
Tensor Algebra 

Summary. In this chapter we develop somewhat quickly the basic facts of tensor algebra, 
assuming the reader is familiar with linear algebra. Tensor algebra should be thought of as a 
natural development of the theory of functions in several vector variables. To some extent it is 
equivalent, at least in our setting, to this theory. 

1 Tensor Algebra 

1.1 Functions of Two Variables 

The language of functions is most suitably generalized into the language of tensor 
algebra. The idea is simple but powerful: the dual V* of a vector space V is a space 
of functions on V, and V itself can be viewed as functions on V*. 

A way to stress this symmetry is to use the bra-ket ( | ) notation of the physi­
cists:^^ given a linear form (p e V* and a vector u G V, we denote by (^If) := (piv) 
the value of 0 on u (or of i; on 0 !). 

From linear functions one can construct polynomials in one or several variables. 
Tensor algebra provides a coherent model to perform these constructions in an in­
trinsic way. 

Let us start with some elementary remarks. Given a set X (with n elements) and 
a field F, we can form the n-dimensional vector space F^ of functions on X with 
values in F. 

This space comes equipped with a canonical basis: the characteristic functions 
of the elements of X. It is convenient to identify X with this basis and write 
J2xex fM^ f̂^ the vector corresponding to a function / . 

From two sets X, Y (with n, m elements, respectively) we can construct F^, F^, 
and also F^^^. This last space is the space of functions in two variables. It has 
dimension/im. 

^̂  This was introduced in quantum mechanics by Dirac. 
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Of course, given a function f(x) e F^ and a function ^(>') G F^, we can 
form the two variable function F(x, y) := f(x)g{y); the product of the given basis 
elements is just xy = (x,y). A simple but useful remark is the following: 

Proposition. Given two bases M I , . . . , w„ of F^ and v\,... ,Vm of X^ the nm ele­
ments UiVj are a basis of F^^^. 

Proof The elements xy are a basis of F^^^. We express jc as a linear combination 
of the ui,. ..,Un and y as one of the u i , . . . , Vm-

We then see, by distributing the products, that the nm elements utVj span the 
vector space F^^^. Since this space has dimension nm the M, VJ must be a basis. D 

1.2 Tensor Products 

We perform the same type of construction with a tensor product of two spaces, with­
out making any reference to a basis. Thus we define: 

Definition 1. Given 3 vector spaces U,V,W a. map f(u,v) : U x V -> W is 
bilinear if it is linear in each of the variables M, V separately. 

If U, V, W are finite dimensional we easily see that: 

Proposition. The following conditions on a bilinear map f : U x V ^^ W are 
equivalent: 

(i) There exist bases u\,... ,UnOfU and v\,... ,VmOfV such that the nm elements 
f(ui, Vj) are a basis ofW. 

(ii) For all bases u\,... ,Un ofU and vi,... ,Vm ofV, the nm elements f(ui, Vj) 
are a basis of W. 

(Hi) dim(W) = nm, and the elements f(u, v) span W. 
(iv) Given any vector space Z and a bilinear map g{u,v):UxV-^Z there exists 

a unique linear map G : W ^^ Z such that g(u,v) = G(f(u, v)) (universal 
property). 

Definition 2. A bilinear map is called a tensor product if it satisfies the equivalent 
conditions of the previous proposition. 

Property (iv) ensures that two different tensor product maps are canonically iso­
morphic. In this sense we will speak of W as the tensor product of two vector spaces 
which we will denote by U ̂ V. We will denote by w 0 f the image of the pair (w, v) 
in the bilinear (tensor product) map. 

Definition 3. The elements u <S> v arc called decomposable tensors. 

Example. The bilinear product F x U -^ U given by (a, w) H^ aw is a tensor 
product. 
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1.3 Bilinear Functions 

To go back to functions, we can again concretely treat our constructions as follows. 
Consider the space Bil(L^ x V, F) of bilinear functions with values in the field F. 
We have a bilinear map 

F : ^* X y* -> Bi\(U X V, F) 

given by F((p, \l/)(u, v) := {(p\u)('ilr\v). In other and more concrete words, the prod­
uct of two linear functions, in separate variables, is bilinear. 

In given bases wi , . . . , M„ of [/ and u i , . . . , û ^ of V we have for a bilinear func­
tion 

(1.3.1) / ( Y^aiUi^Y^^jVj ) = ^ ^ a , ; 6 y / ( M , , Vj). 

Let e^^ be the bilinear function defined by the property 

( n m \ 

We easily see that these bilinear functions form a basis of Bil(L^ x V, F), and a 
general bilinear function / is expressed in this basis as 

n m n m 

(1.3.3) / ( « , V) = Y.Y,f{ui^ Vj)e'^{u. u), / = X ^ E ^ ^ " - ^^^^''• 
/ = 1 ; = 1 / = 1 7 = 1 

Moreover let M' and v^ be the dual bases of the two given bases. We see immediately 
that e^^(u,v) = u^(u)v^(v). Thus we are exactly in the situation of a tensor product, 
and we may say that Bil(L^ x V, F) = (/* 0 V*. 

In the more familiar language of polynomials, we can think of n variables xt and 
m variables yj. The space of bilinear functions is the span of the bilinear monomials 
xtyj. 

Since a finite-dimensional vector space U can be identified with its double dual 
it is clear how to construct a tensor product. We may set̂ ^ 

U<S>V :=Bil(f/* X y* ,F) . 

1.4 Tensor Product of Operators 

The most important point for us is that one can also perform the tensor product of 
operators using the universal property. 

