) by the sign of the permutation. 

Remark. The theory of the sign of permutations can be deduced by analyzing 
the Vandermonde determinant. In fact, since for a transposition r it is clear that 
V(xy = —V(x), it follows that V{xy = V{x) or —V(x) according to whether or 
is a product of an even or an odd number of transpositions. The sign is then clearly a 
homomorphism. 

We also see immediately that V^ is a symmetric polynomial. We can compute it 
in terms of the functions xj/i as follows. Consider the matrix B := AA^. Clearly in 
the /, j entry of B we find the symmetric function \l/2n-{i+j), and the determinant of 
B is V^. 

/xp' 

'̂f 
-̂ 1 

^ 1 

^ n - 1 

x | . 
X2 . 

1 . 

. . J C « - ' \ 
' ' n ] 

X^ 

.. Xn 

.. 1 ) 

^ I.e., computable without solving the equation, usually by polynomial expressions in the 
coefficients. 
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The matrix B (or rather the one reordered with iri+j-2 in the /, j position) is 
classically known as the Bezoutiant, and it carries some further information about the 
roots. We shall see that there is a different determinant formula for the determinant 
of B directly involving the elementary symmetric functions. 

Let D{e\, ^2, • • •, ^«) be the expression for V^ as a polynomial in the elementary 
symmetric functions (e.g., n = 2, D = e\ — 4^2). 

Definition. The polynomial D is called the discriminant. 

Since this is an interesting example we will pursue it a bit further. 
Let us assume that F is a field, and f{t) is a monic polynomial (of degree n) 

with coefficients in F, and let R := F[t]/ifit)). We have that R is an algebra over 
F of dimensions. 

For any finite-dimensional algebra A over a field F we can perform the following 
construction. 

Any element ^ of A induces a linear transformation La : x -> ax on Aby left 
multiplication (and also one by right multiplication). We define iT(a) := tr(La), the 
trace of the operator L«. 

We consider next the bilinear form (a, b) := tr(ab). This is the trace form of A. 
It is symmetric and associative in the sense that {ah, c) = (a, be). 

We compute it first for R := F[t]/(t'^). Using the fact that t is nilpotent we 
see that tr(r^) = 0 if A: > 0. Thus the trace form has rank 1 with kernel the ideal 
generated by f. 

To compute for the algebra R := F[t]/(f(t)) we pass to the algebraic closure F 
and compute in l^[t]/(f(t)). 

We split the polynomial with respect to its distinct roots, f(t) = Y[i=i (̂  ~ ^t)^'' 
and F[r ] / ( / (0) = 0f^iF[^]/(r - a,)^'. Thus the trace of an element mod f(t) is 
the sum of its traces mod (t — a/)^'. 

Let us compute the trace of r̂  mod (t — of/)^'. We claim that it is htaf. In fact 
in the basis 1, (t - at), (t - o f / ) ^ , . . . , ( / - a/)^'~^ (mod (t - a,)^') the matrix of 
t is lower triangular with constant eigenvalue a, on the diagonal, and so the claim 
follows. 

Adding all of the contributions, we see that in F[t]/{f(t)), the trace of multipli­
cation by t^ is Yli hta'^, the k^^ Newton function of the roots. 

As a consequence we see that the matrix of the trace form, in the basis 1, ^ . . . , 
t"~^, is the Bezoutiant of the roots. Since for a given block F[t]/(t — at)^' the ideal 
generated by (t — a,) is nilpotent of codimension 1, we see that it is exactly the 
radical of the block, and the kernel of its trace form. It follows that: 

Proposition 2. The rank of the Bezoutiant equals the number of distinct roots. 

Given a polynomial f(t) let f(t) denote the polynomial with the same roots as 
f(t) but all distinct. It is the generator of the radical of the ideal generated by f(t). 
In characteristic zero this polynomial is obtained dividing f(t) by the GCD between 
f(t) and its derivative f\t). 
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Let us consider next the algebra R := F[t]/(f(t)), its radical Â  and R := R/N. 
By the previous analysis it is clear that R = F[t]/(f(t)). 

Consider now the special case in which F = R is the field of real numbers. Then 
we can divide the distinct roots into the real roots ai , 0̂ 2, • . . , â t and the complex 

The algebra R is isomorphic to the direct sum of k copies of R and h copies of 
C. Its trace form is the orthogonal sum of the corresponding trace forms. Over R the 
trace form is just jĉ  but over C we have tr((x + /y)^) = 2{x^ — y^). We deduce: 

Theorem. The number of real roots of f{t) equals the signature^ of its Bezoutiant. 

