
Lie Algebras and Lie Groups 

Summary. In this chapter we will discuss topics on differential geometry. In the spirit of 
the book, the proofs will be restricted to the basic ideas. Our goal is twofold: to explain the 
meaning of polarization operators as part of Lie algebra theory and to introduce the basic facts 
of this theory. The theory of Lie algebras is presented extensively in various books, as well as 
the theory of Lie groups (cf. [Jl], [J2], [Ho], [Kn], [Sel], [Se2], [Bl], [B2], [B3], [Wa]). 

We assume that the reader is familiar with the basic definitions of differential geometry. 

1 Lie Algebras and Lie Groups 

1.1 Lie Algebras 

Polarization operators (Chapter 3, §2) are special types of derivations. Let us recall 
the general definitions. Given an associative algebra A, we define the Lie product 

[a, b] := ah — ba, 

and verify immediately that it satisfies the Lie axioms: 
[a,b] = —[b, a] (antisymmetry), and [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 

(Jacobi identity). 
Recall that a general algebra is a vector space with a bilinear product. 

Definition 1. An algebra with a product [a, b] satisfying the antisymmetry axiom 
and the Jacobi identity is called a Lie algebra, [a, b] is called a Lie bracket. 

Exercise. The algebra L, [ , ] with the new product {a, b] := [b, a] is also a Lie 
algebra isomorphic to L. 

The first class of Lie algebras to be considered are the algebras gl{U), the Lie 
algebra associated to the associative algebra End(L^) of linear operators on a vector 
space U. 

Given any algebra A (not necessarily associative), with product denoted ab, we 
define: 
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Definition 2. A derivation of A is a linear mapping D : A ^^ A, satisfying D(ab) = 
D(a)b + aD(b), for every a,b e A. 

The main remarks are: 

Proposition. 

(i) In a Lie algebra L the Jacobi identity expresses the fact that the map 

did{a) := b \-^ [a,b] 

is a derivation. ̂ ^ 
(ii) The derivations of any algebra A form a Lie subalgebra of the space of linear 

operators. 

Proof The proof is by direct verification. • 

In an associative algebra or a Lie algebra, the derivations given by b \-^ [a,b] 
are called inner. 

The reason why Lie algebras and derivations are important is that they express 
infinitesimal analogues of groups of symmetries, as explained in the following sec­
tions. The main geometric example is: 

Definition 3. A derivation X of the algebra C^iM) of C^ functions on a manifold 
M is called a vector field. We will denote by C(M) the Lie algebra of all vector fields 
on M. 

Our guiding principle is (cf. 1.4): 

£(M) is the infinitesimal form of the group of all diffeomorphisms ofM. 

The first formal property of vector fields is that they are local. This means that, 
given a function / G C^{M) and an open set U, the value of X{f) on U depends 
only on the value of / on [/. In other words: 

Lemma. If f = OonU, then also X(f) = 0 onU. 

Proof Lei p £ U and let V be a small neighborhood of p in U. We can find a C^ 
function w on M which is 1 outside of U and 0 on V. 

Hence f = uf and X(f) = X(u)f + uX(f) which is manifestly 0 at /?. n 

Recall that given an n-dimensional manifold M, a tangent vector f at a point 
/7 G M is a linear map v : C^{M) -> R satisfying v(fg) = v{f)g(p) + f(p)v(g). 
The tangent vectors in p are an AZ-dimensional vector space, denoted Tp(M), with 
basis the operators ^ if X \ , . . . , Xfi a r e local coordinates. 

The union of the tangent spaces forms the tangent bundle to M, itself a manifold. 
Finally, if F : M -> Â  is a C^ map of manifolds and p e M, we have the 

differential dFp : Tp(M) -> Tf(p)M which is implicitly defined by the formula 

^̂  ad stands for adjoint action. 
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(1.1.1) dFp{v){f):^v{foF). 

F G 

For a composition of maps M -^ N -> P WQ clearly have d(G o F) = dG odF (the 
chain rule). 

The previous property can be easily interpreted (cf. [He]) by saying that we can 
consider a derivation of the algebra of C^ functions as a section of the tangent 
bundle. In local coordinates JC/, we have X = XlLi /i(-^i' • • • ^^ri)j^.^^ linear dif­
ferential operator. 

Remark. Composing two linear differential operators gives a quadratic operator. The 
remarkable fact, which we have proved using the notion of derivation, is that the Lie 
bracket [X, Y] of two linear differential operators is still linear. The quadratic terms 
cancel. 

As for any type of algebraic structure we have the notion of Lie subalgebra A of 
a Lie algebra L: a subspace A c L closed under bracket. 

The homomorphism f : L\ ^^ L2 of Lie algebras, i.e., a linear map preserving 
the Lie product. 

Given a Lie algebra L and jc G L we have defined the linear operator ad(x) : 
L ^- L by ad(x)(j) := [x, y]. The operator ad(jc) is called the adjoint of x. 

As for the notion of ideal, which is the kernel of a homomorphism, the reader 
will easily verify this: 

Definition 4. An ideal / of L is a linear subspace stable under all of the operators 
ad(jc). 

The quotient L / / is naturally a Lie algebra and the usual homomorphism theo­
rems hold. Conversely, the kernel of a homomorphism is an ideal. 

1.2 Exponential Map 

The main step in passing from infinitesimal to global transformations is done by 
integrating a system of differential equations. Formally (but often concretely) this 
consists of taking the exponential of the linear differential operator. 

Consider the finite-dimensional vector space F" where F is either C or R (com­
plex or real field), with its standard Hilbert norm. Given a matrix A we define its 
norm: 

\A\ := max] — , u 7̂  o l , or equivalently \A\ = max{|A(u)|, l̂ l = 1}. 

Of course this extends to infinite-dimensional Hilbert spaces and bounded oper­
ators, i.e., linear operators A with sup|, |̂̂ i |A(i;)| := \A\ < 00. |A| is a norm in the 
sense that: 

(1) | A | > 0 , |A| =Oifandonlyif A = 0. 
(2) \otA\ = \a\\Al Va e F.'iA. 
(3) |A + 5 | < | A | + |B|. 
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With respect to the multipHcative structure, the following facts can be easily ver­
ified: 

Proposition 1. 

(i) Given two operators A, B we have \AB\ < \A\\B\. 

(ii) The series e := ^lk=o TT ^^ totally convergent in any bounded set of operators. 

(Hi) log(l + A) := X]^i(~l)^^^T ^^ totally convergent for |A| < 1 - €, for any 
1 > £ > 0. 

(iv) The functions e^, log A are inverse of each other in suitable neighborhoods ofO 
and I. 

Remark. For matrices (aij) we can also take the equivalent norm max(|a/y |). 

The following properties of the exponential map, A\-^ e^, are easily verified: 

Proposition 2. 

(i) If A, B are two commuting operators (i.e., AB = BA) we have e^e^ = e^^^ 
and also \og{AB) = log(A) + \og{B) if A, B are sufficiently close to 1. 

(ii) e'^e^ = 1. 
(iii)jf=Ae^\ 
(iv) Be^B-^ =e^^^~\ 

If A is an n x n matrix we also have: 
(v) If ai, a2,..., an are the eigenvalues of A, the eigenvalues ofe^ are e^^e^^,..., 

(vi) det(^^) = e^'^^\ 
(vii) e^' = (e^y. 

In particular the mapping t h^ ^̂ ^ is a homomorphism from the additive group of 
real (or complex) numbers to the multiplicative group of matrices (real or complex). 

Definition. The map t i-> e^^ is called the l-parameter subgroup generated by A. 
A is called its infinitesimal generator. 

Theorem. Given a vector VQ the function v(t) := e^^vo is the solution to the differ­
ential equation v\t) = Av{t) with initial condition v(0) = VQ. 

Proof. The proof follows immediately from (iii). D 

It is not restrictive to consider such l-parameter subgroups. In fact we have: 

Exercise. A continuous homomorphism (p : (R, +) -^ Gl(n, F) is of the form 
e^^ for a unique matrix A, the infinitesimal generator of the group cp. We also have 

^ — dt \t=0' 

Hint. Take the logarithm and prove that we obtain a linear map. D 
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1.3 Fixed Points, Linear Differential Operators 

Let us develop a few basic properties of 1-parameter groups. First: 

Proposition 1. A vector v is fixed under a group {e^^, t eW} if and only ifAv = 0. 

Proofi If Av = 0, then t'^A^v = 0 for A: > 0. Hence e^'^v = v. Conversely, if e^^v is 
constant, then its derivative is 0. But its derivative at 0 is in fact AT;. D 

Remark. Suppose that e^"^ leaves a subspace U stable. Then, if u e (7, we have that 
Av e U since this is the derivative of e^'^v at 0. Conversely, if A leaves U stable, it 
is clear from the definition that e^^ leaves U stable. Its action on U agrees with the 
1-parameter subgroup generated by the restriction of A. 

In dual bases ^/, e-' the vector x{t) of coordinate functions Xi(t) := (e\ e^^v) 
of the evolving vector satisfies the system of ordinary linear differential equations 
x(t) = A^xit)}^ Such a system, with the initial condition jc(0), has the global solu­
tion jc(r) ==e'^'jc(0). 

Let us now consider a function f(x) on an «-dimensional vector space. We 
can follow its evolution under a 1-parameter group and set (p(t)(f) := F(t, x) := 

We thus have a 1-parameter group of linear transformations on the space of func­
tions, induced from the action of (p{t) on this space. 

This is not a finite-dimensional space, and we cannot directly apply the results 
from the previous section 1.2. If we restrict to homogeneous polynomials, we are in 
the finite-dimensional case. Thus for this group we have (p(t)(f) = e^^^ f, where 
DA is the operator 

dF{t,x) 
DAH) = — ^ . 

dt t=o 

We have 
dF(t,x) _^df{e-'^x)dxi(t) 

dt ~ ^ dXi dt 

and, since ^^ = — AJC(0, at r = 0 we have 

dxiit) 
= -Y^aijXj. 

Hence 

dt ,=0 .^, 

dFit,x) _ _ " " 3 / 

Thus we have found that DA is the differential operator: 

16 / f{t) is the time derivative. 
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(1.3.1) '0'^-=-EE«o^.^-
( = 1 7 = 1 ' 

We deduce that the formula (p{t)(f) = e'^" / is just the Taylor series: 

^ (?D^)* ^ '* 

In order to better understand the operators DA , let us compute 

7 = 1 

We see that on the Hnear space with basis the functions jCj, this is just the Hnear 
operator given by the matrix — A^ 

Since a derivation is determined by its action on the variables xt we have: 

Proposition 2. The differential operators DA are a Lie algebra and 

(1.3.2) [DA.DB] = D^A,BV 

Proof. This is true on the space spanned by the xi since [—A^ —B^] = —[A, BY. D 

Example. 5/(2, C). We want to study the case of polynomials in two variables x,y. 
The Lie algebra of 2 x 2 matrices decomposes as the direct sum of the 1-

dimensional algebra generated byD = Xj^-{-yf- and the 3-dimensional algebra 
5/(2, C) with basis 

d d d d 
H = —X h y —, E = —y —, F = —x —. 

dx dy dx dy 

These operators correspond to the matrices 

-1 0 \ / I 0 \ /O A /O 0\ 

0 -ly' [o - i j ' [o o;' \i o)' 
We can see how these operators act on the space P„ of homogeneous polynomials 
of degree n. This is an n + 1-dimensional space spanned by the monomials w/ := 
(—iyy"~^x\on which D acts by multiplication by «. We have 

(L3.3) Hui = (n — 2i)ui, Fui = {n — /)w/+i , Eut = /w/_i. 

The reader who has seen these operators before will recognize the standard irre­
ducible representations of the Lie algebra sl(2, C) (cf. Chapter 10, LI). 

The action of 5/(2, C) on the polynomials ^ . at (-1) ' j"" ' JC ' € Pn extends to an 
action on the functions p{aQ, a\,.... an) of iht coordinates «/. We have that 

E = -y\{i + l )« /+i—, F = -Y{n - i + l)a,_i — , 
^-^ aai ^-^ oat 

(L3.4) H = -y\{n-2i)a~ 
^-^ dai 

are the induced differential operators. We will return to this point later. 
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1.4 One-Parameter Groups 

Of course these ideas have a more general range of validity. For instance, the main 
facts about the exponential and the logarithm are sufficiently general to hold for any 
Banach algebra, i.e., an algebra with a norm under which it is complete. Thus one 
can also apply these results to bounded operators on a Hilbert space. 

The linearity of the transformations A is not essential. If we consider a C ^ dif-
ferentiable manifold M, we can discuss dynamical systems (in this case also called 
flows) in 2 ways. 

Definition 1. A C^ flow on a manifold M, or a 1-parameter group of diffeomor-
phisms, is a C^ map: 

0(r,jc) : R x M - > M 

which defines an additive group action of R on M. 