^̂  Nevertheless, the tensor product construcfion holds for much more general situations than 
the one we are treating now. We refer to N. Bourbaki for a more detailed discussion [B]. 
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If f : U\ -^ V\ and g : U2 -^ V2 ^^ two linear maps, the map Ui x U2 -^ 
Vi <8) V2 given by (w, v) -^ f(u)<S}g{v) is bilinear. Hence it factors through a unique 
linear map denoted by f (^ g : U\ (Si U2 -^ Vi 0 ^2-

This is characterized by the property 

(1.4.1) (f^g)(u^v) = f(u)^g{v). 

In matrix notation the only difficulty is a notational one. Usually it is customary 
to index basis elements with integral indices. Clearly if we do this for two spaces, 
the tensor product basis is indexed with pairs of indices and so the corresponding 
matrices are indexed with pairs of pairs of indices. 

Concretely, if / ( M / ) = Ylj ^jt^] ^^^ gi^h) = J2k ̂ kh^k ̂ ^ ̂ ^^^ 

(1.4.2) ( / (8) g)(ui (g) 1;;,) = Y^ajibkhu] <g) < . 
jk 

Hence the elements ajibkh are the entries of the tensor product of the two matrices. 
An easy exercise shows that the tensor product of maps is again bilinear and thus 

defines a map 

hom((/i, Vi) (g) hom(/72, V2) -> hom(6^i 0 ^2, V̂i 0 V2). 

Using bases and matrix notations (and denoting by Mm,n the space of mxn matrices), 
we have thus a map 

Mm,n ^Mp^q - > Mmp,nq-

We leave it to the reader to verify that the tensor product of the elementary ma­
trices gives the elementary matrices, and hence that this mapping is an isomorphism. 

Finally we have the obvious associativity conditions. Given 

Ui ^ Vi ^ Wi 

U2 — ' — ^ V2 — ^ W2 

we have (h <S k)(f (S) g) = hf <S) kg. In particular, consider two spaces U, V and 
endomorphisms f : U ^^ U, g : V ^^ V. We see that: 

Proposition. The mapping (f,g)->fSig is a representation ofGL(U) x GL(V) 
in GL(U 0 V). 

There is an abstraction of this notion. Suppose we are given two associative al­
gebras A, B over F. The vector space A<S) B has an associative algebra structure, by 
the universal property, which on decomposable tensors is 

(a 0 b)(c <S)d) =ac<S> bd. 

Given two modules M, N on A, and B respectively, M <S) N becomes an A 0 B-
module by 

(a 0 b)(m 0 n) = am 0 bn. 
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Remark. (1) Given two maps i, j : A, B -> C of algebras such that the images 
commute, we have an induced map A(g)J5 -^ C given by a (S>b -^ i{ci)j(b). 

This is a characterization of the tensor product by universal maps. 
(2) If A is an algebra over F and G D F is a field extension, then A<S>FG can 

be thought of as a G algebra. 

Remark. Given an algebra A and two modules M, Â , in general M <S> N does not 
carry any natural A-module structure. This is the case for group representations or 
more generally for Hopf algebras, in which one assumes, among other things, to 
have a homomorphism A : A -> A (g) A (for the group algebra of G it is induced by 
g ^ g<Sig), cf. Chapter 8, §7. 

1.5 Special Isomorphisms 

We analyze some special cases. 
First, we can identify any vector space U with hom(F, U) associating to a map 

/ e hom(F, U) the vector / ( I ) . We have also seen that F(S)U = U, and a0M = au. 
We thus follow the identifications: 

V (g) [/* = hom(F, V) (8) hom([/, F) = hom(F 0 f/, V (g) F). 

This last space is identified with hom(f/, V). 

Proposition. There is a canonical isomorphism V <S> U* = hom{U, V). 

It is useful to make this identification explicit and express the action of a decom­
posable element v ^ (p ona. vector u, as well as the composition law of morphisms. 
Consider the tensor product map 

hom(V, W) X hom(^, V) -> hom{U, W). 

With the obvious notations we easily find: 

(1.5.1) (i; (g)(p)(u) = v{(p\u), w <^il/ ov <Si(p = w (S> {'(l/\v)(p. 

In the case of End([/) := hom((7, U), we have the identification End(L^) = U<^U*; 
in this case we can consider the linear map Tr : U(S)U* ^^ F induced by the bilinear 
pairing given by duality 

(1.5.2) Tv(u(S)(p) := {(p\u). 

Definition. The mapping Tr : End(L^) -> F is called the trace. In matrix notations, 
if Ci is a basis of U and e^ the dual basis, given a matrix A = ^ . atjCt 0 e^ we have 
Tr(A) = J2ij ^ijie^l^i) = E / ^n-

For the tensor product of two endomorphisms of two vector spaces one has 

(1.5.3) Tr(A 0 5 ) = Tr(A) Tr(B), 

as verified immediately. 
Finally, given linear maps X : W ^ U, Y : V ^ Z, i ; 0 0 : L ^ - > y w e have 

(1.5.4) y o i ; 0 0 o X = y i ; 0 X'0. 
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1.6 Decomposable Tensors 

An immediate consequence of the previous analysis is: 

Proposition. The decomposable tensors in V (g) f/* = hom(t/, V) are the maps of 
rank 1. 

In particular this shows that most tensors are not decomposable. In fact, quite 
generally: 

Exercise. In a tensor product (with the notations of Section 1) a tensor ^ aijUi 0 Vj 
is decomposable if and only if the n x m matrix with entries aij has rank < 1. 