As a simple but important corollary we have: 

Corollary. A real polynomial has all its roots real and distinct if and only if the 
Bezoutiant is positive definite. 

There are simple variations on this theme. For instance, if we consider the 
quadratic form Q{x) := tr(rjc^) we see that its matrix is again easily computed 
in terms of the xfrk and its signature equals the number of real positive roots minus 
the number of real negative roots. In this way one can also determine the number of 
real roots in any interval. 

These results are Sylvester's variations on Sturm's theorem. They can be found in 
the paper in which he discusses the Law of Inertia that now bears his name (cf. [Si]). 

2.2 Resultant 

Let us go back to the roots. If xi, X2, •'', Xn', yi, y2,' •', ym are two sets of variables, 
consider the polynomial 

n m 

A{x^y):=Y[U^^i-yj) 

This is clearly symmetric, separately in the variables x and y. If we evaluate it in 
numbers, it vanishes if and only if one of the values of the JC'S coincides with a value 
of the j ' s . Conversely, any polynomial in these two sets of variables that has this 
property is divisible by all the factors xt — yj, and hence it is a multiple of A. 

By the general theory A, a symmetric polynomial in the JC/'S, can be expressed 
as a polynomial R in the elementary symmetric functions et (x) with coefficients that 
are polynomials symmetric in the yj. These coefficients are thus in turn polynomials 
in the elementary symmetric functions of the y/s. 

Let us denote by AI, . . . , a„ the elementary symmetric functions in the x/'s and 
by b\,... ,bm the ones in the y/s. Thus A(x, y) = R(a\,..., a„, Z?i,..., bm) for 
some explicit polynomial R. 

' The Bezoutiant is a real symmetric matrix; for such a matrix the notion of signature is 
explained in Chapter 5, 3.3. There are effective algorithms to compute the signature. 
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The polynomial R is called the resultant. 
When we evaluate the variables x and y to be the roots of two monic polynomials 

f(t), g(0 of degrees n,m, respectively, we see that the value of A can be computed 
by evaluating R in the coefficients (with some signs) of these polynomials. Thus the 
resultant is a polynomial in their coefficients, vanishing when the two polynomials 
have a conmion root. 

There is a more general classical expression for the resultant as a determinant, 
and we drop the condition that the polynomials be monic. The theory is the following. 

Let fit) := aot"" + ait""-^ + • • • +fl„, git) := V ' " +^1^"""^ + • • • + /?m and let 
us denote by Ph the h + 1-dimensional space of all polynomials of degree < h. 

Consider the linear transformation: 

Tf,g : Pm-\ e Pn-\ -^ Pm+n-\ giveu by Tf^gia, b) := fa + gb. 

This is a transformation between two n + m-dimensional spaces and, in the bases 
(1, 0), (^ 0 ) , . . . , (r^-^ 0), (0, 1), (0, r ) , . . . , (0, r"-i) and 1, tj^,..., r"+^-^ it is 
quite easy to write down its square matrix Rfg'. 

(an 0 0 . . . 0 bm 0 . . . 0 0 0 \ 

(2.2.1) 

an-\ 0 0 h 

Cln-2 

a\ 

ao 

an-i 

ai 

ax 

an 

«3 

ai 

'm-l 

^m-2 ^m-1 

flO Cl\ 

bo 

0 

0 

bx 

bo 

0 

b2 

b. 

bo 

0 : 

0 0 

0 0 

^0 

V 0 0 0 . . . flo 0 0 0 V 

Proposition. Ifaobo ^ 0, the rank ofTfg equals m -\- n — d where d is the degree 
ofh:=GCDif,g)^. 

Proof By Euclid's algorithm the image of Tf^g consists of all polynomials of degree 
< n -{- m — \ and multiples of h. Its kernel consists of pairs isg', —sf) where 
/ = /^/^ g = hg'. The claim follows. 

' GCD(/, g) is the greatest common divisor of f, g. 
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As a corollary we have that the determinant /?(/, g) of R/g vanishes exactly 
when the two polynomials have a common root. This gives us a second definition of 
resultant. 

Definition. The polynomial R(f, g) is called the resultant of the two polynomials 
f(t).g(t). 