This can also be thought of as a C^ family of diffeomorphisms: 

(ps '- M -> M, (l>s(m) := 0(^, m), 0o = 1M, (ps+t = (ps o (pt-

To a flow is associated a vector field X, called the infinitesimal generator of the flow. 
The vector field X associated to a flow (p{t,x) can be defined at each point p 

as follows. Let us start from a fixed p. Denote by (pp{t) := (p(t, p). This is now a 
map from R to M which represents the evolution of p with time. In this notation the 
group property is (p(f,p{s)(t) = (pp(s + 0- Denote the differential of (pp at a point s, by 
d(pp(s). Let 

Xp := d(Pp(0)(^^y i.e., Xp(f) = j^fiHt. p))t=o, V/ G C^(M). 

Definition 2. The vector field X which, given a function / on M, produces 

(1.4.1) Xpif) = X(f)(p) := ^f(cP(t, p)\=o, 
at 

is the inflnitesimal generator of the flow (p(t). 

Given a point p, the map t \-^ (pp{t) = 0 (^ p) describes a curve in M which is 
the evolution of p, i.e., the orbit under the flow. Xp is the velocity of this evolution 
of p, which by the property (p((,p(s)it) = (pp{s -\-1) depends only on the position and 
not on the time: 

X<P(s,p) = d(pcf>(s,p){0)\^—j = d(ppis)(^—y 

A linear operator T on a vector space V induces two linear flows in V and V*. 
Identifying V with its tangent space at each point, the vector field XA associated to 
the linear flow at a point i; is Tv, while the generator of the action on functions is 
—r'. In dual bases, if A denotes the matrix of T, the vector field is thus (cf. 1.3.2 ): 
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n n o 

(1.4.2) -XA = DA = - Y^H'^'i^iV =^ f̂ '*' ^"^ = ^f«-^]-
1 1 OXj 

1=1 J=\ ' 

A vector field ^ - fi(x\,... ,Xn)-^ gives rise, at least locally, to a flow which 
one obtains by solving the linear system of ordinary differential equations 

dxiit) , . 
- ^ = / ; (x i (0 , . . . , x„ (0 ) . 

Thus one has local solutions ip(t){x) — F(t,x), depending on the parameters x, with 
initial conditions F(0,x) = x. For a given point x^ such a solution exists, for small 
values of n n a neighborhood of a given point x^. 

We claim that the property of a local 1-parameter group is a consequence of the 
uniqueness of solutions of ordinary differential equations. In fact we have that for 
given t, letting 5 be a new parameter, 

dxiit -\- s) , . 
-^^^^=fi{xdt-^s)....,Xnit+s)). 

Remark. A point is fixed under the flow if and only if the vector field vanishes on it. 

For the vector field XA = —D^, the flow is the 1-parameter group of linear oper­
ators e^^. We can in fact, at least locally, linearize every flow by looking at its induced 
action on functions. By the general principle of (Chapter 1, 2.5.1) the evolution of a 
function / is given by the formula 0(r) /(x) = / ( 0 ( - r ) x ) = f(F(-t, x)). When 
we fix X, we are in fact restricting to an orbit. We can now develop (j){t)f{x) in Tay­
lor series. By definition, the derivative with respect to r at a point of the orbit is the 
same as the derivative with respect to the vector given by X, hence the Taylor series 

is0(o/w-E^"o(-o'f/w-
In this sense the flow 0 (0 becomes a linear flow on the space of functions, with 

infinitesimal generator -X. We have -Xf = ^ ^ ( 0 ) , and 0 (0 = e''^. ^̂  
Of course in order to make the equality (f)(t)f(x) = YlT=o ^^^~^/(-^) ^̂ ^̂ ^ ^̂ ^ 

all jc, ̂  we need some hypotheses, such as the fact that the flow exists globally, and 
also that the functions under consideration are analytic. 

The special case of linear flows has the characteristic that one can find global 
coordinates on the manifold so that the evolution of these coordinates is given by a 
Hnear group of transformations of the finite-dimensional vector space, spanned by 
the coordinates! 

In general of course the evolution of coordinates develops nonlinear terms. We 
will use a simple criterion for Lie groups, which ensures that a flow exists globally. 

Lemma 1. Suppose there is an € > 0, independent of p, so that the flow exists for 
all p and all t < e. Then the flow exists globally for all values oft. 

^̂  If we want to be consistent with the definition of action induced on functions by an action 
of a group on a set, we must define the evolution of f by f{t,x) := /(F(—r, x)), so the 
flow on functions is e~^^. 
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Proof. We have for small values of t the diffeomorphisms 0 (0 which, ioxt.s suffi­
ciently small, satisfy (t){s -\-1) = (l){s)(j){t). Given any t we consider a large integer 
Â  and set </)(r) := cpit/N)^. The previous property implies that this definition is 
independent of N and defines the flow globally. D 

We have already seen that the group of diffeomorphisms of a manifold (as well 
as subgroups, as for instance a flow) acts linearly as algebra automorphisms on the 
algebra of C^ functions, by (gf)(x) = f(g~^x). We can go one step further and 
deduce a linear action on the space of linear operators T on functions. The formula 
is g o T o g~^ or gTg~^. In particular we may apply this to vector fields. Recall that: 

(i) A vector field on M is just a derivation of the algebra of functions C^{M). 
(ii) Given a derivation D and an automorphism g of an algebra A, gDg~Ms a deriva­

tion. 

We see that given a diffeomorphism g, the induced action on operators maps 
vector fields to vector fields. 

We can compute at each point g o X o g"^ by computing on functions, and see 
that: 

Lemma 2. 

(/) At each point p = gq we have (gXg~^)p = dgq(Xq). 
(ii) Take a vector field X generating a \-parameter group (px(0 cind a diffeo­

morphism g. Then, the vector field gXg~^ generates the l-parameter group 
g(t>x{t)g-\ 

(Hi) The map X \-^ gXg~^ is a homomorphism of the Lie algebra structure. 

Proof. 

(i) dg,iX,)if) = X,(f o g) = Xifigx))iq) 

(1.4.3) = Xig-'f)(q) = g{X(g-'f))ip). 

(ii) Let us compute j^ f(g(l)(t)g~^ p). The curve (l)(t)g~^ p = 0(r)<3'has tangent vec­
tor Xg ait = 0. The curve g(t>{t)g~^ p has tangent vector dgq{Xq) = {gXg~^)p 
at r = 0. 

(iii) The last claim is obvious. D 

The main result regarding evolution of vector fields is: 

Theorem. Let X and Y be vector fields, (t){t) the l-parameter group generated by 
X. Consider the time-dependent vector field 

Y{t) := <P(t)Y<t>(t)-\ Y(t) = d4>(t)^^,r^p(Y^^,r^p). 

Then Yit) satisfies the differential equation ^^jp- = [Y{t), X\ 
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Proof. Thanks to the group property, it is enough to check the equality at r = 0. Let 
/ be a function and let us compute the Taylor series of 7 ( 0 / . We have 

(L4.4) Y{t)f = (t>{t)Y(t>{tr'f = (t>{t)[Yf + tYXf + 0{h] 

= Yf^ tYXf + 0{t^) - tX[Yf + tYXf + 0(^2)] + 0{t^) 

= y / + r [ F , Z ] / + 0(/2). 

In general by 0{t^) we mean a function h{t) which is infinitesimal of order r ,̂ i.e., 
hm -̂̂ o t^~^h(t) = 0. From this the statement follows. D 

In different terminology, consider d(p(t)'7^j.Y(f,(^t)p' The derivative of this field at 
t = Ois [X, Y] and it is called the Lie derivative. In other words [X, Y]p measures 
the infinitesimal evolution of Yp on the orbit of p under the time evolution of 0(0-

Corollary 1. The l-parameter groups of diffeomorphisms generated by two vector 
fields X, Y commute if and only if[X, Y] = 0. 

Proof Clearly Y(t) = (t)x{t)Y(pxit)'^ is the generator oi (l)x{t)(t)Y{s)(t>xit)'^ (in 
the parameter s). If the two groups commute, Y{t) is constant so its derivative [7, X] 
is 0. Conversely, if 7 (0 is constant, then the two groups commute. D 

Remark. If X and 7 are commuting vector fields and a, b two numbers, aX + bY is 
the infinitesimal generator of the flow (t)x{cit)(j>Y{bt). 

There is an important special case to notice, when /? is a fixed point of (/>x(0- In 
this case, although p is fixed, the tangent vectors at p are not necessarily fixed, but 
move according to the linear l-parameter group d(t)x(t)p' Thus the previous formulas 
imply the following. 

Corollary 2. Let X be a vector field vanishing at p, and 7 any vector field. Then the 
value [7, X]p depends only on Yp. The linear map Yp -^ [7, X^p is the infinitesimal 
generator of the l-parameter group d(j)x{t)p on the tangent space at p. 

1.5 Derivations and Automorphisms 

Let us go back to derivations and automorphisms. 
Consider an algebra A and a linear operator D on A. Assume that there are suf­

ficient convergence properties to ensure the existence of e^^ as a convergent power 
series: ̂ ^ 

Proposition. D is a derivation if and only ife^^ is a group of automorphisms. 

18 as for Banach algebras 
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Proof. This is again a variation of the fact that a vector v is fixed under e^^ if and 
only if Dv = 0. In fact to say that e^^ are automorphisms means that 

V«, be A, e'^iab) - e'^{a)e'^{b) = 0. 

Writing in power series and taking the coefficient of the hnear term we get 

D(ab) ~ D(a)b - aD{b) = 0, 

the condition for a derivation. 
Conversely,,given a derivation, we see by easy induction that for any positive 

integer k. 

D\ab) = J2 (^) D^-\a)D\b). 

Hence 

00 .knk 

cx) k 

Our heuristic idea is that, for a differentiable manifold M, its group of diffeomor-
phisms should be the group of automorphisms of the algebra of C^ functions. Our 
task is then to translate this idea into rigorous finite-dimensional statements. 

2 Lie Groups 

2.1 Lie Groups 

As we have already mentioned, it is quite interesting to analyze group actions subject 
to special structural requirements. 

The structure of each group G is described by two basic maps: the multiplication 
m : G X G -^ G, m(a, b) := ab and the inverse i : G ^^ G, i(g) := g~^. If G has 
an extra geometric structure we require the compatibility of these maps with it. Thus 
we say that: 

Definition. A group G is a: (1) topological group, (2) Lie group, (3) complex ana­
lytic group, (4) algebraic group, (5) affine group, 

if G is also a (1) topological space, (2) differentiable manifold, (3) complex analytic 
manifold, (4) algebraic variety, (5) affine variety, 

and if the two maps m, / are compatible with the given structure, i.e., are continuous, 
differentiable, complex analytic or regular algebraic. 
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When speaking of Lie groups we have not discussed the precise differentiabiUty 
hypotheses. A general theorem (solution of Hilbert's 5̂ ^ problem (cf. [MZ], [Kap])) 
ensures that a topological group which is locally homeomorphic to Euclidean space 
can be naturally given a real analytic structure. So Lie groups are in fact real analytic 
manifolds. 

The group GL(n, C) is an affine algebraic group (cf. Chapter 7), acting on C" 
by linear and hence algebraic transformations. A group G is called a linear group if 
it can be embedded in GL(n, C) (of course one should more generally consider as 
linear groups the subgroups of GL{n, F) for an arbitrary field F). 

For an action of G on a set X we can also have the same type of analysis: contin­
uous action of a topological group on a topological space, differentiable actions of 
Lie groups on manifolds, etc. We shall meet many very interesting examples of these 
actions in the course of our treatment. 

Before we concentrate on Lie groups, let us collect a few simple general facts 
about topological groups, and actions (cf. [Ho], [Bl]). For our discussion, "con­
nected" will always mean "arc-wise connected." Let G be a topological group. 

Proposition. 

(1) Two actions ofG coinciding on a set of generators ofG are equal. ̂ ^ 
(2) An open subgroup of a topological group is also closed. 
(3) A connected group is generated by the elements of any given nonempty open set. 
(4) A normal discrete subgroup Zofa connected group is in the center 
(5) A topological group G is discrete if and only if 1 is an isolated point. 
(6) Let f : H ^^ G be a continuous homomorphism of topological groups. Assume 

G connected and there is a neighborhood Uofle H for which f(U) is open 
and f : U —> f(U) is a homeomorphism. Then f is a covering space. 

Proof. 

(1) is obvious. 
(2) Let H be an open subgroup. G is the disjoint union of all its left cosets gH 

which are then open sets. This means that the complement of H is also open, 
hence H is closed. 

(3) Let f/ be a nonempty open set of a group G and H be the subgroup that it 
generates. If/z G / / we have that also hU is in H. Hence H is an open subgroup, 
and by the previous step, it is also closed. Since G is connected and H nonempty, 
we have H = G. 