Another important case is the sequence of identifications: 

(1.6.1) t/* 0 V* = hom(^, F) 0 hom(V, F) 

= \iom{U 0 V, F 0 F) = \iom{U 0 V, F), 

i.e., the tensor product of the duals is identified with the dual of the tensor product. 
In symbols 

(^ 0 V)* = [/* 0 V*. 

It is useful to write explicitly the duality pairing at the level of decomposable 
tensors: 

(1.6.2) {(p 0 V̂ |w 0 i;) = {(p\u){i;\v). 

In other words, if we think of U* 0 V* as the space of bilinear functions /(w, i;), 
u e U,v e V iht tensor « 0 Z? is identified, as a linear function on this space and 
as the evaluation f ^^ f(a,b). The interpretation of L̂  0 V as bihnear functions on 
U* X V* is completely embedded in this basic pairing. 

Summarizing, we have seen the intrinsic notion of f/ 0 V as the solution of 
a universal problem, as bilinear functions on U* x V*, and finally as the dual of 
U* 0 V*}^ 

1.7 Multiple Tensor Product 

The tensor product construction can clearly be iterated. The multiple tensor product 
map 

Ui X U2 X " - X Um -^ Ui <S> U2 <S> " • <S) Um 

is the universal multilinear map, and we have in general the dual pairing: 

U*(SiU^<S)"-(S^U^xUi<SiU2^"-<S^Um-^ F 

^^ Of these three definitions, the solution of the universal problem is the one which admits the 
widest generalizations. 
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given on the decomposable tensors by 

m 

(1.7.1) {(P\^(p2^"- ^(PmWx <S>U2<^ "•<S)Um) = ]~[(< /̂|W/). 
1 = 1 

This defines a canonical identification of iU\<S>U2<S>- • - UmT with L̂ * 0L^2 ^ • • • f/̂ . 
Similarly we have an identification 

hom(^i 0 ^2 <8) • • • ^m, Vi (8) ̂ 2 <8) • • • V;n) 

= hom(L^i, Vi) (8)hom(i[/2, ¥2)^-"^hom(Um, V n̂). 

Let us consider the self-dual pairing on End(L^) given by TT(AB) in terms of decom­
posable tensors. If A = v (g) xj/ and B = u^(p^t have 

(1.7.2) lx{AB) = Triv ^ i/o u (g cp) = Tr{{xl/\u)v 0 (̂ ) = ((p\v){\l/\u). 

We recover the simple fact that Tr(A5) = Tr(^A). 
We remark also that this is a nondegenerate pairing, and End(U) = U <Si U* is 

identified by this pairing with its dual: 

End(Uy = (U^ uy = U*(S) (^*)* = U*<S)U = U<S)U\ 

We identify an operator A with the linear function X \-^ Tr(AX) = Tr(XA). 
Since Tr([A, B]) = 0, the operators with trace 0 form a Lie algebra (of the group 

SL(U)), called sl(U) (and an ideal in the Lie algebra of all linear operators). 
For the identity operator in an n-dimensional vector space we have Tr(l) = n. 
If we are in characteristic 0 (or prime with n) we can decompose each matrix as 

A = ^^^1 H- Ao where AQ has zero trace. Thus the Lie algebra gl(U) decomposes 
as the direct sum gl(U) = F 0 sl{U), F being identified with the scalar matrices, 
i.e., with the multiples of the identity matrix. 

It will be of special interest to us to consider the tensor product of several copies 
of the same space U, i.e., the tensor power of [/, denoted by U^^. It is convenient 
to form the direct sum of all of these powers since this space has a natural algebra 
structure defined on the decomposable tensors by the formula 

(M1 (g) M2 0 • • • 0 Uh)(V\ ^ V2 <S> " ' ^ Vk) 

:= u\ <Si U2 ^ ' •' <S> Uh ^ v\ <S> V2 'S) " • <S> Vk. 

We usually use the notation 

This is clearly a graded algebra generated by the elements of degree 1. 

Definition. T(U) is called the tensor algebra of U. 

This algebra is characterized by the following universal property: 
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Proposition. Any linear mapping j : U -> R into an associative algebra R extends 
uniquely to a homomorphism j : T{U) -> R. 

Proof. The mapping UxUx-xU^^R given by j{u\)j{u2)... j{uk) is mul­
tilinear and so defines a linear map U®^ ^^ R. 

The required map is the sum of all these maps and is clearly a homomorphism 
extending j \ it is also the unique possible extension since U generates T{U) as an 
algebra. D 

1.8 Actions on Tensors 

In particular, a linear automorphism gofU extends to an automorphism of the tensor 
algebra which acts on the tensors U'^^ as g^^ := g 0 g 0 g • • • 0 g. 

Thus we have: 

Proposition. GL(U) acts naturally on T(U) as algebra automorphisms (preserving 
the degree and extending the standard action on U). 

It is quite suggestive to think of the tensor algebra in a more concrete way. Let 
us fix a basis of U which we think of as indexed by the letters of an alphabet A with 
n letters.^^ 

If we write the tensor product omitting the symbol 0 we see that a basis of U^^ 
is given by all the n^ words of length m in the given alphabet. 

The multiplication of two words is just the juxtaposition of the words (i.e., write 
one after the other as a unique word). In this language we see that the tensor algebra 
can be thought of as the noncommutative polynomial ring in the variables A, or the 
free algebra on A, or the monoid algebra of the free monoid. 

When we think in these terms we adopt the notation F{A) instead of T(U). 
In this language the universal property is that of polynomials, i.e., we can evaluate 

a polynomial in any algebra once we give the values for the variables. 
In fact, since A is a basis of L̂ , a linear map j : U ^^ R is determined by 

assigning arbitrarily the values for the variables A. The resulting map sends a word, 
i.e., a product of variables, to the corresponding product of the values. Thus this map 
is really the evaluation of a polynomial. 