If we consider the coefficients of / and g as variables, we can still think of 
Tf^g as a map of vector spaces, except that the base field is the field of rational 
functions in the given variables. Then we can solve the equation fa-\-gb = 1 
by Cramer's rule and we see that the coefficients of the polynomials a,b SLYQ given 
by the cofactors of the first row of the matrix Rfg divided by the resultant. In par­
ticular, we can write R = Af{t) + Bg(t) where A, B are polynomials in t of de­
grees m — 1, « — 1, respectively, and with coefficients polynomials in the variables 
(ao.au ..,,an,bo,bi, ...,bm). 

This can also be understood as follows. In the matrix Rfg we add to the first row 
the second multiplied by t, the third multiplied by r^, and so on. We see that the first 
row becomes (/(r), / ( 0 ^ fit)t\ . . . , f(t)t^-\g{t), g{t)t, g{t)t\ . . . , g{t)t--'). 
Under these operations of course the determinant does not change. Then developing 
it along the first row we get the desired identity. 

We have given two different definitions of resultant, which we need to compare: 

Exercise. Consider the two polynomials as a^ nL i ( ^ ~ -^z)' ^o 07=1 ^̂  ~ yj^ ^^^ 
thus, in R, substitute the element (—l)'floe/(jci,..., x„) for the variables at and the 
element {—\ybQei(y\, . . . , j;„) for bi. The polynomial we obtain is a^b^Aix, y). 

2.3 Discriminant 

In the special case when we take g{t) — f\t), the derivative of / ( r ) , we have that 
the vanishing of the resultant is equivalent to the existence of multiple roots. We have 
already seen that the vanishing of the discriminant implies the existence of multiple 
roots. It is now easy to connect the two approaches. 

The resultant R(f, f) is considered as a polynomial in the variables (ao,a\,..., 
an). If we substitute in R{f, f) the element (—l)'ao^/(^i. • •., ^n) for the variables 
ai we have a polynomial in the x with coefficients involving «o that vanishes when­
ever two x's coincide. 

Thus /?(/, f) is divisible by the discriminant D of these variables. A degree 
computation shows in fact that it is a constant (with respect to the x) multiple cD. 
The constant c can be evaluated easily, for instance specializing to the polynomial 
jc" — 1. This polynomial has as roots the n^^ roots e^^^^^^, 0 < k < n of \. The 
Newton functions 

"iA 2JUHK fo if / z / « 

7̂ 5 \n II h\n\ 

hence the Bezoutiant is —{—nY and the computation of the resultant is n", so the 
constant is (—1)"~^ 
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3 Schur Functions 

3.1 Alternating Functions 

Along with symmetric functions, it is also important to discuss alternating (or skew-
synmietric, or antisymmetric) functions. We restrict our considerations to integral 
polynomials. 

Definition. A polynomial / in the variables (jci, JC2,..., JC„) is called an alternating 
function if, for every permutation a of these variables, 

/ ^ = f{Xa{\), ^or(2), • • • , Xain)) = ^af(X\,X2, . • • , X„), 

€(j being the sign of the permutation. 

We have seen the Vandermonde determinant V(x) := ]"[/<;(-̂ z ~ -̂ y) ^̂  ^ ̂ ^^^^ 
alternating polynomial. The main remark on alternating functions is the following. 

Proposition 1. A polynomial f{x), in the variables x, is alternating if and only if it 
is of the form f(x) = V(x)g(x), with g(x) a symmetric polynomial 

Proof Substitute, in an alternating polynomial / , for a variable Xj a variable xt for 
/ ^ y. We get the same polynomial if we first exchange jc, and Xj in / . Since this 
changes the sign, it means that under this substitution / becomes 0. 

This means in turn that / is divisible by xt — Xj\ since /, j are arbitrary, / is 
divisible by V{x). Writing / = V{x)g, it is clear that g is symmetric. 

Let us be more formal. Let A, S denote the sets of antisymmetric and symmetric 
polynomials. We have seen that: 

Proposition 2. The space A of antisymmetric polynomials is a free rank 1 module 
over the ring S of symmetric polynomials generated by V{x) or A = V(x)S. 

In particular, any integral basis of A gives, dividing by V(x), an integral basis of 
S. In this way we will presently obtain the Schur functions. 

To understand the construction, let us make a fairly general discussion. In the ring 
of polynomials Z[;ci, JC2,..., JC„], let US consider the basis given by the monomials 
(which are permuted by 5„). 