(4) Let X e Z. Consider the continuous map g \-^ gzg~^ from G to Z. Since G is 
connected and Z discrete, this map is constant and thus equal to z = lz l~^ 

(5) is clear. 
(6) By hypothesis and (5), A := f~^l is a discrete group. We have f~^f(U) — 

UheA^h. The covering property is proved for a neighborhood of 1. From 3) it 
follows that / is surjective. Then for any g e G, g = f(b) we have 

^̂  For topological groups and continuous actions, we can take topological generators, i.e., 
elements which generate a dense subgroup. 
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f-'fibU) = UheAbUh. D 

There is a converse to point 6) which is quite important. We can apply the theory 
of covering spaces to a connected, locally connected and locally simply connected 
topological group G. Let G be the universal covering space of G, with covering map 
7t : G ^^ G. Let us first define a transformation group G on G: 

G := {r I r : G -> G, continuous \3g eG with 7r(r(x)) = gTt{x)}. 

The theory of covering spaces implies immediately: 

Theorem. G is a group which acts in a simply transitive way on G. 

Proof. It is clear that G is a group. Given two points x,y e G there is a unique 
g e G with g7t(x) = 7t(y), and therefore a unique lift T of the multiplication by g, 
with T(x) = y. D 

Therefore, given x € G, we can identify G with G. One easily verifies that: 

Corollary. With this identification G becomes a simply connected topological group. 
If7t{x) = 1, the mapping n is a homomorphism. 

3 Correspondence between Lie Algebras and Lie Groups 

We review here the basics of Lie theory referring to standard books for a more 
leisurely discussion. 

3.1 Basic Structure Theory 

In this section the general theory of vector fields and associated 1-parameter groups 
will be applied to Lie groups. Given a Lie group G, we will associate to it a Lie 
algebra g and an exponential map exp : g ^^ G. The Lie algebra g can be de­
fined as the Lie algebra of left-invariant vector fields on G, under the usual bracket 
of vector fields. The exponential map is obtained by integrating these vector fields, 
proving that, in this case, the associated 1-parameter groups are global.^^ A homo­
morphism 0 : Gi -^ G2 of Lie groups induces a homomorphism J 0 : 0i ^- 02 
of the associated Lie algebras. In particular, this applies to linear representations of 
G which induce linear representations of the Lie algebra. Conversely, a homomor­
phism of Lie algebras integrates to a homomorphism of Lie groups, provided that Gi 
is simply connected. 

Before we enter into the details let us make a fundamental definition: 

Definition 1. A 1-parameter subgroup of a topological group G is a continuous ho­
momorphism 0 : R ^- G, i.e., 0(5 + 0 = 0('^)0(O-

^̂  This can also be interpreted in terms of geodesies of Riemannian geometry, for a left-
invariant metric. 



72 4 Lie Algebras and Lie Groups 

Remark. For a Lie group we will assume that 0 is C^, although one can easily see 
that this is a consequence of continuity. 

Let G be a Lie group. Consider left and right actions, Lg(h) := gh, Rg(h) := 
hg-\ 

Lemma. If a transformation T : G -^ G commutes with the left action, then T — 
RT{\)-\. 

Proof We have Tig) = T(Lg{l)) = Lg(T(l)) = gT(l) = Rrny^ig). D 

Definition 2. We say that a vector field X is left-invariant if LgoXoL~^ = X, Vg e 
G. 

Proposition 1. 

(1) A left-invariant vector field X := Xa is uniquely determined by the value 
X(l) := a. Then its value at g e G is given by the formula 

(3.L1) Xaig) = LgXaL-\g) - dLgiXaiD) = dLgia). 

(2) A tangent vector a G Ti(G) is the velocity vector of a uniquely determined 
I-parameter group t \-^ 0a (0- The corresponding left-invariant vector field 
Xa is the infinitesimal generator of the 1 -parameter group of right translations 
HAOig) := gMt). 

Proof 

(1) S.Llisa special case of formula 1.4.3. 
(2) By Lemma L4 a left-invariant vector field is the infinitesimal generator of a 1-

parameter group of diffeomorphisms commuting with left translations. By the 
previous lemma these diffeomorphisms must be right translations which are de­
fined globally. 

Given a tangent vector a at 1, the corresponding vector field Xa and the 1-
parameter group of diffeomorphisms 4>a(0 •= 4>Xai^)^ consider the curve 0^(0 := 
^a{t){\). We thus have ^a{t){g) = gcpait) and also 0«a + ^) = (pXait + s)(l) = 
(l>Xa(0<t>Xa(^)(^) = (l>a{s)^a{t) is a 1-parameter subgroup of G. • 

Remark. The 1-parameter group 0^(0 with velocity a is also called the exponential, 
denoted 0^(0 = e^"" = exp(ra). The map exp : Ti{G) -^ G, exp(fl) := e"" is called 
the exponential map. 

The differential of exp at 0 is the identity, so exp(ri (G)) contains a neighborhood 
of L Therefore, if G is connected, we deduce that G is generated by exp(ri (G)). 

Since applying a diffeomorphism to a vector field preserves the Lie bracket we 
have: 

Theorem 1. The left-invariant vector fields form a Lie subalgebra of the Lie algebra 
of vector fields on G, called the Lie algebra ofG and denoted by LQ. Evaluation at 
1 establishes a linear isomorphism ofLc with the tangent space T\{G). 
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In view of the linear isomorphism LQ = T\ (G), it is usual to endow T\ (G) with 
the Lie algebra structure given implicitly by X[a,b] '-= [^a, ^b]-

We could have started from right-invariant vector fields Z^ for which the ex­
pression is Zaig) = dRg-\(a). It is easy to compare the two approaches from the 
following: 

Remark 1. Consider the diffeomorphism / : jc i-> jc~^. We have iLgi~^ = Rg, so / 
transforms right into left-invariant vector fields. 

We claim that the differential at 1 is di{a) = —a. In fact, for the differential of 
the multiplication map m \ G x G ^^ G VJQ must have dm : (a,b) \-^ a + b, since 
composing with the two inclusions, i\ : g \-^ (g, 1), h • g i-^ (U^) gives the 
identity on G. Then m(g, i(g)) = m{i{g), g) = 1 implies that di(a) + a = 0. 

In summary, we have two Lie algebra structures on T\(G) induced by right and 
left-invariant vector fields. The map a \-^ —a is an isomorphism of the two struc­
tures. In other words, [Z^, Z^] = Z[b,a]' 

The reason to choose left-invariant rather than right-invariant vector fields in the 
definition of the Lie algebra is the following: 

Proposition. When G = GL{n,R) is the linear group of invertible matrices, its 
tangent space at 1 can be identified with the space of all matrices M„(R). If we 
describe the Lie algebra ofGL(n,R) as left-invariant vector fields, we get the usual 
Lie algebra structure [A, B] = AB — BA on M„(R).^^ 

Proof A matrix A (in the tangent space) generates the 1-parameter group of right 
translations X \-^ e^^, whose infinitesimal generator is the linear vector field associ­
ated to the map RA : X \-^ XA. We have 

[RB, RA](X) = (RBRA - RARB)X 

= XAB-XBA = R[A,B]m^ ie, [RB, RA] = R[A,BV 

From 1.4.3, if XA is the linear vector field associated to RA we finally have 
[XA, XB] = X[A,B], as required. • 

Remark 2. From 1.4 it follows that if [a,b] = 0, then exp(a) exp(^) = exp(fl -|- b). 
In general the Lie bracket is a second-order correction to this equality. 

Since right translations commute with left translations, they must map LQ into 
itself. We have thus a linear action of G on the Lie algebra, called the adjoint action, 
given by 

(3.1.2) Ad{g)Xa := R, o Xa o R-K 

Explicitly, since Ad{g)Xa € LG,"^^ have Ad(g)Xa = XAd(g)(a) for some unique 
element M{g){a). From formulas 1.4.3 and 3.1.1 we have 

21 With right-invariant vector fields, we would gtiSA — AB. 



74 4 Lie Algebras and Lie Groups 

Ad{g)ia) = dR,(Xa(R;\m = dR,(Xaig)) 

(3.L3) = dRg(dLg(a)) = d(Rg o Lg)(a). 

The diffeomorphism Rg o Lg is just x \-^ gxg~\ i.e., it is conjugation by g. 

For an element ^ G G let us denote by Cg : x \-^ 8xg~^ the conjugation action. 
Cg is an automorphism and Cg oCh = Cgh. Of course Cg(l) = 1, hence Cg induces 
a Unear map dCg : Ti (G) -> Ti (G). The map g h-> dCg is a linear representation of 
G on LG = T\(G). We have just proved: 

Proposition 2. Ŵ  /î v̂̂  

(3. L4) Ad(g) = dCg, differential of the adjoint map. 

(3.L5) ge^'g-^ = ^Ad(g)(a)̂  Vg G G, fl G L^. 

/̂ roc|/̂  We have proved the first formula. As for the second we have the composi­

tion ge'^'g-^ : R - ^ G - ^ G so M{g){a) = dCg{a) = dige'^'g'^) (^) is the 

infinitesimal generator of the 1-parameter group ge^^g~^. D 

At this point we can make explicit the Lie algebra structure on Ti(G). 
Let a,b e Ti(G) and consider the two left-invariant vector fields Xa, X^ so 

that X[a,b] '-= [^a, Xb] by definition. By Theorem 1.4 we have that [X«, X/,] is the 
derivative at 0 of the variable vector field 

At the point 1 this takes the value 

dR^^^.t){(t>a{t))Xb{(t>a{t)) = dR^^^^r){(l>a{t))dL^Mb = dC^^^t)(b) = AdicPaimb). 

We deduce: 

Theorem 2. Given a e T\ (G), the linear map ad(a) : b \-^ [a,b] is the infinitesimal 
generator of the \-parameter group Ad^cj) ait)) : LG -^ LG-

(3.1.6) AcKe") = e""*"*, e'e'e"- = e^"'''^^"^ = ê """'**', Va, b e LG-

It may be useful to remark how one computes the differential of the multiplication 
m at a pair of points go, ho e G. Recall that we have identified Tg^iG) with L 
via the linear map dLg^ : L = T\{G) -^ Tg^{G). Therefore given two elements 
dLg^ia), dLh^ib), a,b e L, computing dmg^^hM^gM)^ dLh^ib)) is equivalent to 
computing df\^\{a, b) where / : (x, y) \-^ goxhoy. Moreover we want to find the 
c e L such that dfnia, b) = dLg^hoic), and c = dhuia, b) where h : (x, y) \-^ 
(goho)~^goxhoy = Ad(hQ^)ix)y; thus we get 

(3.L7) c = Ad(h-^)(a)-^b. 
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3.2 Logarithmic Coordinates 

We have seen that Lie algebras are an infinitesimal version of Lie groups. In order to 
understand this correspondence, we need to be able to do some local computations 
in a Lie group G with Lie algebra L in a neighborhood of 1. 

Lemma 1. The differential at 0 of the map a h^ exp(«) is the identity. Therefore exp 
is a local diffeomorphism between L and G. 

We can thus use the coordinates given by exp((2) which we call logarithmic co­
ordinates. Fixing an arbitrary Euclidean norm on L, they will be valid for \a\ < R 
for some R. In these coordinates, if |«| , A^|fl| < R and Â  is an integer, we have that 
exp(Aa) = exp(a)^. Moreover, (introducing a small parameter t) the multiplication 
in these coordinates has the form m(rfl, tb) = ta-^tb-\-t^R{t,a, b) where R(t,a,b) 
is bounded around 0. An essential remark is: 

Lemma 2. Given two l-parameter groups exp{ta), exp(tb) we have 

lim [exp I —a ] exp I —b | ] ^ = Qxp(t(a + b)). 

N->oo \N ) \N ) 
Proof If t is very small we can apply the formulas in logarithmic coordinates and 
see that the coordinates of [exp (^a) exp {j^b)Y are ta^bM^jN R{t, a/N, b/N). 
Since R(t,a/N,b/N) is bounded, limAr̂ oo^̂ ^ + tb -\- t^/N R(t,a/N,b/N) = 
t(a -\-b) as required. One reduces immediately to the case where t is small. n 

We shall use the previous lemma to show that a closed subgroup / / of a Lie group 
G is a Lie subgroup, i.e., it is also a differentiable submanifold. Moreover we will 
see that the Lie algebra of H is given by restricting to H the left-invariant vector 
fields in G which are tangent to / / at 1. In other words, the Lie algebra of H is the 
subspace of tangent vectors to G at 1 which are tangent to / / as a Lie subalgebra. 

Theorem 1. Let G be a Lie group and H a closed subgroup. Then H is a Lie sub­
group ofG. Its Lie algebra is LH := [a € LQW^ e H, Wt e E}. 

Proof. First we need to see that L// is a Lie subalgebra. We use the previous lemma. 
Clearly LH is stable under multiplication by scalars. If a,b e LH, we have 

that limAf^oo[exp ( ^ a ) exp {j^b)]^ = Qxp{t(a -\- b)) e H since H is closed; hence 
a -^ b e L//. To see that it is closed under Lie bracket we use Theorem L4 and the 
fact that e'^'e'^e-'^ eHifa,be LH- Thus, we have that Ad(e''')(b) e LH, Vr. 
Finally [a,b] e LH since it is the derivative at 0 of Ad(^^^)(Z7). 