The action of a linear map on (7 is a special substitution of variables, a linear 
substitution. 

Notice that we are working in the category of all associative algebras and thus 
we have to use noncommutative polynomials, i.e., elements of the free algebra. 
Otherwise the evaluation map is either not defined or not a homomorphism. 

Remark. As already mentioned the notion of tensor product is much more general 
than the one we have given. We will use at least one case of the more general defi­
nition. If A is an algebra over a field A:, M a right A-module, Â  a left A-module, we 

^̂  Of course we use the usual alphabet, and so in our examples this restricts n artificially, but 
there is no theoretical obstruction to think of a possibly infinite alphabet. 
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define M 0 ^ Â  to be the quotient of the vector space M ^ N modulo the elements 
ma ^n — m ^ an. This construction typically is used when dealing with induced 
representations. We will use some simple properties of this construction which the 
reader should be able to verify. 

2 Symmetric and Exterior Algebras 

2.1 Symmetric and Exterior Algebras 

We can reconstruct the commutative picture by passing to a quotient. 
Given an algebra R, there is a unique minimal ideal I of R such that R/I is 

commutative. It is the ideal generated by all of the commutators [a, b] := ab — ba. 
In fact, / is even generated by the commutators of a set of generators for the 

algebra since if an algebra is generated by pairwise commuting elements, then it is 
commutative. 

Consider this ideal in the case of the tensor algebra. It is generated by the com­
mutators of the elements of degree 1, hence it is a homogeneous ideal, and so the 
resulting quotient is a graded algebra, called the symmetric algebra on U. 

It is usually denoted by S{U) and its homogeneous component of degree m is 
called the m^^ symmetric power of the space U and denoted S"^{U). 

In the presentation as a free algebra, to make F{A) commutative means to impose 
the commutative law on the variables A. This gives rise to the polynomial algebra 
F[A] in the variables A. Thus S{U) is isomorphic to F[A]. 

The canonical action of GL(U) on T(U) clearly leaves invariant the commutator 
ideal and so induces an action as algebra automorphisms on 5"(L )̂. In the language 
of polynomials we again find that the action may be realized by changes of variables. 

There is another important algebra, the Grassmann or exterior algebra. It is de­
fined as T(U)/J where J is the ideal generated by all the elements w"̂ ^ for u e U. 
It is usually denoted by /\U. 

The multiplication of elements in / \ [/ is indicated by a Ab. Again we have an 
action of GL(U) on /\U = ^k /\^ U SLS automorphisms of a graded algebra, and 
the algebra satisfies a universal property with respect to linear maps. Given a linear 
map j '. U ^^ R into an algebra R, restricted by the condition j{u)^ = 0,Wu e U, 
we have that j extends to a unique homomorphism /\U ^^ R. 

In the language of alphabets we have the following description. The variables in 
A satisfy the rules: 

a Ab = —b Aa, a Aa = 0. 

We order the letters in A. A monomial M is 0 if it contains a repeated letter. Other­
wise reorder it in alphabetical order, introducing a negative sign if the permutation 
used to reorder is odd; let us denote by a{M) this value. 

Consider the monomials in which the letters appear in strict increasing order, and 
we call these the strict monomials (if A has n elements we have (̂ ) strict monomials 
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of degree k for a total of 2" monomials). For example, from a basis ^ i , . . . , „̂ of L̂  
we deduce a basis 

Ci^ ACi-, A ''' Aei,^, I < i\ < ii < ''' < h S^ 

of At/. 

Theorem. The strict monomials are a basis of f\U. 

Proof. We hint at a combinatorial proof. We construct a vector space with basis the 
strict monomials. We then define a product by M A N := a(MN). A little com­
binatorics shows that we have an associative algebra R, and the map of A into R 
determines an isomorphism of R with /\U. • 

For a different proof see Section 4.1 in which we generalize this theorem to 
Clifford algebras. 

In particular, we have the following dimension computations. If dim U = n, 

dim/\^ U=(''\ dim/\U = 2^ dim/\" U = I. 

Let dim U = n. The bihnear pairing /\^ U x /\^~^ U -> /\^ U induces a linear map 

; : A' ̂  - "o- (A""' "• A" ") = A" " « (A"* ")' • 
j {U\ A " ' A Uk){V\ A • • • Vn-k) := U\ A • ' • A Ujc A V\ A ' ' • A Vn-k • 

In a given basis ^ i , . . . , „̂ we have j(ei^ A • • • A ei^){ej^ A • • • A ej^_,^) = 0 if the 
elements / i , . . . , ik, 7i, • • •, jn-k are not a permutation of 1, 2 , . . . , «. Otherwise, re­
ordering, the value we obtain is ^^^i A^2 • • • A^„, where a is the (unique) permutation 
that brings the elements i\,... ,ik, j \ , . . . , jn-k into increasing order and ̂ ^ denotes 
its sign. 

In particular we obtain 

Proposition. The map j : /^ U ^ f^" U ® (A"~^ ^ ) * ^^ ^^ isomorphism. 

This statement is a duality statement in the exterior algebra; it is part of a long 
series of ideas connected with duality. It is also related to the Laplace expansion of 
a determinant and the expression of the inverse of a given matrix. We leave to the 
reader to make these facts explicit (see the next section). 