Recall that the orbits of monomials are indexed by non-increasing sequences of 
nonnegative integers. To mi > m2 > m^- • > mn > 0 corresponds the orbit of the 
monomial xf ĵc^ ĵC3^ .̂-jc;;̂ ". 

Let / be an antisymmetric polynomial and (ij) a transposition. Applying this 
transposition to / changes the sign of / , while the transposition fixes all monomials 
in which jc/, Xj have the same exponent. 

It follows that all of the monomials which have nonzero coefficient in / must 
have distinct exponents. Given a sequence of exponents m\ > mi > m^ > - -- > 
mn >0 the coefficients of the monomial jcj"'JC^^JC^^ • • • JC^" and of A:̂ (\)X (̂2)-̂ a(3)'' * 
x̂ "̂̂ ) differ only by the sign of a. 

It follows that: 
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Theorem. The functions 

W - A - A J ^mi>m2>m3>->mn>0KX ) '.— 2_^ ^ ̂ -^ o {\)^ o {1) ' ' '-^(rin) 

oeSn 

are an integral basis of the space of antisymmetric polynomials. 

It is often useful when making computations with alternating functions to use a 
simple device. Consider the subspace SM spanned by the set of standard monomials 
x^^X2 ' " x^"" with k\ > ki > k^^- •' > kn and the linear map L from the space of 
polynomials to SM which is 0 on the nonstandard monomials and the identity on 
SM. Then L{Y,^^^^ ^^<a)-^a(2)''' ^o{n)) = X^'H'' • • • JC^% and thus L estaWishes 
a linear isomorphism between the space of alternating polynomials and SM which 
maps the basis of the theorem to the standard monomials. 

3.2 Schur Functions 

It is convenient to use the following conventions. Consider the sequence Q := (n — l, 
« - 2 , . . . , 2, 1, 0). We clearly have: 

Lemma. The map 

^ = (PU P2. P3,'-'.Pn)^ ^ + Q 

= (pi -\- n - I, p2 + n - 2, p3 -\- n - 3,..., pn) 

is a bijective correspondence between decreasing and strictly decreasing sequences. 

We thus indicate by A^^Q the corresponding antisymmetric function. We can express 
it also as a determinant of the matrix Mx having the element xp ""' in the /, j 
position. ̂ ^ 

Definition. The symmetric function S^ix) := AX+Q/V(X) is called the Schur func­
tion associated to k. 

When there is no ambiguity we will drop the symbol of the variables x and use Sx. 

We can identify X with a partition, with at most n parts, of the integer J2 Pi ^^^ write 

Thus we have (with the notations of Chapter 1, 1.1) the following: 

Theorem 1. The functions Sx, with X \- m and ht{X) < n, are an integral basis of 
the part of degree m of the ring of symmetric functions in n variables. 

Notice that the Vandermonde determinant is the alternating function AQ and 

^0 = 1. 

' It is conventional to drop the numbers equal to 0 in a decreasing sequence. 
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Several interesting combinatorial facts are associated to these functions; we will 
see some of them in the next section. The main significance of the Schur functions is 
in the representation theory of the linear group, as we will see later in Chapter 9. 

If a is a positive integer let us denote by a the partition (a,a,a,... ,a). If k = 
iP\, P2, P3, • •., Pn) is a partition from 3.1.1, it follows that 

(3.2.1) Ax+Q+a = U l -^2 • "XnfAx+g, Sx+a = Ul -^2 ' " XnT S),. 

We let n be the number of variables and want to understand given a Schur func­
tion Sx(xi, . . . , Xn) the form of 5A(XI , . . . , Xn-\, 0) as symmetric function inn — I 
variables. 

Let X := hi > h2 >•"> hn > 0. We have seen that, if /z„ > 0, then 
S),(xi, ...,Xn) = YYI=iXiSiixu .. .,x„) where! := hi-l >h2-l > • •• >hn-l. 
In this case, clearly S),(xi,..., JC„_I, 0) = 0. 