Now consider any linear complement A to L// in L G and the map \j/ : LG = 
A ^ LH -> G, \l/(a,b) := e^e^. The differential at 0 is the identity map so ij/ 
is a local homeomorphism. We claim that in a small neighborhood of 0, we have 
if(a,b) € H if and only if a = 0 ; of course e^e^ = ^{a,b) e H if and only 
if ^" G H. Otherwise, fix an arbitrary Euclidean norm in A. There is an infinite 
sequence of nonzero elements fl/ e A tending to 0 and with ^ '̂ G / / . B y compactness 



76 4 Lie Algebras and Lie Groups 

we can extract from this sequence a subsequence for which «//|fl/1 has as its limit a 
unit vector a G A. We claim that a e LH, which is a contradiction. In fact, compute 
Qxp(ta) = lim/_^oo exp(ra//|^/|). Let m, be the integral part of t/\ai\. Clearly since 
the at tend to 0 we have exp(ta) = lim/_>ooexp(rfl//|tz/|) = lim/_^ooexp(m/a/) = 
lim/_>ooexp(a/)'"' € H. 

Logarithmic coordinates thus show that the subgroup / / is a submanifold in a 
neighborhood L̂  of L By the group property this is true around any other element as 
well. Given any h e H we have that H HhU = h(H (lU) is a. submanifold in hU. 
Thus / / is a submanifold of G. The fact that L// is its Lie algebra follows from the 
definition of L//. D 

In the correspondence between Lie groups and Lie algebras we have: 

Theorem 2. 

(i) A homomorphism p : G\ -> Gi of Lie groups induces a homomorphism dp of 
the corresponding Lie algebras, 

(ii) The kernel of dp is the Lie algebra of the kernel of p. The map dp is injective if 
and only if the kernel of p is discrete. 

(Hi) IfGi is connected^ dp is surjective if and only if p is surjective. The map dp is 
an isomorphism if and only if p is a covering. 

Proof 

(i) Given a e L^, we know that ad(fl) is the generator of the 1-parameter group 
Ad((pa(t)) acting on the tangent space at L Under p we have that p((j)a(t)) = 
(t>dp{a){t) and poCg = Cp(g) o p. Thus dp o Ad(g) = dpo dCg — dCp(^g) odp = 
Ad(pig))odp. 

We deduce (ipoAd(0«(O) = Ad{p{(j)a{t)))odp = Ad((pdp(a)(t))odp.T3\dng 
derivatives we have dp o ad(a) = ad(^p(fl)) o dp and the formula follows. 

(ii) Now, dp(a) = 0 if and only if p(e^^) = 1 Vr. This means that a is in the Lie 
algebra of the kernel K, by Theorem L To say that this Lie algebra is 0 means 
that the group K is discrete. 

(iii) If dp is surjective, by the implicit function theorem, the image of p contains 
a neighborhood f/ of 1 in G2. Hence also the subgroup H generated by U. 
Since G2 is connected, H = G2. If dp {a) is an isomorphism, p is also a local 
isomorphism. The kernel is thus a discrete subgroup and the map p is a covering 
by (6) of Proposition 2. L D 

Exercise. If G is a connected Lie group, then its universal cover is also a Lie group. 

The simplest example is SU{2, C), which is a double covering of the 3-dimen-
sional special orthogonal group 50(3, E), providing the first example of spin (cf. 
Chapter 5, §6). Nevertheless, one can establish a bijective correspondence between 
Lie algebras and Lie groups by restricting to simply connected groups. This is the 
topic of the next two sections. 
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3.3 Frobenius Theorem 

There are several steps in the correspondence. We begin by recalling the relevant 
theory. First, we fix some standard notation. 

Definition 1. A C^ map i : N -^ M of differentiable manifolds is an immersion if 
it is injective and, for each x e N, the differential dix is also injective. 

Definition 2. An n-dimensional distribution on a manifold M is a function that to 
each point p e M assigns an n-dimensional subspace Pp C Tp(M), 

The distribution is smooth if, for every p e M, there is a neighborhood Up and 
n-linearly independent smooth vector fields X, on Up, such that Xi{p) is a basis of 
Pp.^peUp. 

An integral manifold for the distribution is an immersion 7 : Â  ^- M of an 
w-dimensional manifold Â , so that for every x e N WQ have dj^iT^N) = Pj^x)- In 
other words, Â  is a submanifold for which the tangent space at each point x is the 
prescribed space P;̂ -

It is quite clear that in general there are no integral manifolds. Formally, finding 
integral manifolds means solving a system of partial differential equations, and as 
usual there is a compatibility condition. This condition is easy to understand geo­
metrically since the following is an easy exercise. 

Exercise. Given an immersion j : N -> M and two vector fields X and F on M 
tangent to Â , then [X, Y] is also tangent to Â . 

This remark suggests the following: 

Definition 3. A smooth distribution on M is said to be involutive if, given any point 
p m M and a basis X i , . . . , X„ of vector fields in a neighborhood U of p for the 
distribution, there exist C ^ functions fj^j on U, with [X/, Xj] = X!it flj^k-

The prime and only example which will concern us is the distribution induced on 
a Lie group G by a Lie subalgebra H. In this case a basis of H gives a global basis of 
vector fields for the distribution. It is clear that the distribution is involutive (in fact 
the functions f^- are the multiplication constants of the Lie bracket). 

If F i , . . . , y„ is a basis of a distribution and fij (JC) is an invertible n x « matrix 
of functions, then Z, = ^- fjj Yj is again a basis. The property of being involutive 
is independent of a choice of the basis since [Z/,, Zk] = Yls,t^fs,hft,k[^s, ^t] + 

fs,hysift,k)yt — ft,kyt(fs,h)Ys)' 
Proposition. Given an involutive distribution and a point p e M, there exists a 
neighborhood U of p and vector fields X i , . . . , X„ m L̂  such that. 

(1) The vector fields Xi,..., Xn are a basis of the distribution in U. 
(2) [Xi,Xj] = 0. 
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Proof. Start in some coordinates x i , . . . , jc^ with some basis 7/ = J^j ^jJ (^) al" • 
Since the 7/ are Unearly independent, a maximal n xn minor of the matrix (ajj) 

is invertible (in a possibly smaller neighborhood). Changing basis using the inverse 
of this minor, which we may assume to be the first, we reduce to the case in which 
aij(x) = (5/, V/, j < n. Thus the new basis is Xi = ~ -\- Yl^=n+\ ^hjM^. The 
Lie bracket [Xi, Xj] is a linear combination of the derivatives ^ , h > AI. On the 
other hand the assumption of being involutive means that this commutator is some 
linear combination [X/, Xj] = Yll=i ftj^k = Yll=\ f^'ir^ "̂  other terms. Since 
the coefficients of ^^,k <nm [Z/, Xj] equal 0, we deduce that all fj^j = 0. Hence 
[Xi,Xj] = 0. ' ' ' D 

Theorem (Frobenius). Given an involutive distribution and p e M, there exists 
a neighborhood of p and a system of local coordinates (jci,..., jc^), such that the 
distribution has as basis ^ , / = I,... ,n. So it is formed by the tangent spaces 
to the level manifolds Xi = ai,i = n + I,.. .m (at constants). These are integral 
manifolds for the distribution. 

Proof. First we use the previous proposition to choose a basis of commuting vector 
fields Xi for the distribution. Integrating the vector fields Xi in a neighborhood of 
p gives rise to n commuting local 1-parameter groups 0/(^/). Choose a system of 
coordinates y, around p so that the coordinates of p are 0 and j - equals Xi at /?, / = 
! , . . . , « . Consider the map of a local neighborhood of 0 in R" x M^~" given by n : 
( x i , . . . , ) := 0l(Xi)02fe) • . . (pn(Xn)(0, 0, . . . , 0, X„+i, . . . , Xm). It 

is clear that the differential die at 0 is the identity matrix, so TC is locally a diffeomor-
phism. Further, since the groups 0/ (jc/) commute, acting on the source space by the 
translations Xi i-> x/ + Si corresponds under n to the action by (piisi): 

(3.3.1) 7t : (Xu . . . , X / -i-Si, ...,Xn,Xn+U . . . , - ^ m ) 

= 0/(^/)0l(-^l)02(-^2) • ..(t>n(Xn)(Xn+U • • • ,-^m)-

Thus, in the coordinates x\,..., Xn, Xn-\-\,..., x^, we have Z/ = 3^. The rest fol­
lows. D 

The special coordinate charts in which the integral manifolds are the subman-
ifolds in which the last m — n coordinates are fixed will be called adapted to the 
distribution. 

By the construction of integral manifolds, it is clear that an integral manifold 
through a point p is (at least locally) uniquely determined and spanned by the evolu­
tion of the 1-parameter groups generated by the vector fields defining the distribution. 
It follows that if we have two integral manifolds A, B and /? is a point in their in­
tersection, then an entire neighborhood of p in A is also a neighborhood of p in B. 
This allows us to construct maximal integral manifolds as follows. Let us define a 
new topology on M. If L̂  is an open set with an adapted chart we redefine the topol­
ogy on U by separating all the level manifolds; in other words, we declare all level 
manifolds open, leaving in each level manifold its induced topology. The previous 
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remarks show that if we take two adapted charts U\,U2, then the new topology on 
Ui induces on U\ fi U2 the same topology as the new topology induced by U2-

Call a maximal integral manifold a connected component M^ of M under the 
new topology. It is clear that such a component is covered by coordinate charts, the 
coordinate changes are C^, and the inclusion map M^ ^- M is an immersion. The 
only unclear point is the existence of a countable set dense in M^. For a topological 
group we can use: 

Lemma. Let G be a connected topological group such that there is a neighborhood 
U of I with a countable dense set. Then G has a countable dense set. 

Proof. We may assume U = U~^ and X dense in U and countable. Since a topolog­
ical group is generated by a neighborhood of the identity, we have G = U^j(7^. 

Then Y := U^^X^ is dense and countable. D 

In the case of a Lie group and a Lie subalgebra M the maximal integral manifold 
through 1 of the distribution satisfies the previous lemma. 

In the general case it is still true that maximal integral manifolds satisfy the count-
ability axioms. We leave this as an exercise. Hint: If A is a level manifold in a given 
adapted chart U and U' is a second adapted chart, prove that AHU' is contained in 
a countable number of level manifolds for U\ Then cover M with countably many 
adapted charts. 

Theorem 2. The maximal integral manifold H through 1 is a subgroup of G. The 
other maximal integral manifolds are the left cosets of H in G. With the natural 
topology and local charts H is a Lie group of Lie algebra M. The inclusion map is 
an immersion. 

Proof. Given g e G, consider the diffeomorphism x \-^ gx. Since the vector fields 
of the Lie algebra M are left-invariant this diffeomorphism preserves the distribution, 
hence it permutes the maximal integral manifolds. Thus it is sufficient to prove that 
/ / is a subgroup. If we take g e H,wc have gl = g, hence H is sent to itself. Thus 
H is closed under multiplication. Applying now the diffeomorphism x \-^ g~^x, we 
see that 1 e g~^H, hence g~^H = H andg"^ = g~^^l e H. n 

As we already remarked, H need not be closed. Nevertheless, H is clearly a 
subgroup. Thus we find the following easy criterion for H to be closed. 

Criterion. If there is a neighborhood A of I, and a closed set X D H such that 
XnA = HHA, then H =11. 

Proof Both H and ll are connected and H C X. Thus A nH = A H H.By 2.1, 
Proposition (2), a connected group is generated by any open neighborhood of the 
identity, hence the claim. n 
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3.4 Simply Connected Groups 

A given connected Lie group G has a unique universal covering space which is a 
simply connected Lie group with the same Lie algebra. 

The main existence theorem is: 

Theorem. 

(i) For every Lie algebra g, there exists a unique simply connected Lie group G such 
that g = Lie(G). 

(ii) Given a morphism / : 9i ^^ 92 of Lie algebras there exists a unique morphism 
of the associated simply connected Lie groups ̂  0 : Gi —> G2 which induces / , 
i.e., f = d(t>i. 

Proof, (i) We will base this result on Ado's theorem (Chapter 5, §7), stating that a 
finite-dimensional Lie algebra L can be embedded in matrices. If L c gl(n,R), then 
by Theorem 2, 3.3 we can find a Lie group H with Lie algebra L and an immersion 
toGL(n,R). 

Its universal cover is the required simply connected group. Uniqueness follows 
from the next part applied to the identity map. 

(ii) Given a homomorphism / : 0i ^^ 02 of Lie algebras, its graph F/ := 
{(a, f{a)) I a G 0i} is a Lie subalgebra of gi 0 02- Let Gi, G2 be simply connected 
groups with Lie algebras 0i, 02- By the previous theorem we can find a Lie subgroup 
H of Gi X G2 with Lie algebra F/. The projection to Gi induces a Lie homomor­
phism TT : / / -> Gi which is the identity at the level of Lie algebras. Hence TT is a 
covering. Since Gi is simply connected we have that n is an isomorphism. The in­
verse of :7r composed with the second projection to G2 induces a Lie homomorphism 
whose differential at 1 is the given / . n 

One should make some remarks regarding the previous theorem. First, the fact 
that / : 01 -^ 02 is an injective map does not imply that Gi is a subgroup of G2. 
Second, if Gi is not simply connected, the map clearly may not exist. 