2.2 Determinants 

Given a linear map A : L̂  -^ V, the composed map j : U -^ V -^ /\V satisfies 
the universal property and thus induces a homomorphism of algebras, denoted by 
/\A'. /\U -^ f\V. For every k the map / \ A induces a linear map f\l^ A \ f\l^ U ^^ 
A^ y with 
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A k 
A{U\ A M2 A • • • A Uk) = Au\ A AU2 A • • • A AUk. 

In this way (/\ U, /\ A) is di functor from vector spaces to graded algebras (a similar 
fact holds for the tensor and symmetric algebras). 

In particular, for every k the space /\ U is a. linear representation of the group 
GLiU). 

This is the proper setting for the theory of determinants. One can define the de­
terminant of a linear map A : U ^^ U of an n-dimensional vector space U as the 
linear map / \" A. 

Since dim /\^ U = I the linear map / \" A is a scalar. One can identify / \" U 
with the base field by choosing a basis of U; any other basis of U gives the same 
identification if and only if the matrix of the base change is of determinant 1. 

Definition. Given an w-dimensional space V, the special linear group SL(V) is the 
group of transformations A of determinant 1,OT /\^ A = I. 

Sometimes one refers to a matrix of determinant 1 as unimodular. 
More generally, given bases MI , . . . , M^ for L̂  and u i , . . . , i;„ for V, we have the 

induced bases on the Grassmann algebra, and we can compute the matrix of / \ A 
starting from the matrix aj of A. We have Auj = ^ - aju, and 

/ \ A(Uj^ A • • • A Uj,^) = AUj^ A • • • A AUj^ 

= Y^ A(iu...,ik\j\,--'Jk)Vi, / A V, Ik-

Proposition. The coefficient A{ii,... Jk\j\,..., jk) is the determinant of the minor 
of the matrix extracted from the matrix of A from the rows of indices i\,... ,ik and 
the columns of indices j \ , . . . , jk-

Proof By expanding the product and collecting terms. • 

Given two matrices A, B with product BA, the multiplication formula of the 
3 matrices ass( 

Binet's formula. 
two matrices associated to two exterior powers, /\^(BA) = /\^ Bo /\'' A, is called 

2.3 Symmetry on Tensors 

The theory developed is tied with the concepts of symmetry. We have a canonical 
action of the symmetric group Sn on V^", induced by the permutation action on 
U X U X " ' X U. Explicitly, 

a(Mi (g) M2 0 • • • 0 Wn) = " a - U ^ "a->2 0 * ' * 0 "cj-in-

We will refer to this action as the symmetry action on tensors.^^ 

^̂  It will be studied intensively in Chapter 9. 
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Definition 1. The spaces T,n{U), An(U) of symmetric and antisymometric tensors are 
defined by 

E„(f/) = {ue U^''\(j(u) = M}, An(U) = {u G ̂ ®"|a(w) = €((r)u, Va € 5„}, 

(€(a) indicates the sign of a) . 

In other words, the space of symmetric tensors is the sum of copies of the trivial 
representation while the space of antisymmetric tensors is the sum of copies of the 
sign representation of the symmetric group. 

One can explicitly describe bases for these spaces along the fines of §1. 
Fix a basis of U which we think of as an ordered alphabet, and take for a basis 

of f/®" the words of length n in this alphabet. The synmietric group permutes these 
words by reordering the letters, and U'^" is thus a permutation representation. 

Each word is equivalent to a unique word in which all the letters appear in in­
creasing order. If the letters appear with multiplicity /zi, / i2 , . . . , hk, the stabilizer of 
this word is the product of the symmetric groups 5/̂ , x • • • x 5/ĵ . The number of 
elements in its orbit is (̂  ^" ^ ). 

The sum of the elements of such an orbit is a symmetric tensor denoted by 
^ / i , , . . . , eh,^ and these tensors are a basis of T>n{U). For skew-symmetric tensors we 
can only use words without multiplicity, since otherwise a transposition fixes such a 
word but by antisymmetry must change sign to the tensor. The sum of the elements 
of such an orbit taken with the sign of the permutation is an antisynmietric tensor, 
and these tensors are a basis of An(U). 

Theorem. If the characteristic of the base field F is 0, the projections ofT(U)on the 
symmetric and on the Grassmann algebra are linear isomorphisms when restricted 
to the symmetric, respectively, the antisymmetric, tensors. 

Proof. Take a symmetric tensor sum of (̂  ^" ^ ) elements of an orbit. The image 
of all the elements in the same orbit in the symmetric algebra is always the same 
monomial. 

Thus the image of this basis element in the symmetric algebra is the correspond­
ing commutative monomial times the order of the orbit, e.g., 

aabb -h abab -\- abba + baab -f- baba -f- bbaa -^ 6a^b^. 

In char = 0, this establishes the isomorphism since it sends a basis to a basis. In 
order to be more expficit, let us denote by ^i, ^2, • • •, m̂ a basis of U. The element 

is a synmietric tensor which, by abuse of notation, we identify with the monomial 

to which it corresponds in the symmetric algebra. 
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Now for the antisymmetric tensors, an orbit gives rise to an antisymmetric tensor 
if and only if the stabilizer is 1, i.e., if all the hi = I, Then the antisymmetric tensor 
corresponding to a word ^1^2 • • • «n is 

— /_^ ^CT^Or(1)^(7(2) • • '^CT{n)' 

aeSn 

This tensor maps in the Grassmann algebra to 

fll A a2 A . . . A Gn. 