Assume now /z„ = 0 and denote the sequence /zi > h2 > - • - > hn-\ by the same 
symbol A. Let us start from the Vandermonde determinant V(xi , . . . , x„_i, x„) = 
Y[i<j<n^^i ~ ^j) ^^^ ^ t̂ jc„ = 0 to obtain 

n-\ n-\ 

V(xi, . . . ,x„_i ,0) = ]~[x/ Y[ te --^y) = ]~[x/V(xi,. . . ,x„_i). 
i=\ i<j<n—\ i=l 

Now consider the alternating function A^+^Ui,. . . , x„_i, x„). 
Set li := hi -\-n — i so that €„ = 0 and 

aeSn 

A^ ' ' ' Afi 

Setting jc„ = 0 we get the sum restricted only to the terms for which G{n) = n or 

,/a(\) ^Ja(n-

Now li = hi +n — i = (hi + 1) + (« — 1) — /, and so in (n — 1) variables, 

AX+Q{XU ...,Xn-uO) = A),+g+iiXu . . . , Xn-\) = J ^ X / A ^ C ^ i , . . . , X „ _ i ) . 

/ = 1 

It follows that Sx(xi,..., JC„_I, 0) = S),{xu ..., x„_i). Thus we see that: 

Proposition. Under the evaluation of Xn at 0, the Schur function Sx vanishes when 
ht{X) = n. Otherwise it maps to the corresponding Schur function in (n — I) vari­
ables. 

One uses these remarks as follows. Consider a fixed degree n, and for any m let 
5^ be the space of symmetric functions of degree n inm variables. 

From the theory of Schur functions the space 5^ has as basis the functions 
Sx(xi,..., Xm) where X \- n has height < m. Under the evaluation Xm H^ 0, we 
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have a map S^^ -> S'^_^. We have proved that this map is an isomorphism as soon as 
m > n. 

We recover the lemma of Section 1.1 of this chapter and the consequence that 
all identities which we prove for symmetric functions in n variables of degree n are 
valid in any number of variables. 

Theorem 2. The formal ring of symmetric functions in infinitely many variables has 
as basis all Schur functions 5^. Restriction to symmetric functions in m variables 
sets to 0 all S), with height > m. 

When using partitions it is often more useful to describe a partition by specifying 
the number of parts with 1 element, the number of parts with 2 elements, and so on. 
Thus one writes a partition as 1 '̂ 2̂ ^ .. /«, 

Proposition. For the elementary symmetric functions we have 

(3.2.2) Ch = S\h. 

Proof According to our previous discussion we can set all the variables xt, i > h 
equal to 0. Then Ch reduces to Yli=\ ̂ t ^^ ^^^^ ^^ ^i^ ^ ^ ^ 3.2.1. • 

3.3 Duality 

Next we want to discuss the value of Sx(l/xi, 1/JC2, . . . , 1 An). 
We see that substituting xi with 1/jc/ in the matrix Mx (cf. §3.2) and multiplying 

the / ^ column by xp~^^~\ we obtain a matrix which equals, up to rearranging the 
rows, that of the partition X' := m\,m2,..., m'^ where mt + w^_/+i =m\. Thus, up 
to a sign, 

{X,X2 • . .X,)" '+"-U,+,(l/Xi, . . . , X/Xn) = A,^+,. 

For the Schur function we have to apply the procedure to both numerator and 
denominator so that the signs cancel, and we get Sx(l/xi, l /x2 , . . . , l/Xn) = 
(XlX2-"Xny' Sx'. 

If we use the diagram notation for partitions we easily visualize X' by inserting X 
in a rectangle of base m\ and then taking its complement. 

4 Cauchy Formulas 

4,1 Cauchy Formulas 

The formulas we want to discuss have important applications in representation the­
ory. For now, we wish to present them as purely combinatorial identities. 

n i _ v V ~ ^ ' 
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where the right-hand side is the sum over all partitions. 

( C 2 ) I I ^ - = > : S,(x), 

ifn = 2m is even. 
For all n, 

(C3) 

\<i<j<2m ' •/ keAec 

Here Aec, resp. A^r, indicates the set of diagrams with columns (resp. rows) of even 
length. 

(C4) 
/=1, j=\ X 

where A denotes the dual partition (Chapter 1, 1.1) obtained by exchanging rows and 
columns. 

We prove the first one and leave the others to Chapter 9 and 11, where they are 
interpreted as character formulas. We offer two proofs: 

First proof of CI. It can be deduced (in a way similar to the computation of the Van-
dermonde determinant) considering the determinant of thcnxn matrix: 

1 
A := (aij), witha/y = 

We first prove that we have 

(4.1.1) 
V(x)V(y) 

n 

1 -xtyj 

= det(A). 