When M c L is a Lie subalgebra, we have found, by the method of Frobenius, a 
Lie group G\ of Lie algebra M mapped isomorphically to the subgroup of G2 gen­
erated by the elements exp(M). In general G\ is not closed in G2 and its closure can 
be a much bigger subgroup. The classical example is when we take the 1-parameter 
group t h> (e^'^^^,..., e^^"^) inside the torus of n-tuples of complex numbers of ab­
solute value 1. It is a well-known observation of Kronecker (and not difficult) that 
when the numbers r, are linearly independent over the rational numbers the image of 
this group is dense.^^ The following is therefore of interest: 

Proposition. If M C L is an ideal of the Lie algebra L of a group G, then the 
subgroup G\ C G generated by exp(M) is normal, and closed, with Lie algebra M. 

22 This is a very important example, basic in ergodic theory. 
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Proof. It is enough to prove the proposition when G is simply connected (by a simple 
argument on coverings). Consider the homomorphism L -^ L/M which induces a 
homomorphism from G to the Lie group K of Lie algebra L/M. Its kernel is a closed 
subgroup with Lie algebra M, hence the connected component of 1 must coincide 
withGi. D 

Corollary. In a connected Lie group G we have a I-I correspondence between 
closed connected normal subgroups ofG and ideals of its Lie algebra L. 

Proof One direction is the previous proposition. Let /f be a closed connected nor­
mal subgroup of G and let M be its Lie algebra. For every element a e L WQ have 
that cxp(ta)K exp(—/a) G K. From 3.1, it follows that ad(fl)M c M, hence M is 
an ideal. D 

These theorems lay the foundations of Lie theory. They have taken some time to 
prove. In fact, Lie's original approach was mostly infinitesimal, and only the devel­
opment of topology has allowed us to understand the picture in a more global way. 

After having these foundational results (which are quite nontrivial), one can set 
up a parallel development of the theory of groups and algebras and introduce basic 
structural notions such as solvable, nilpotent, and semisimple for both cases and 
show how they correspond. 

The proofs are not always simple, and sometimes it is simpler to prove a state­
ment for the group or sometimes for the algebra. For Lie algebras the methods are 
essentially algebraic, while for groups, more geometric ideas may play a role. 

Exercise. Show that the set of Lie groups with a prescribed Lie algebra is in corre­
spondence with the discrete subgroups of the center of the unique simply connected 
group. Analyze some examples. 

3.5 Actions on Manifolds 

Let us now analyze group actions on manifolds. If G acts on a manifold M by p : 
G X M -^ M, and 0a (0 is a 1-parameter subgroup of G, we have the 1-parameter 
group of diffeomorphisms (t)a{t)m — pi(l)ait), m), given by the action. We call Ya its 
infinitesimal generator. Its value in m is the velocity of the curve (t>a(t)fn at r = 0, or 
dpi^rn{a,0). 

Theorem 1. The map a \-^ —Ya from the Lie algebra L of G to the Lie algebra of 
vector fields on M is a Lie algebra homomorphism. 

Proof Apply Theorem 1.4. Given a,b e L, the 1-parameter group (in the param­
eter s) (l)a(t)(t)b(s)(t>a(—t)m (depending on t) is generated by a variable vector field 
Yh(t) which satisfies the differential equation Yb(t) = [F^(r), Ya], Yb(0) = Yt. 
Now (t)a{t)(t>b{s)(t)a{-t) = (l>Ad{<Pa{tmb)(s), SO [F^, Ya] is the derivative at f = 0 
of YAdiMOXb)' This, in any point m, is computed by j^dpi^rni^d((l)ait)){b), 0)t=o, 
which equals dpi^rnil^^ b], 0). Thus [Yb, Ya] = Y[a,bh hence the claim. D 
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Conversely, let us give a homomorphism a i-> Z^ of the Lie algebra LQ into 
C{M), the vector fields on M. We can then consider a copy of LG as vector fields 
on G X M by adding the vector field Xa on G to the vector field Z^ on M. In this 
way we have a copy of the Lie algebra LQ, and at each point the vectors are linearly 
independent. We have thus an integrable distribution and can consider a maximal 
integral manifold. 

Exercise. Use the Frobenius theorem to understand, at least locally, how this distri­
bution gives rise to an action of G on M. 

Let us also understand an orbit map. Given a point /? € M let Gp be its stabilizer. 

Theorem 2. The Lie algebra L{Gp) of Gp is the set of vectors v e L for which 
YAP) = O. 

G/Gp has the structure of a differentiable manifold, so that the orbit map i : 
G/Gp -^ M, i(gGp) := gp is an immersion. 

Proof V e L(Gp) if and only if exp(n;) e Gp, which means that the 1-parameter 
group exp(tv) fixes p. This happens if and only if Yy vanishes at p. 

Let M be a complementary space to L{Gp) in L. The map j : M ^ L(Gp) -^ 
G, j(a, b) := exp(a) exp(Z7) is a local diffeomorphism from some neighborhood 
A X 5 of 0 to a neighborhood f/ of 1 in G. Followed by the orbit map we have 
exp(fl) exp(b)p = Qxp(a)p and the map a \-^ exp{a)p is an immersion. This gives 
the structure of a differentiable manifold to the orbit locally around p. At the other 
points, we translate the chart by elements of G. D 

We want to apply the previous analysis to invariant theory. 

Corollary. IfG is connected, acting on M, a function f is invariant under G if and 
only if it satisfies the differential equations Yaf = Ofor alia e LQ. 

Proof Since G is connected, it is generated by its 1-parameter subgroups exp(ta), 
a e LG' Hence / is fixed under G if and only if it is fixed under these 1-parameter 
groups. Now / is constant under Qxp{ta) if and only if Yaf = 0. D 

For instance, for the invariants of binary forms, the differential equations are the 
ones obtained using the operators 1.3.4. 

3.6 Polarizations 

We go back to polarizations. Let us consider, as in Chapter 3, 2.3, m-tuples of vector 
variables xi, X2,. . . , JC^, each Xi being a column vector x\i,X2i,..., x„/. In other 
words we consider the xij as the coordinates of the space Mn,m ofnxm matrices. 

Let A = F[xij] {F = M, C) be the polynomial ring in the variables xtj, which 
we also think of as polynomials in the vector variables xt given by the columns. We 
want to consider some special 1-parameter subgroups on Mn,m (induced by left or 
right multiplications). 

For any m x m matrix A we consider the 1-parameter group X -^ Xe~^^. 
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In particular for the elementary matrix ejj, i ^ j (with 1 in the ij position and 
0 elsewhere), we have e^^- = 0, e~^^^j = 1 — teij and the matrix Xe~^^'j is obtained 
from X adding to its / ^ column its i^^ column multiplied by — ̂  

For en we have that Xe~^^'' is obtained from X multiplying its i^^ column by e~^. 
We act dually on the functions in A and the 1 -parameter group acts substituting Xj 
with Xj + tXi, i ^ j , resp. jc, with e^Xf. By the previous sections and Chapter 3, 
Theorem 2.1 we see: 

Proposition. The infinitesimal generator of the transformation of functions induced 
by X -^ Xe~^^'j is the polarization operator Dij. 

We should summarize these ideas. The group GL{m, F) (resp. GL(n, F)) acts 
on the space ofnxm matrices by the rule (A, X) i-> XA~^ (resp. (B, X) i-> BX). 

The infinitesimal action is then X \-^ —XA := rA(X) (resp. X \-> BX). 
If we denote this operator by r^, we have [r^, rs] = f[A,B]' In other words, the 

map A h-̂  r^ is a Lie algebra homomorphism associated to the given action. 
The derivation operators induced on polynomials (by the right multiplication ac­

tion) are the linear span of the polarization operators which correspond to elementary 
matrices. 

We state the next theorem for complex numbers although this is not really neces­
sary. 

Recall that an « x m matrix X can be viewed either as the list of its column 
vectors x\,... ,Xfn or of its row vectors which we will call x^ x^ , . . . , x". 

Theorem. A space of functions / ( j c i , . . . , x^) = fiX) in m vector variables, is 
stable under polarization if and only if it is stable under the action of GL(m,C) 
given, for A = (aji) e GL(m, C), by 

f\X) = f{XA), /^xi,...,x,):=/(X]«yi^7'E^^-2^^---E^^-"^^) 

f^{x\ . . . , x") := / ( x U , Jc^A,..., jc" A). 

Proof GL(m,C)is connected, so it is generated by the elements e^^. A subspace of 
a representation of GL(m, C) is stable under e^^, if and only if it is stable under A. 
In our case the infinitesimal generators are the polarizations Dij. u 

3.7 Homogeneous Spaces 

We want to discuss a complementary idea, which is important in itself, but for us it 
is useful in order to understand which groups are simply connected. Let us explain 
with an example: 
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Example. The simplest noncommutative example of a simply connected Lie group 
is SL(n, C) (SL(n, M) is not simply connected). 

One way to compute 7ti(G) and hence check that a Lie group G is simply con­
nected is to work by induction, using the long exact sequence of homotopy for a 
fibration H -> G -^ G/H where H is some closed subgroup. In algebraic topology 
there are rather general definitions of fibrations which are special maps f : X ^^ B 
of spaces with base point XQ e X,bo e B, f(xo) = bo and for which one considers 
tht fiber F := f~^(bo). One has the long exact sequence of homotopy groups (cf. 
[Sp]): 

. . . M F ) -^ miX) ^ m(B) ^ ...^jTdF) 

-> TT^iX) ^ ni(B) -^ 7To(F) -^ no(X) -^ 7to{B). 

In our case the situation is particularly simple. We will deal with a locally trivial 
fibration, a very special type of fibration for which the long exact sequence of homo­
topy holds. This means that we can cover B with open sets Ui and we can identify 
n~^(Ui) with Ui X F, so that under this identification, the map n becomes the first 
projection. 

Theorem. Given a Lie group G and a closed subgroup H, the coset space G/H 
naturally has the structure of a differentiate manifold (on which G acts in a C^ 
way). 

The orbit map g \-^ gH is a locally trivial fibration with fiber H. 

Once we have established this fact we can define: 

Definition. G/H with its C^ structure is called a homogeneous space. 

In other words, a homogeneous space M for a Lie group G is a manifold M with 
a C^ action of G which is transitive. 

The structure of a differentable manifold on G// / is quite canonical in the follow­
ing sense. Whenever we are given an action of G on a manifold M and H stabilizes 
a point /?, we have that the orbit map p : G -> M, p(g) = gp factors through a 
C^ map / : G/H -> M.lf H is the full stabilizer of /?, then / is an immersion of 
manifolds. Thus in practice, rather than describing G/H, we describe an action for 
which ^ is a stabilizer. 

Let us prove the previous statements. The proof is based on the existence of a 
tubular neighborhood of /f in G. Let / / C G be a closed subgroup, let A and B be 
the Lie algebras of H and G. Consider a linear complement C to A in 5 . Consider 
the map f : C x H -^ G given by / ( c , h) := exp(c)/z. The differential of / at (0, 1) 
is the identity. Hence, since the map is equivariant with respect to right multiplication 
by H, there is an open neighborhood L'̂  of 0 in C such that df is bijective at all points 
ofUxH. We want to see that: 

I\ibular neighborhood lemma. IfU is sufficiently small, we have that f : UxH^^ 
G is a diffeomorphism to an open subset containing H (a union ofcosets cxp(a)H, 
aG U). 
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Proof. Since df is bijective on L̂  x / / , it is sufficient to prove that we can choose U 
so that / is injective. 

Since / / is a closed submanifold, there are neighborhoods (/ of 0 in C and V of 
1 in /f so that the map i \ {a,b) \-^ exp(fl)^, f/ x V ^- G is a diffeomorphism to a 
neighborhood W of 1 and exp(a)Z7 € / / if and only xia =0. 

We can consider a smaller neighborhood A of 0 in C so that, if a\,a2 G A, 
we have exp(—a2)exp((2i) € W. We claim that A satisfies the property that the 
map / : A X / / -> G is injective. In fact if exp(ai)^i = exp(a2)^2 we have 
b := Z?2̂ J~̂  = exp(—a2)exp(ai) e W H H = V. Therefore i(a\, 1) = exp(fli) = 
exp(a2)^ = i(a2,b),b e V. Since the map / on A x V ^^ G is injective, this 
implies a\ = a2,b = L Therefore / (A x H) = exp(A)// is the required tubular 
neighborhood, and we identify it (using / ) to A x / / . n 

Thus A naturally parameterizes a set in G// / . We can now give G// / the struc­
ture of a differentiable manifold as follows. First we give G/H the quotient topol­
ogy induced by the map n : G -> G/H. By the previous construction the map 
7t restricted to the tubular neighborhood A x H can be identified with the projec­
tion (a,h) \-^ a. Its image in G/ / / is an open set isomorphic to A and will be 
identified with A. It remains to prove that the topology is Hausdorff and that one 
can cover G/H with charts gA translating A. Since G acts continuously on G/H, 
in order to verify the Hausdorff property it suffices to see that if g ^ / / , we can 
separate the two cosets gH and H by open neighborhoods. Clearly we can find a 
neighborhood Â  of 0 in A such that cxp{—A')g exp(AO O / / = 0. Thus we see that 
cxp(A')H n g exp(AO// = 0. The image of g exp(AO// is a neighborhood of gH 
which does not intersect the image of exp{A^)H. Next one easily verifies that the 
coordinate changes are C^ (and even analytic), giving a manifold structure to G/H. 
The explicit description given also shows easily that G acts in a C^ way and that n 
is a locally trivial fibration. We leave the details to the reader. 