It is often customary to identify et^et^.. .et^ or a\ Aa2 A ... Aan, with the cor­
responding symmetric or antisymmetric tensor, but of course one loses the algebra 
structure. n 

Let us now notice one more fact. Given a vector M G [/ the tensor M®" = 
M 0 w ( 8 ) M 0 " - ( 8 ) M i s clearly symmetric and identified with M" e Sn{U). If 
u = ^ ^ akCk we have 

u^"= ^ a ^ a ^ • . a ^ e , ,, 
hi+h2-\ \-hm=n 

_ / " \ h, h2 

U^'E„{U)^F, fiu^")^ J2 "("a^'^-.-a^/Ce,,,...,,,). 

We notice a formal fact. A homogeneous polynomial function f onU of degree 
n factors through M h^ M®" and a uniquely determined linear map on T>n{U). In 
other words, with Pn{U) the space of homogeneous polynomials of degree n on U, 
we have: 

Proposition. Pn{U) is canonically isomorphic to the dual ofY^niU).^^ 

The identification is through the factorization 

^ , JKU- ) = 
hi+h2-\--+h,„=n 

One in fact can more generally define: 

Definition 2. A polynomial map F : U ̂ ^ V between two vector spaces is a map 
which in coordinates is given by polynomials. 

In particular, one can define homogeneous polynomial maps. We thus have that the 
map U -> TiniU) given by M h-> u^^ is a polynomial map, homogeneous of degree 
n and universal, in the sense that: 

Corollary. Every homogeneous polynomial map of degree n from U to a vector 
space V factors through the map u -^ u®^, with a linear map T,n(U) -> V. 

In characteristic 0 we use instead w -> M" as a universal map. 

^̂  This will be useful in the next chapter. 
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3 Bilinear Forms 

3.1 Bilinear Forms 

At this point it is important to start introducing the language of bilinear forms in a 
more systematic way. 

We have already discussed the notion of a bilinear mapping U x V -^ F. Let us 
denote the value of such a mapping with the bra-ket notation {u\v). 

Choosing bases for the two vector spaces, the pairing determines a matrix A with 
entries atj = {ui\vj). Using column notation for vectors, the form is given by the 
formula 

(3.1.1) (u,v) :=u'Av. 

If we change the two bases with matrices B, C, and u = Bu\ v = Cv\ the corre­
sponding matrix of the pairing becomes B^ AC. 

If we fix our attention on one of the two variables we can equivalently think of 
the pairing as a linear map j : U -^ hom(V, F) given by {j(u)\v) = {u\v) or 
j{u) : V h^ (M|I;). 

We have used the bracket notation for our given pairing as well as the duality 
pairing, thus we can think of a pairing as a linear map from UioV*. 

Definition. We say that a pairing is nondegenerate if it induces an isomorphism 
between U and V*. 

Associated to this idea of bilinear pairing is the notion of orthogonality. Given a 
subspace MofU, its orthogonal is the subspace 

M^ := {v e V\(u\v) = 0, VM € M}. 

Remark. The pairing is an isomorphism if and only if its associated (square) matrix 
is nonsingular. In the case of nondegenerate pairings we have: 

(a) dim(L^) = dim(y). 
(b) dim(M) + dim(M-^) = dim(U)\ (M-^)^ = M for all the subspaces. 

3.2 Symmetry in Forms 

In particular consider the case U = V .\n this case we speak of a bilinear form on 
U. For such forms we have a further important notion, that of symmetry: 

Definition. We say that a form is symmetric, respectively antisymmetric or symplec-
tic, if (wi|w2) = {u2\u\) or, respectively, {u\\u2) = —(M2|WI), for all MI, W2 € U. 

One can easily see that the symmetry condition can be written in terms of the 
associated map 7 : U ^^ U* : {j(u)\v) = {u\v). 

We take advantage of the identification U = U** and so we have the transpose 
map 7* : L̂ ** = f/ -> U\ 
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Lemma. The form is symmetric if and only ifj = j * . It is antisymmetric if and only 

if] = -J*. 

Sometimes it is convenient to give a uniform treatment of the two cases and use 
the following language. Let 6 be 1 or —L We say that the form is ^-symmetric if 

(3.2.1) ( W I | M 2 > = € { U 2 \ U X ) . 

Example \. The space End(L^) with the form Tr(AB) is an example of a non-
degenerate synmietric bilinear form. The form is nondegenerate since it induces the 
isomorphism between U* (S> U and its dual U <S) U* given by exchanging the two 
factors of the tensor product (cf. L7.2). 

Example 2. Given a vector space V we can equip V 0 V* with a canonical symmetric 
form, and a canonical antisymmetric form, by the formula 

(3.2.2) {{vu (pi)\iv2, (pi)) := {(pi\v2)±{(p2\^\). 

On the right-hand side we have used the dual pairing to define the form. We will 
sometimes refer to these forms as standard hyperbolic (resp. symplectic) form. One 
should remark that the group GL{V) acts naturally on V 0 V* preserving the given 
forms. 

The previous forms are nondegenerate. For an 6-symmetric form ( , ) on V we 
have 

{vGV\(v,w)=0,'iweV} = {veV\ {w, v) = 0, VM; G V}. 

This subspace is called the kernel of the form. The form is nondegenerate if and only 
if its kernel is 0. 

3.3 Isotropic Spaces 

For bilinear forms we have the important notion of an isotropic and a totally isotropic 
subspace. 

Definition. A subspace V c U is isotropic if the restriction of the form to V is 
degenerate and totally isotropic if the restricted form is identically 0. 

From the formulas of the previous section it follows: 

Proposition. For a nondegenerate bilinear form on a space U, a totally isotropic 
subspace V has dimension dim V < dim U/2. 

In particular if dim f/ = 2m, a maximal totally isotropic subspace has at most 
dimension m. 
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Exercise. 