Subtracting the first row from the i^^.i > 1, one has a new matrix (btj) where 

(Xi - xi)yj 

yj 
bxj = aij, and for / > 1, bij = = -

1 - xtyj 1 - xiyj (1 - Xiyj)(l - xiyj) 

Thus from the i^^ row, / > 1, one can extract from the determinant the factor xt — x\ 
and from the /̂*̂  column the factor -r-^—. 

Thus the given determinant is the product 71—̂ —̂r \X] ^ ,,' ^^\ with the determi-
^ ^ ( l -x iv i ) 1 lJ=2 (l-xi>',) 

nant 

(4.1.2) 

/ 1 
>̂1 

1 - X2yx 

y\ 

1 
yi 

1 - xiyi 

yi 

1 .. 1 1 \ 
yn 

1 - xiyn 

yn j 

\ l - x „ j i \-Xnyi 1 -Xnynl 
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Subtracting the first column from the i^^ we get the terms 71—^\pr r- Thus, after 

extracting the product Y[l=2 ( f e o ' ^^ ^^ ^̂ ^̂  ^^^^ ^̂ ^ determinant of the same 
type of matrix but without the vanables x\,y\. The claim follows by induction. 

Now we can develop the determinant of A by developing each element ^ — 
\-Xiyj 

Ylh=o ^fyp ^^ ^^ matrix form, each row (resp. column) as a sum of infinitely many 
rows (or columns). 

By multilinearity in the rows, the determinant is a sum of determinants of 
matrices: 

00 00 

^ • • • ^ det(A^,,^,,...,^J, Ak,,k2,...,kn '= ((Xiyjfl-
ki=0 kn=0 

Clearly det(Aki,k2,...,kn) = Yli -̂ f' ^^Uyf')- This is zero if the kt are not distinct; oth­
erwise we reorder the sequence ki to be decreasing. At the same time we must intro­
duce a sign. Collecting all of the terms in which the kt are a permutation of a given 
sequence A + p, we get the term A),^g{x)Ax^g{y). Finally, 

From this the required identity follows. • 

SecondproofofCl. Change the matrix to ^ ^ using the fact that 

v(x;\... ,x;i)=(-n^') (̂̂ 1' '̂'̂̂  
and develop the determinant as the sum of fractions TTT—^ r • Writing it as a rational 

function fi^^y)^ ^^ ĝ ^ immediately that f(x,y) is alternating in both x,y of 

total degree rp- — n. Hence /(JC, >') = cV{x)V(y) for some constant c, which will 
appear in the formula CI. Comparing in degree 0 we see that CI holds. • 

Let us remark that Cauchy formula CI also holds when m < n, since 
n L i n ; = i ^ ^ is obtained from nUU7=i J ^ by setting yj = 0, Vm < 7 < n. 

From Proposition 3.2 we get 

nor •Xiyj 
= Y^ S),(xu...,Xn)Sx{yu...,ym)> 

i=\ j=\ ^ -^i-^J ),\-n,ht(X)<m 

Remark. The theory of symmetric functions is in fact a rather large chapter in math­
ematics with many applications to algebra, combinatorics, probability theory, etc. 
The reader is referred to the book of I.G. Macdonald [Mac] for a more extensive 
treatment. 
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5 The Conjugation Action 

5.1 Conjugation 

Here we study a representation closely connected to the theory of symmetric func­
tions. 

Let us consider the space M„ (C) ofnxn matrices over the field C of complex 
numbers. We view it as a representation of the group G := GL(n,C) of invertible 
matrices by conjugation: XAX~^; its orbits are thus the conjugacy classes of matri­
ces. 

Remark. The scalar matrices C* act trivially, hence we have a representation of the 
quotient group (the projective linear group): 

PGL(nX) :=GL(nX)/C\ 

Given a matrix A consider its characteristic polynomial: 

det(r - A) := J^ ( - l ) ' a , (A)r" -^ 

The coefficients a, (A) are polynomial functions on M„ (C) which are clearly conju­
gation invariant. Since the eigenvalues are the roots of the characteristic polynomial, 
at (A) is the i^^ elementary symmetric function computed in the eigenvalues of A. 

Recall that Sn can be viewed as a subgroup of GL(n,C) (the permutation ma­
trices). Consider the subspace D of diagonal matrices. Setting an = at we identify 
such a matrix with the vector ( a i , . . . , fl„). The following is clear. 