Let us return to showing that SL{n,C) is simply connected. We start from 
5L(1, C) = {!}. In the case of SLin, C), n > 1 we have that SL(n, C) acts tran­
sitively on the nonzero vectors in C", which are homotopic to the sphere 5^"~\ so 
that 7ri(C" - {0}) = 7r2(C" - {0}) = 0 (cf. [Sp]). By the long exact sequence in 
homotopy for the fibration H -> SL(n, C) -> C" — {0}, where H is the stabiUzer 
of ei, we have that 7t\(SL{n, C)) = n\{H). H is the group of block matrices | J g | 
where a is an arbitrary vector and B e SL(n — 1, C). Thus H is homeomorphic to 
SL(n — 1, C) X C"~^ which is homotopic to SL(n — 1, C) and we finish by induction. 
Remark that the same proof shows also that SL(n, C) is connected. 

Remark. There is an important, almost immediate generalization of the fibration 
H -> G ^> G/H. If H c K c G avQ closed subgroups we have a locally triv­
ial fibration of homogeneous manifolds: 

(3.7.1) K/H -^ G/H -^ G/K. 



86 4 Lie Algebras and Lie Groups 

4 Basic Definitions 

4.1 Modules 

An important notion is that of module or representation. 

Definition 1. A module over a Lie algebra L consists of a vector space and a homo-
morphism (of Lie algebras) p : L -^ g^CV). 

As usual one can also give the definition of module by the axioms of an action. 
This is a bilinear map L x V ^^ V denoted by (a,v) h-> av, satisfying the Lie 
homomorphism condition [a,b]v = a(bv) — b(av). 

Remark. Another interpretation of the Jacobi identity is that L is an L-module under 
the action [a,b] = Sid(a)(b). 

Definition 2. The Lie homomorphism ad : L ^^ gl(L), x i-> ad(x) is called the 
adjoint representation. 

ad(x) is a derivation, and x \-> exp(r ad(jc)) is a 1-parameter group of automorphisms 
ofL(L6). 

Definition 3. The group of automorphisms of L generated by the elements 
exp(ad(jc)) is called the adjoint group, Ad(L), of L, and its action on L the adjoint 
action. 

If g is in the adjoint group, we indicate by Ad(g) the linear operator it induces on L. 

Remark. From §3.1, if L is the Lie algebra of a connected Lie group G, the adjoint 
action is induced as the differential at 1 of the conjugation action of G on itself. 

The kernel of the adjoint representation of L is 

(4.L1) Z(L) :={x eL\ [x, L] = 0}, thecenter of L. 

From 3.L2 the kernel of the adjoint representation of G is made of the elements 
which conmiute with the 1-parameter groups exp{ta). If G is connected, these groups 
generate G, hence the kernel of the adjoint representation is the center of G. 

As usual one can speak of homomorphisms of modules, or L-linear maps, of 
submodules and quotient modules, direct sums, and so on. 

Exercise. Given two L-modules, M, N, we have an L-module structure on the vec­
tor space hom(M, Â ) of all linear maps, given by (af)(m) := a(f(m)) — f(am). A 
linear map / is L-linear if and only if Lf = 0. 
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4.2 Abelian Groups and Algebras 

The basic structural definitions for Lie algebras are similar to those given for groups. 
If A, B are two subspaces of a Lie algebra, [A, B] denotes the linear span of the 

elements [a,b], a e A, b e B, called the commutator of A and B. 

Definition. A Lie algebra L is abelian if [L, L] = 0. 

The first remark of this comparison is the: 

Proposition. A connected Lie group is abelian if and only if its Lie algebra is 
abelian. In this case the map exp : L -^ G is a surjective homomorphism with 
discrete kernel. 

Proof From Corollary 1 of 1.4, G is abelian if and only if L is abelian. From Re­
mark 2 of §3.1, then exp is a homomorphism. From point (3) of the Proposition in 
§2.1, exp is surjective. Finally, Lemma 1 and Theorem 2 of §3.2 imply that the kernel 
is a discrete subgroup. n 

As a consequence we have the description of abelian Lie groups. We have the 
two basic abelian Lie groups: R, the additive group of real numbers, and S^ = 
U(l,C) = E/Z, the multiplicative group of complex numbers of absolute value 1. 
This group is compact. 

Theorem. A connected abelian Lie group G is isomorphic to a product M̂  x (5^)^. 

Proof By the previous proposition G = R"/A where A is a discrete subgroup of 
M^. Thus it suffices to show that there is a basis Ci of E" and anh <n such that A is 
the set of integral linear combinations of the first h vectors et. This is easily proved 
by induction. If n = 1 the argument is quite simple. If A / 0, since A is a discrete 
subgroup of E, there is a minimum a e A, a > O.lf x e A write x = ma + r where 
m G Z, \r\ < a. We see that ±r e A which implies r = 0 and A = Za. Taking a 
as basis element, A = Z. 

In general take a vector ^i € A such that e\ generates the subgroup A fi E^i. 
We claim that the image of A in E"/E^i is still discrete. If we can prove this we 
find the required basis by induction. Otherwise we can find a sequence of elements 
fl/ G A, at ^ Ze\ whose images in E"/E^i tend to 0. Completing ei to a basis 
we write at = X/̂ i + bt where the bi are linear combinations of the remaining 
basis elements. By hypothesis bi 7̂  0, Hm/_̂ oo bi = 0. We can modify each at by 
subtracting an integral multiple of ei so to assume that |A/| < 1. By compactness 
we can extract from this sequence another one, converging to some vector Xe\. Since 
the group is discrete, this means that a, = kei for large / and this contradicts the 
hypothesis bt 7̂  0. D 

A compact connected abelian group is isomorphic to (S^)^ and is called a com­
pact h-dimensional torus. 
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4.3 Nilpotent and Solvable Algebras 

Definition 1. Let L be a Lie algebra. The derived series is defined inductively: 

L<'> = L, . . . ,L< '+": - [L" ' ,L< '>] . 

The lower central series is defined inductively: 

L^ = L , . . . , L ' + ^ : = [ L , L ' ] . 

A Lie algebra is solvable (resp. nilpotent) if L '̂̂  = 0 (resp. V = 0) for some /. 

Clearly L '̂̂  C V so nilpotent implies solvable. The opposite is not true as we 
see by the following: 

Basic example. Let J5„ resp. Un be the algebra of upper triangular n x n matrices 
over a field F (i.e., aij = 0 if / > y), resp. of strictly upper triangular « x « matrices 
(i.e.,a/,^ =Oif/ > j). 

These are two subalgebras for the ordinary product of matrices, hence also Lie 
subalgebras. Prove that 5̂ "> = 0 , ^^ = ^„, V/ > 1, f/„" = 0. 

Bn is solvable but not nilpotent; Un is nilpotent. 

Remark. To say that L' = 0 means that for all ^i, ^2, • • •, ^/ ^ ^ we have that 
[fli, [a2, [... , A/]]]] = 0. With different notation this means that the operator 

(4.3.2) ad(ai)ad((32)...ad(a/_i) = 0, "iax.ai,... ,ai e L. 

Proposition 1. A subalgebra of a solvable (resp. nilpotent) Lie algebra is solvable 
(nilpotent). If L is a Lie algebra and I is an ideal, L is solvable if and only if L/I 
and I are both solvable. The sum of two solvable ideals is a solvable ideal. 

Proof. The proof is straightforward. D 

Warning. It is not true that L/I nilpotent and / nilpotent implies L nilpotent (for 
instance Bn/Un is abehan). 

Remark. The following identity can be proved by a simple induction and will be 
used in the next proposition: 

[ad(Z?), ad(fli) ad(a2) • • • ad(a/)] = ^ ad(ai) ad(«2) • • • ad([Z?, an])... ad(fl/). 
h=\ 

Proposition 2. The sum of two nilpotent ideals A and B is a nilpotent ideal. 

Proof Note first that using the Jacobi identity, for each /, A' and B^ are ideals. 
Assume A^ := B^ = 0. We claim that (A + ^)^+^-^ = 0. We need to show that the 
product ofh — \-\-k—\ factors ad(fl/) with a, e A or at e B is 0. At least k — \ 
of these factors are in A, or /z — 1 of these factors are in 5 . Suppose we are in the 
first case. Each time we have a factor ad (A) with a e B, which comes to the left of 



4 Basic Definitions 89 

some factor in A, we can apply the previous commutation relation and obtain a sum 
of terms in which the number of factors in A is not changed, but one factor in B is 
either dropped or it moves to the right of the monomial. Iterating this procedure we 
get a sum of monomials each starting with a product of /: — 1 factors in A, which is 
thus equal to 0. D 

In a finite-dimensional Lie algebra L the previous propositions allow us to define 
the solvable radical as the maximal solvable ideal of L, and the nilpotent radical as 
the maximal nilpotent ideal of L. 

4.4 Killing Form 

In the following discussion all Lie algebras will be assumed to be finite dimensional. 
If L is finite dimensional one can define a symmetric bilinear form on L: 

(4.4.1) (jc, y) := tr(ad(jc) ad(j)) the Killing form. 

It has the following invariance or associativity property ([x, y], z) = {x, [y, z]). 

Proof. 

([X, yl z) = tr(ad([jc, y]) ad(z)) = tr(ad(x) ad(y) ad(z) - ad(j) ad(x) ad(z)) 

= tr(ad(x) ad(j) ad(z) - ad(z) ad(j) ad(jc)) 

= tr(ad(;c)ad([y,z])) = (jc,[y,z]). ^ 

Remark. The associativity formula means also that ad(jc) is skew adjoint with re­
spect to the Killing form, or 

(4.4.2) (ad(x)>;,z) = -(y,ad(x)z). 

Definition 1. A Lie algebra L is simple if it has no nontrivial ideals and it is not 
abelian. 

A finite-dimensional Lie algebra is semisimple if its solvable radical is 0. 

Over C there are several equivalent definitions of semisimple Lie algebra. For 
a Lie algebra L the following are equivalent (cf. [Hul], [Se2],[ Jl]) and the next 
sections. 

(1) L is a direct sum of simple Lie algebras. 
(2) The Killing form (JC, >̂ ) := tr(ad(jc) ad(>')) is nondegenerate. 

(3) L has no abeUan ideals. 

For the moment let us see at least: 

Lemma 1* If L has a nonzero solvable radical, then it also has an abelian ideal. 
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Proof. Let Â  be its solvable radical, We claim that for each /, A '̂̂  is an ideal. By in­
duction, [L, A ('+i^] = [LAN^'\N^'^]\ C [[L,N^'\N^''>] + [N^'\[L.N^^] C 
[A^(OjvO)] ^ ATO+D. Thus it is enough to take the last / for which N^'^ ^ 
0, A (̂'+i> = 0 . D 

Lemma 2. The Killing form is invariant under any automorphism of the Lie algebra. 

Proof. Let p be an automorphism. We have 

d{p{a)) = p o ad(«) o p-' =^ (p(a), p{b)) = tr(ad(p(«)) ad(p(Z7))) 

(4.4.3) = tr(p o ad(fl) ad(Z7) o p'^) = tr(ad(fl) ad(Z7)). D 

5 Basic Examples 

5.1 Classical Groups 

We list here a few of the interesting groups and Lie algebras, which we will study in 
the book. One should look specifically at Chapter 6 for a more precise discussion of 
orthogonal and symplectic groups and Chapter 10 for the general theory. 

We have already seen the linear groups: 

GL(«,C), GL(«,M), SL(nX), SL(n,R) 

which are readily seen to have real dimension 2n^,n^,2{n^ — \),n^ — \. We also 
have: 

The unitary group U(n, C) := {X e GL(n, C) | x'X = 1}. 

Notice in particular f/(l, C) is the set of complex numbers of absolute value 1, 
the circle group, denoted also by 5"̂  

The special unitary group SU(n, C) := {X e SL(n, C) | H^X = 1}. 

The complex and real orthogonal groups 

0(n, C) := {X e GL(n, C) | X'X = 1}, 0(n, R) := {X e GLin, M) | X'X = 1}. 

The special complex and real orthogonal groups 

SO(n,C) :={X e SL(nX)\X'X = l}, SO(n,R) := {X € SL(n,R)\X'X = l}. 

There is another rather interesting group called by Weyl the symplectic group 
Sp(2n, C). We can define it starting from the 2n x 2n skew symmetric block matrix 
/„ := I _̂ j Q" I (where 1„ denotes the identity matrix of size n) as 

Sp(2n, C) := {X e GL(2n, C) | X'JnX = /„}. 
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Since J^ = —I the last condition is better expressed by saying that X^X = I where 
X^ := —JnX^Jn = JnX^J'^ IS the symplectic transpose. 