(1) Prove that a nondegenerate symmetric bilinear form on a space U of dimension 
2m has a maximal totally isotropic subspace of dimension m if and only if it is 
isomorphic to the standard hyperbolic form. 

(2) Prove that a nondegenerate antisymmetric bilinear form on a space U exists 
only if U is of even dimension 2m. In this case, it is isomorphic to the standard 
symplectic form. 

The previous exercise shows that for a given even dimension there is only one sym­
plectic form up to isomorphism. This is not true for symmetric forms, at least if the 
field F is not algebraically closed. Let us recall the theory for real numbers. Given 
a symmetric bilinear form on a vector space over the real number M there is a basis 
in which its matrix is diagonal with entries + 1 , - 1 , 0 . The number of 0 is the di­
mension of the kernel of the form. The fact that the number of -hl's (or of — I's) is 
independent of the basis in which the form is diagonal is Sylvester's law of inertia. 
The form is positive (resp. negative) definite if the matrix is +1 (resp. —1). Since 
the positive definite form is the usual Euclidean norm, one refers to such space as 
Euclidean space. In general the number of + I's minus the number of —I's is an 
invariant of the form called its signature. 

3.4 Adjunction 

For a nondegenerate 6-symmetric form we have also the important notion oi adjunc­
tion for operators on U. For T e End(L^) one defines T*, the adjoint of T, by 

(3.4.1) (w,r*i;) :={Tu,v). 

Using the matrix notation (w, u) = M'AI; we have 

(3.4.2) 
{Tu, v) = (Tu)'Av = u' T'Av = u'AA'^T'Av = u'AT^'v =^ T = A'^PA. 

Adjunction defines an involution on the algebra of linear operators. Let us recall the 
definition: 

Definition. An involution of an F-algebra /? is a linear map r h^ r* satisfying: 

(3.4.3) (r^)*=^V*, (r^^y = r. 

In other words r H> r* is an isomorphism between R and its opposite R^ and it is of 
order 2. Sometimes it is also convenient to denote an involution by r ^- r. 

Let us use the form to identify U with f/* as in 3.1, by identifying u with the 
linear form {j(u)\v) = (u,v). 

This identifies End(L^) = U<S^U'^ = U(S>U, With these identifications we have: 

(u 0 v)w = u(v, If), (a (g) b)(c <S)d) = a® (b, c)d, 

(3.4.4) (a 0 ty = sb®a, ir(a (g) Z?) = (b, a). 

These formulas will be used systematically in Chapter 11. 
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3.5 Orthogonal and Symplectic Groups 

Another important notion is that of the symmetry group of a form. We define an 
orthogonal transformation T for a form to be one for which 

(3.5.1) (w, v) = (Tu, Tv), for all u,v eU. 

Equivalently T*T = TT* = I (if the form is nondegenerate), in matrix notations. 
From 3.4.2 we have A - ^ r A r ^TA-^T'A = I or TAT = A, TA'^P = A'K 

One checks immediately that if the form is nondegenerate, the orthogonal trans­
formations form a group. For a nondegenerate symmetric form the corresponding 
group of orthogonal transformations is called the orthogonal group. For a nondegen­
erate skew-symmetric form the corresponding group of orthogonal transformations 
is called the symplectic group. 

We will denote by 0{V), Sp{V) ihQ orthogonal or symplectic group when there 
is no ambiguity with respect to the form. 

For explicit computations it is useful to have a matrix representation of these 
groups. For the orthogonal group there are several possible choices, which for a non-
algebraically closed field may correspond to non-equivalent symmetric forms and 
non-isomorphic orthogonal groups. 

If A is the identity matrix we get the usual relation T* = ^^ In this case the 
orthogonal group is 

0(n, F) := {X e GL(n, F) \ XX' = 1}. 

It is immediate then that for X e 0{n, F) we have det(X) = ±1 . Together with the 
orthogonal group it is useful to consider the special orthogonal group: 

SO(n, F) = {X e 0(n, F) | detX = 1}. 

Often one refers to elements in SO(n, F) SLS proper orthogonal transformations while 
the elements of determinant — 1 are called improper. 

Consider the case of the standard hyperbolic form 3.2.2 where U = V ^ V*, 
dim(U) = 2m is even. 

Choose a basis vt in V and correspondingly the dual basis v^ in V*. We see that 
I 0 lm\ _i 

the matrix of the standard hyperbolic form is A = ^ (note that A = A ^). 
I l/n ^1 

It is useful to consider the orthogonal group for this form, which for non-
algebraically closed fields is usually different from the standard form and is called 
the split form of the orthogonal group. 

Similarly for the standard symplectic form we have A = . ^̂  
I Im ^ 

A~^ = —A = A'. The standard matrix form of the symplectic group is 

. Notice that 

(3.5.2) Sp(2m, F) := {X e GL(m, F) | X'AX = A ov XAX' = A}. 

In the previous cases, writing a matrix T in block form a b 
c d 

, we see that 
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(3.5.3) 

(3.5.4) d' -V 

(hyperbolic adjoint) 

(symplectic adjoint) 

One could easily write the condition for a block matrix to belong to the corre­
sponding orthogonal or symplectic group. Rather we work on the real or complex 
numbers and deduce the Lie algebras of these groups. We have that {e^^Y = e^^\ 
{e^^)~^ = e~^^, hence: 

Proposition. The Lie algebra of the orthogonal group of a form is the space of 
matrices with X* = —X. 

From the formulas 3.5.3 and 3.5.4 we get immediately an explicit description of 
these spaces of matrices, which are denoted by so{2n, F), sp(2n, F). 