Lemma. D is stable under conjugation by Sn. The induced action is the standard 
permutation action (2.6). The function (7/(A), restricted to D, becomes the i^^ ele­
mentary symmetric function. 

We want to consider the conjugation action on M„(C), GL(n, C), SL(n, C) and 
compute the invariant functions. As functions we will take those which come from 
the algebraic structure of these sets (as affine varieties, cf. Chapter 7). Namely, on 
M„(C) we take the polynomial functions: On SL(n, C) the restriction of the polyno­
mial functions, and on GL{n, C) the regular functions, i.e., the quotients f/d'^ where 
/ is a polynomial on M„ (C) and d is the determinant function. 

Theorem. Any polynomial invariant for the conjugation action on Mn (C) is a poly­
nomial in the functions cr/(A), / = 1, . . . , n. 

Any invariant for the conjugation action on SL(n, C) is a polynomial in the 
functions or/(A), / = 1,.. . ,« — 1. 

Any invariant for the conjugation action on GL(n,C) is a polynomial in the 
functions a/(A), / = ! , . . . , « and in or„(A)~^ 
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Proof. We prove the first statement of the theorem. The proofs of the other two state­
ments are similar and we leave them to the reader. Let / ( A ) be such a polynomial. 
Restrict / to D. By the previous remark, it becomes a symmetric polynomial which 
can then be expressed as a polynomial in the elementary symmetric functions. Thus 
we can find a polynomial p{A) = p{o\ ( A ) , . . . , cr„ (A)) which coincides with / ( A ) 
upon restriction to D. Since both / ( A ) , p{A) are invariant under conjugation, they 
must coincide also on the set of all diagonalizable matrices. The statement follows 
therefore from: 

Exercise. The set of diagonalizable matrices is dense. 

Hint. 

(i) A matrix with distinct eigenvalues is diagonalizable, and these matrices are char­
acterized by the fact that the discriminant is nonzero on them. 

(ii) For every integer /c, the set of points in C^ where a (non-identically zero) poly­
nomial u{x) is nonzero is dense. (Take any point P and a PQ with g(Po) 7̂  0, on 
the line connecting P , PQ the polynomial g is not identically 0, etc.). • 

Remark. The map Mn{C) -^ C" given by the functions ai{A) is constant on or­
bits, but a fiber is not necessarily a conjugacy class. In fact when the characteristic 
polynomial has a multiple root, there are several types of Jordan canonical forms 
corresponding to the same eigenvalues. 

There is a second approach to the theorem which is also very interesting and 
leads to some generalizations. We omit the details. 

Proposition. For ann x n matrix A the following conditions are equivalent: 

(1) There is a vector v such that the n vectors A^v, i = 0, . . . , « — 1, are linearly 
independent. 

(2) The minimal polynomial of A equals its characteristic polynomial. 
(3) The conjugacy class of A has maximal dimension n^ — n. 
(4) A is conjugate to a companion matrix 

/ 0 0 0 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 0 

\ 0 0 0 

0 0 an 

0 0 arr-i 

0 0 an-2 

0 0 an-3 

1 0 (22 

0 1 fli 

0 0 1 

\ 

with characteristic polynomial t" + Yll=i ^i^^ '• 
(5) In a Jordan canonical form distinct blocks belong to different eigenvalues. 
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Proof. (1) and (4) are clearly equivalent, taking as the matrix conjugate to A the one 
of the same linear transformation in the basis A' u, / = 0 , . . . , n — 1. 

(2) and (5) are easily seen to be equivalent and also (5) and (1). 
We do not prove (3) since we have not yet developed enough geometry of orbits. 

One needs the theory of Chapter 4, 3.7 showing that the dimension of an orbit equals 
the dimension of the group minus the dimension of the stabilizer and then one has to 
compute the centralizer of a regular matrix and prove that it has dimension n. 

Definition. The matrices satisfying the previous conditions are called regular, and 
their set is the regular set or regular sheet. 

One can easily prove that the regular sheet is open dense, and it follows again that 
every invariant function is determined by the value it takes on the set of companion 
matrices; hence we have a new proof of the theorem on invariants for the conjugation 
representation. 

With this example we have given a glance at a set of algebro-geometric phenom­
ena which have been studied in depth by several authors. The representations for 
which the same type of ideas apply are particularly simple and interesting (cf. [DK]). 