Write Z as 4 blocks of size n and have 

(5.1.1) A B 
C D 

D' -B' 

Finally the compact symplectic group: 

Spin) := {X e U(2n, C) | X'JnX = /„}. 

Out of these groups we see that 

GL(n,C), SL(nX), SO(nX), 0(«,C), Sp(2nX) 

are complex algebraic, that is they are defined by polynomial equations in complex 
space (see Chapter 7 for a detailed discussion), while 

U(nX). SU(nX), SO{n,R), 0(n,M), Spin) 

are compact as topological spaces. In fact they are all closed bounded sets of some 
complex space of matrices. Their local structure can be deduced from the exponential 
map but also from another interesting device, the Cayley transform. 

The Cayley transform is a map from matrices to matrices defined by the formula 

(5.1.2) C{X) :=^~^ 
l-\-X 

Of course this map is not everywhere defined but only on the open set U of matrices 
with 1+X invertible, that is without the eigenvalue — 1. We see that 1+C (Z) = j ^ , 
so rather generally if 2 is invertible (and not only over the complex numbers) we have 
C(U) = U, and we can iterate the Cayley transform and see that C(C(X)) = X. 

The Cayley transform maps U ioU and 0 to 1. In comparison with the exponen­
tial, it has the advantage that it is algebraic but the disadvantage that it works in less 
generality. 

Some inmiediate properties of the Cayley transform are (conjugation appUes to 
complex matrices): 

C(-X) = C(X)-\ C(X') = C(X)^ C(X) = C(X), C{AXA-^) = AC{X)A-

and finally C(X') = C(X)^ 
Therefore we obtain: 

C{X) e U(n, C) if and only if - X = x ' . 

C(X) e 0(n, C) if and only if -X = X^ 

C(X) G Spin, C) if and only if -X = X\ 

There are similar conditions for 0(n, R) and Spin). 
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It is now easy to see that the matrices which satisfy any one of these conditions 
form a Lie algebra. In fact the conditions are that — jc = jc* where x -^ jc* is a 
(R-linear map) satisfying {xyY = y*x*, (JC*)* = JC, cf. Chapter 5 where such a map 
is called an involution. 

Now we have 

-X = X*, -y = y* = > -[x, y] = -xy -\-yx = -x*y* + y*x* 

= -(yxr + (xyr = [x^yr. 

Proposition. In an associative algebra A the space of elements which satisfy —x = 
x*for an involution x -^ x* is closed under Lie bracket and so it is a Lie subalgebra. 

Remark. A priori it is not obvious that these are the Lie algebras defined via the 
exponential map. This is clear if one identifies the Lie algebra as the tangent space 
to the group at 1, which can be computed using any parameterization around 1. 

5.2 Quaternions 

Denote by EI the algebra of quaternions. 

U = {a-\-bi-\- cj -\-dk\a,b,c,d e M}, i^ = f = k^ = - 1 , ij = k. 

Proposition. Sp(n) can be defined as the set of quatemionic n x n matrices X with 

x'x = i. 
In the previous formula, conjugation is the conjugation of quaternions. In this 

representation Sp{n) will be denoted by Sp(n, H). This is not the same presentation 
we have given, but rather it is in a different basis. 

Proof We identify the 2n x 2n complex matrices with n x n matrices with entries 
2 x 2 matrices and replace /„ with a diagonal block matrix J^ made of n diagonal 
blocks equal to the 2 x 2 matrix Ji. 

We use Cayley's representation of quaternions EI as elements q = a -\- jP with 
a, )̂  € C and ja = aj, 7^ = —1. Setting k := —ji we have a + bi -{- cj -{- dk = 
(a -\-bi) -\- j(c — di). 

Consider IHI as a right vector space over C with basis 1, 7. An element a + j ^ = 
q eM induces a matrix by left multiplication. We have ql = q,qj = —fi + ja, thus 
the matrix 

(5.2.1) q = 
a -p 
P a 

, dQt(q) =aa-\- pp. 

From the formula of symplectic involution we see that the symplectic transpose of a 
quaternion is a quaternion q^ =a — jfi, (a + bi + cj 4- dky = a — bi — cj — dk. 

From 5.1.1 and 5.2.1 it follows that alxl matrix q is a quaternion if and only 
ifq'=q'-
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We define symplectic transposition using the matrix /^. Take an n x n matrix 

X = (atj) of block 2 x 2 matrices atj. We see that X' = -J'^X^J'^ = («j,/) 

while X = (a^ji). Thus X^ = X if and only if X is a quatemionic matrix. Thus if 

X^ = X~^ = X we must have X quatemionic and the proof is complete. n 

5.3 Classical Lie Algebras 

This short section anticipates ideas which will be introduced systematically in the 
next chapters. We use freely some tensor algebra which will be developed in Chap­
ter 5. 

The list of classical Lie algebras, where n is called the rank, is a reformulation of 
the last sections. It is, apart from some special cases, a list of simple algebras. The 
verification is left to the reader but we give an example: 

(1) slin + 1,C) is the Lie algebra of the special linear group SL(n + 1,C), 
dimsl(n + 1, C) = (n + 1)^ - L sl(n + 1, C) is the set of (« + 1) x (w + 1) 
complex matrices with trace 0; if n > 0 it is a simple algebra, said to be 
of type An. 

Hint as to how to prove simplicity: Let / be an ideal. / is stable under the adjoint 
action of the diagonal matrices so it has a basis of eigenvectors. Choose one such 
eigenvector; it is either a diagonal matrix or a matrix unit. Commuting a nonzero 
diagonal matrix with a suitable off-diagonal matrix unit we can always find a matrix 
unit etj, i ^ j in the ideal. Then by choosing appropriate other matrix units we can 
find all matrices in the ideal. 

(2) so(2n, C) is the Lie algebra of the special orthogonal group S0(2n, C), we have 
dimso(2n, C) = 2n^ — n. In order to describe it in matrix form it is convenient 
to choose a hyperbolic basis ^ i , . . . , ^„, / i , . . . , /„ where the matrix of the form 
is (cf. Chapter 5, §3.5): 

hn'={^ n V so{2nX)'^={AeM2n(C)\A'hn = -hnA}. 

If n > 3, so(2n, C) is a simple algebra, said to be of type Dn. 

Proposition 1. For n = 3 we have the special isomorphism so{6, C) = sl{4, C). 

Proof If y is a 4-dimensional vector space, we have an action of SL(V) on / \ V 
which is 6-dimensional. The action preserves the symmetric pairing /\^ Vx/\ V -^ 
f\^V = C. So we have a map SL(V) -^ S0(/\^ V). We leave to the reader to 
verify that it is surjective and at the level of Lie algebras induces the required iso­
morphism. D 

Proposition 2. For n = 2 we have the special isomorphism so(4, C) = 
sl(2, C) e 5/(2, C). 
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Proof. Let V be a 2-dimensional space, V has the symplectic form V x V -> 
/ \ y = C and y (g) V has an induced symmetric form {u\ (8) "2, ^i 0 ^2) = 
{u\ A I'I)(M2 A V2). Then ^LCV) x S'LCV) acting as a tensor product preserves this 
form, and we have a surjective homomorphism SL{V) x SL{V) -^ SO{V(^V) which 
at the level of Lie algebras is an isomorphism.^^ D 

(3) so{2n + 1, C) is the Lie algebra of the special orthogonal group S0(2n + 1, C). 
We have dimso(2n + 1,C) = 2n^ -{- n. In order to describe it in matrix 
form it is convenient to choose a hyperbohc basis ^ 1 , . . . , ^n, / i , . . . , / « , w 

|0 In 0\ 
where the matrix of the form is /2„+i := !« 0 0 and so(2n + 1, C) := 

|o 0 i| 
{A e M2„+i(C)|A'/2„+i = -hn+iA}. lfn>0, it is a simple algebra, said to be 
of type Bn for n > I. 

Proposition 3. For n = I we have the special isomorphism so{?>, C) = sl{2, C). 

Proof This can be realized by acting with SL{2, C) by conjugation on its Lie alge­
bra, the 3-dimensional space of trace 0, 2 x 2 matrices. This action preserves the 
form ix{AB) and so it induces a map 5L(2, C) -^ 50(3, C) that is surjective and, at 
the level of Lie algebras, induces the required isomorphism. D 

(4) sp{2n, C) is the Lie algebra of the symplectic group 5/7(2A2, C),dim5/7(2n, C) = 
2n^ -h n. In order to describe it in matrix form it is convenient to choose a 
symplectic basis ^ 1 , . . . , ^„, / i , . . . , /„, where the matrix of the form is J := 

and sp(2nX) := {A e M2niQ\A'J = -JA). If n > 1 it is a 

simple algebra, said to be of type Cn for n > I. 
(-1 '0) 

Proposition 4. For n = I we have the special isomorphism sp{2, C) = sl(2, C). 
For n — 2we have the isomorphism sp{A, C) = so{5, C), hence B2 = C2. 

Proof This is seen as follows. As previously done, take a 4-dimensional vector space 
V with a symplectic form, which we identify with I = e\ A f\ -\- e2 /\ fi ^ f\ V-
We have an action of Sp{V) on /\^ V which is 6-dimensional and preserves the 
symmetric pairing t\' V y^ t\ V -^ f\^ V = C. So we have a map Sp{V) -^ 
S0(/\^ V). The element / is fixed and its norm / A / 7̂  0, hence Sp(V) fixes the 
5-dimensional orthogonal complement / ^ and we have an induced map Sp(4, C) -> 
S0(5, C). We leave to the reader to verify that it is surjective and at the level of Lie 
algebras induces the required isomorphism. • 

No further isomorphisms arise between these algebras. This follows from the the­
ory of root systems (cf. Chapter 10, §2,3). The list of all complex simple Lie algebras 
is completed by adding the five exceptional types, called G2, F4, £"5, E-j, E^. 

The reason to choose these special bases is that in these bases it is easy to describe 
a Cartan subalgebra and the corresponding theory of roots (cf. Chapter 10). 

^̂  Since there are spin groups one should check that these maps we found are in fact not 
isomorphisms of groups, but rather covering maps. 
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Remark. We have described parameterizations around the identity element 1. If we 
take any element g in the group, we can find a parameterization around g, remarking 
that the map x ^^ gx maps a neighborhood of 1 into one of g, and the group into the 
group. 

6 Basic Structure Theorems for Lie Algebras 

6.1 Jordan Decomposition 

The theory of Lie algebras is a generalization of the theory of a single Hnear operator. 
For such an operator on a finite-dimensional vector space the basic fact is the theorem 
of the Jordan canonical form. Of this theorem we will use the Jordan decomposition. 
Let us for simplicity work over an algebraically closed field. 

Definition. A linear map a on a finite-dimensional vector space V is semisimple if 
it has a basis of eigenvectors. It is nilpotent if a^ = 0 for some A: > 0. 

A linear operator is nilpotent and semisimple only if it is 0. 

Theorem. Given a linear operator a on V, there exist unique operators as semi-
simple, an nilpotent, such that a = (2̂  + a„, [a^, a„] = 0. 

Moreover as can be written as a polynomial without constant term in a. If 
V D A D B are linear sub spaces and a A C B we have as A C B, an A C B. 

Proof. Let ofi, . . . , â t be the distinct eigenvalues of a and n := dim V. One can 
decompose V = 0 , V/ where V, := {v e V \{a - atYv = 0}. By the Chinese 
Remainder Theorem let f{x) be a polynomial with f{x) = oti mod {x — aiY, 
f{x) = 0 mod X. Clearly f{a) = as is the semisimple operator a, on Vt. an := 
a — fl^ is nilpotent. The rest follows. • 

6.2 EngeFs Theorem 

There are three basic theorems needed to found the theory. The first, Engel's theorem, 
is true in all characteristics. The other two, the theorem of Lie and Cartan's criterion, 
hold only in characteristic 0. 

In a way these theorems are converses of the basic examples of Section 4.2. 
We start with a simple lemma: 

Lemma. Let a be a semisimple matrix with eigenvalues at and eigenvectors a 
basis Ci. 

ad (a) is also semisimple with eigenvalues a, — aj and eigenvectors the matrix 
units in the basis ei. 

If a is nilpotent, a^ =Owe have ad(fl)^^~^ = 0. 
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Proof. The statement for semisimple matrices is clear. For nilpotent we use the iden­
tity ad{a) = UL— GR, aiib) = ab, aR{b) = ba. Since left and right multiplications 
ai, QR are commuting operators, 

/•=n \ / 

2k-\ 
/ Z/C — I \ ; o/, 1 ; 

D 
\ I / ^ " 

/=0 
Corollary. If a e gl{V) and a = as -\-an is its Jordan decomposition, then we have 
that ad(fl) = ^d(as) + ad(a„) is the Jordan decomposition o/ad(«). 

Engel's Theorem. Let V be a finite-dimensional vector space, and let L C End( V) 
be a linear Lie algebra all of whose elements are nilpotent. There is a basis of V in 
which L is formed by strictly upper triangular matrices. In particular L is nilpotent. 

Proof The proof can be carried out by induction on both dim V, dim L. The essen­
tial point is to prove that there is a nonzero vector v e V with Lf = 0, since if 
we can prove this, then we repeat the argument with L acting on V/Fi;. If L is 1-
dimensional, then this is the usual fact that a nilpotent linear operator is strictly upper 
triangular in a suitable basis. 

Let A C L be a proper maximal Lie subalgebra of L. We are going to apply 
induction in the following way. By the previous lemma, ad(A) consists of nilpotent 
operators on gl{V), hence the elements of ad(A) are also nilpotent acting on L and 
L/A. 

By induction there is an element u e L, u ^ A with ad(A)w = 0 modulo 
A or [A, M] C A. This implies that A + FM is a larger subalgebra; by maximality 
of A we must have that L = A + Fu and also that A is an ideal of L. Now let 
W := {v € V\Au = 0}. By induction, W 7̂  0. We have, ifweW,a£A, that 
a(uw) = [a, u]w-\-uaw = 0 since [a, u] € A. So 1^ is stable under w, and since w is 
nilpotent, there is a nonzero vector v e W with Aw = uw = 0. Hence Lw = 0. D 

6.3 Lie's Theorem 

Lie's Theorem. Let V be a finite-dimensional vector space over the complex num­
bers, and let L C End( V) be a linear solvable Lie algebra. There is a basis of V in 
which L is formed by upper triangular matrices. 

Proof. The proof can be carried out by induction on dimL. The essential point is 
again to prove that there is a nonzero vector v e V which is an eigenvector for 
L. If we can prove this, then we repeat the argument with L acting on V/Fv. If 
L is 1-dimensional, then this is the usual fact that a linear operator has a nonzero 
eigenvector. 

We start as in Engel's Theorem. Since L is solvable any proper maximal subspace 
A D [L, L] is an ideal of codimension 1. We have again L = A -h Cw, [M, A] c A. 
Let, by induction, u G V be a nonzero eigenvector for A. Denote by av := X(a)v the 
eigenvalue (a linear function on A). 

Consider the space W := {v e V \av = X(a)v, Va € A}. If we can prove that W 
is stabilized by u, then we can finish by choosing a nonzero eigenvector for u inW. 
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Then let v e W', for some m we have the linearly independent vectors v,uv, 
u^v,... ,u^v and u^'^^v dependent on the preceding ones. We need to prove that 
uv e W.ln any case we have the following identity for a e A: auv = [a,u]v -{• 
uav = X{a)uv + A,([M, i;])i;. We have thus to prove that X([M, i;]) = 0. We re­
peat AM'f = k(a)u^v H h u[a, u]u^~'^v + [a, u]u^~^v, inductively [a, u]u^~^v = 
k([a, u])u^~^v + Ylk<i-2^kU^^' T^^^ ^ ^̂ ^̂  ^̂  ^^ upper triangular matrix on the 
span M := {v, uv, u^v,..., u^v) of the vectors w'u with X{a) on the diagonal. On 
the other hand, since M is stable under u and a we have that [u,a] is a commu­
tator of two operators on M. Thus the trace of the operator [u,a] restricted to M 
is 0. On the other hand, by the explicit triangular form of [M, a] we obtain for this 
trace (m + 1)X([M, V]). Since we are in characteristic 0, we have m + 1 # 0, hence 
A,([M, V]) = 0 . D 

Corollary. IfL C gl{V) is a solvable Lie algebra, then [L, L] is made ofnilpotent 
elements and is thus nilpotent. 

For a counterexample to this theorem in positive characteristic, see [Hu], p. 20. 

6.4 Cartan's Criterion 

Criterion. Let V be a finite-dimensional vector space over C, and let L C End(y) 
be a linear Lie algebra. IfXx{ab) = Ofor alia e L, b e [L, L], then L is solvable. 

Proof. There are several proofs in the literature ([Jac], [Hu]). We follow the slick 
proof. The goal is to prove that [L, L] is nilpotent, or using Engel's theorem, that 
all elements of [L, L] are nilpotent. First we show that we can make the statement 
more abstract. Let M := {x e gl{V) \ [jc, L] C [L, L]}. Of course M D L and 
we want to prove that we still have tr{ab) = 0 when a e M,b e [L, L]. In fact if 
b = [x,y],x,y e L, then we have by the associativity of the trace form tr([x, y]a) = 
tr(x[>', a]) = 0 since x e L,[y,a] e [L, L]. Thus the theorem will follow from the 
next general lemma, applied to A = [L, L], B = L. D 

Lemma. Let V be a vector space of finite dimension n over the complex numbers, 
and let A C B C End(V) be linear spaces. Let M := {x e gliV) \ [jc, B] C A}. If 
an element a e M satisfies iT(ab) = Ofor all b e M, then a is nilpotent. 

Proof. The first remark to make is that if a e M, also as, an e M. This follows from 
Lenmia 6.2 and the properties of the Jordan decomposition. We need to show that 
as = 0. Let a i , . . . , a„ be the eigenvalues of as and ^ i , . . . , ^„ a corresponding basis 
of eigenvectors. For any semisimple element b, which in the same basis is diagonal 
with eigenvalues ^i,..., finAf b e M we have ^ - at Pi = 0. A sufficient condition 
for ^ e M is that ad(^) is a polynomial in ad(tzj without constant terms. In turn this 
is true if one can find a polynomial /(JC) without constant term with /(of/ — (Xj) = 
Pi — Pj. By Lagrange interpolation, the only condition we need is that if a, — aj = 
oih —Oik we must have Pi—Pj = Ph—Pk- For this it is sufficient to choose the Pi as the 
value of any Q-linear function on the Q-vector space spanned by the a, in C. Take 
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such a linear form g. We have J2i ^/^(^/) = 0 which implies J^- g{oii)^ = 0. If the 
numbers g{oii) are rationals, then this implies that g{oii) = 0, V/. Since g can be any 
Q linear form on the given Q vector space, this is possible only if all the of/ = 0 . D 

6.5 Semisimple Lie Algebras 

Theorem 1. Let L be a finite-dimensional Lie algebra over C. Then L is semisimple 
if and only if the Killing form is nondegenerate. 

Proof Assume first that the Killing form is nondegenerate. We have seen in §4.4 
(Lemma 1) that, if L is not semisimple, then it has an abelian ideal A. Let us show 
that A must be in the kernel of the Killing form. If a G L, Z? G A we have that ad(«) 
is a Unear map that preserves A, while ad(Z7) is a linear map which maps L into A 
and is 0 on A. 

Hence ad(a) ad(^) maps L into A and it is 0 on A, so its trace is 0, and A is in 
the kernel of the Killing form. 

Conversely, let A be the kernel of the Killing form. A is an ideal. In fact by asso­
ciativity, if a e A, b,c £ L, we have (b, [c, a]) = ([b, c], a) = 0. Next consider the 
elements ad(A). They form a Lie subalgebra with iT(ab) = 0 for all a, Z? G ad(A). By 
Cartan's criterion ad(A) is solvable. Finally the kernel of the adjoint representation 
is the center of L so if ad(A) is solvable, also A is solvable, and we have found a 
nonzero solvable ideal. D 

Theorem 2. A finite-dimensional semisimple Lie algebra is a direct sum of simple 
Lie algebras Li which are mutually orthogonal under the Killing form. 

Proof If L is simple there is nothing to prove, otherwise let A be a minimal ideal in 
L. Let A-̂  be its orthogonal complement with respect to the Killing form. We have 
always by the associativity that also A-̂  is an ideal. We claim that A r\ A^ = 0 
so that L = A® A^. In fact by minimality the only other possibility is A C A^. 
But this implies that A is solvable by Cartan's criterion, which is impossible. Since 
L = A® A-̂ , by minimality A is a simple Lie algebra, A-̂  is semisimple, and we 
can proceed by induction. D 

6.6 Real Versus Complex Lie Algebras 

Although we have privileged complex Lie algebras, real Lie algebras are also inter­
esting. We want to make some elementary remarks. 

First, given a real Lie algebra L, we can complexify it, getting Lc := L (8)R C . 
The algebra Lc continues to carry some of the information of L, although different 
Lie algebras may give rise to the same complexification. We say that L is a real 
form of Lc. For instance, sl{2, R) and su{2, C) are different and both complexify to 
sl(2, C). Some properties are easily verified. For instance, M C L is a. subalgebra 
or ideal if and only if the same is true for Mc C Lc- The reader can verify also the 
compatibility of the derived and lower central series: 
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(6.6.1) iL^^^)c = {Lcf\ {V)c = (Lcy. 

Therefore the notions of solvabiHty, nilpotency, and semisimplicity are compati­
ble with the complexification. Finally, the Killing form of Lc is just the complexifica-
tion of the Killing form of L, thus it is nondegenerate if and only if L is semisimple. 

In this case there is an interesting invariant, since the Killing form in the real 
case is a real synmietric form one can consider its signature (cf. Chapter 5, §3.3) 
which is thus an invariant of the real form. Often it suffices to detect the real form. 
In particular we have: 

Exercise. Let L be the Lie algebra of a semisimple group K. Then the Killing form 
of L is negative definite if and only if K is compact. 

In fact to prove in full this exercise is not at all easy and the reader should see 
Chapter 10, §5. It is not too hard when K is the adjoint group (see Chapter 10). 

When one studies real Lie algebras, it is interesting to study also real representa­
tions, then one can use the methods of Chapter 6, 3.2. 

7 Comparison between Lie Algebras and Lie Groups 

7.1 Basic Comparisons 

In this section we need to compare the concepts of nilpotency, solvability, and 
semisimplicity introduced for Lie algebras with their analogues for Lie groups. 

For Lie groups and algebras abelian is the same as commutative. 
We have already seen in §4.2 that a connected Lie group G is abelian if and 

only if its Lie algebra is abelian. We want to prove now that the derived group of a 
connected Lie group has, as Lie algebra, the derived algebra. 

For groups there is a parallel theory of central and derived series.^^ In a group 
G the commutator of two elements is the element {x,y} := xyx~^y~^. Given two 
subgroups H.Kofdi group G, one defines {//, K) to be the subgroup generated by 
the conmiutators {jc, y), x £ H, y e K. 

The derived group of a group G is the subgroup {G,G} generated by the com­
mutators. {G, G} is clearly the minimal normal subgroup K oi G such that G/K is 
abelian. 

The derived series is defined inductively: 

Ĝ >̂ = G,... ,G('+i>:={G^'\G('>}. 

The lower central series is defined inductively: 

G^ = G , . . . ,G'+^ :={G,G'}. 

24 In fact all these concepts were first developed for finite groups. 
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In a topological group we define the derived group to be the closed subgroup 
generated by the commutators, and similar definitions for derived and lower central 
series.^^ 

One has thus the notions of solvable and nilpotent group. Let G be a connected 
Lie group with Lie algebra L?^ 

Proposition 1. The derived group ofG has Lie algebra [L, L], 

Proof. The derived group is the minimal closed normal subgroup H of G such that 
G/H is abelian. Since a Lie group is abelian if and only if its Lie algebra is abelian, 
the proposition follows from Proposition 3.4 since subgroups corresponding to Lie 
ideals are closed. n 

Proposition 2. The Lie algebra ofG^'^^^ is L^^^^K The Lie algebra ofG'^^ is L'-^K 

Proof. The first statement follows from the previous proposition. For the second, let 
W be the connected Lie subgroup of Lie algebra V. Assume by induction W = G'. 
Observe that G'~̂ ^ is the minimal normal subgroup ^ of G contained in G' with the 
property that the conjugation action of G on G^ /K is trivial. Since G is connected, 
if G acts on a manifold, it acts trivially if and only if its Lie algebra acts by trivial 
vector fields. If ^ is a normal subgroup of G contained in G' with Lie algebra M, 
G acts trivially by conjugation on G^ /K if and only if the Lie algebra of G acts by 
trivial vector fields. In particular the restriction of the adjoint action of G on U /M 
is trivial and so ^ D / / '+^ Conversely it is clear that //'+^ D G'+^. D 

Thus a connected Lie group G has a maximal closed connected normal solvable 
subgroup, the solvable radical, whose Lie algebra is the solvable radical of the Lie 
algebra of G. The nilpotent radical is defined similarly. 

Proposition 3. For a Lie group G the following two conditions are equivalent: 

(1) The Lie algebra ofG is semisimple. 
(2) G has no connected solvable normal subgroups. 

Definition. A group G satisfying the previous two conditions is called a semisimple 
group. 

Remark. G may have a nontrivial discrete center. Semisimple Lie groups are among 
the most interesting Lie groups. They have been completely classified. Of this classi­
fication, we will see the complex case (the real case is more intricate and beyond the 
purpose of this book). This classification is strongly related to algebraic and compact 
groups as we will illustrate in the next chapters. 

^̂  In fact for a Lie group the two nodons coincide; cf [OV]. 
^̂  The connectedness hypothesis is obviously necessary. 