(3.5.5) 

(3.5.6) 

so(2n, F) := 

sp(2n, F) := 

a 
c 

a 
c 

b 
-a' 

b 
-a' 

; b,c skew-synmietric [ 

; b,c symmetric \ . 

Thus we have for their dimensions: 

dim(so(2n, F)) = 2n^ - n, dim(sp(2n, F)) = 2n^ + n. 

We leave it to the reader to describe so(2n + 1, F). The study of these Lie algebras 
will be taken up in Chapter 10 in a more systematic way. 

3.6 Pfaffian 

We want to complete this treatment recalling the properties and definitions of the 
Pfaffian of a skew matrix. 

Let y be a vector space of dimension 2n with basis et. A skew-symmetric form 
COA on V corresponds to a 2« x 2n skew-symmetric matrix A defined by aij := 
coA{ei,ej). 

According to the theory of exterior algebras we can think of COA as the 2-
covector^^ given by COA := Xl/<y ^tj^^ ^ ^^ = 1/2 J2i,j ^tj^^ ^ ^^• 

Definition. We define Pf(A) through the formula 

(3.6.1) (ol = n\ Pf(A)e^ A ̂ ^ A • • • A e^\ 

33 One refers to an element of / \ V* as a /:-covector. 
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Theorem. 

(i) For any invertible matrix B we have 

(3.6.2) Pf{BAB') = det(B)P/(A). 

(ii) det(A) = Pf{A)\ 

Proof, (i) One quickly verifies that COBAB' = {^^B)((I>A)- The identity (i) follows 
since the linear group acts as algebra automorphisms of the exterior algebra. 

The identity (ii) follows from (i) since every skew matrix is of the form BJicB\ 
where Jk is the standard skew matrix of rank 2k given by the direct sum of k blocks 

of size 2 X 2 ( J. The corresponding covector is ^y^ = Ylj=\ ^^^~^ ^ ^^^' 

Q\ = 0 , iik<n, Q\ =n\e^ Ae^ A'-'Ae'^^ PfiJn)-= 1-

The identity is verified directly. • 

From formula 3.6.2 it follows that the determinant of a symplectic matrix is 1. 

Exercise. Let jc/y = —Xji, i, j = 1 , 2^, be antisymmetric variables and X the 
generic antisymmetric matrix with entries Xij. Consider the symmetric group S2n 
acting on the matrix indices and on the monomial X12JC34.. .X2n-i2n- Up to sign 
this monomial is stabilized by a subgroup H isomorphic to the semidirect product 
Sn xZ/(2)" . Prove that 

(T(l)CT(2)-^a(3)cr(4) • • 'Xa(2n-l)a(2n)' 

creS2n/H 

Prove that the polynomial Pf{X) (in the variables which are the coordinates of a 
skew matrix) is irreducible. 

There is another interesting formula to point out. We will return to this in Chap­
ter 13. 

Let us introduce the following notation. Given X as before, k < n, and indices 
1 S i\ < ii < ''' < ilk S 2n we define the symbol [/i, ^2. • • •. hk\ to be the 
Pfaffian of the principal minor of X extracted from the rows and the columns of 
indices i\ < /2 < • • • < iik- If <̂ x •= 5Z/</ ^ij^t ^ ^j^ we have 

(3.6.3) Qxpicox) = ^ Yl ['1' *̂2, • • •, i2k]ei, A a^ 
I\<l2<-<l2k 

3.7 Quadratic Forms 

Given a symmetric bilinear form on L̂ , we define its associated quadratic form by 
Q(u) := (u\u). We see that Q(u) is a homogeneous polynomial of degree 2. We 
have Q(u -\- v) = {u -{- v\u + v) = Q(u) + Q{v) -j- 2{u\v) by the bilinearity and 
symmetry properties. Thus (if 2 is invertible): 
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\{Q{u^-v)-Q{u)-Q{v)) = {u\v). 

Notice that this is a very special case of the theory of polarization and restitution, 
thus quadratic forms or symmetric bilinear forms are equivalent notions (if 2 is in-
vertible).^4 

Suppose we are now given two bilinear forms on two vector spaces U, V. We 
can then construct a bilinear form onU ^V which, on the decomposable tensors, is 

(Ml (g) V\\U2 0 V2) = {Ui\U2){Vi\V2). 

We see immediately that if the forms are €1, 62-symmetric, then the tensor product is 
6162-symmetric. 

One easily verifies that if the two forms are associated to the maps 

j :U ^ U\ k:V -^ V\ 

then the tensor product form corresponds to the tensor product of the two maps. As 
a consequence we have: 

Proposition. The tensor product of two nondegenerate forms is nondegenerate. 

Iterating the construction we have a bilinear function on L̂ ®̂  induced by a bilin­
ear form on U. 

If the form is symmetric on U, then it is symmetric on all the tensor powers, but 
if it is antisymmetric, then it will be symmetric on the even and antisymmetric on the 
odd tensor powers. 

Example. We consider the classical example of binary forms ([Hilb]). 
We start from a 2-dimensional vector space V with basis e\,e2. The element 

ei A e2 can be viewed as a skew-symmetric form on the dual space. 
The symplectic group in this case is just the group 5L(2, C) of 2 x 2 matrices 

with determinant 1. 
The dual space of V is identified with the space of linear forms in two variables 

X, y where x, y represent the dual basis of ^1, ^2-
A typical element is thus a linear form ax + by. The skew form on this space is 

[ax + by, ex + dy] := ad — be = det 
a b 
c d 

This skew form determines corresponding forms on the tensor powers of V*. We 
restrict such a form to the symmetric tensors which are identified with the space of 
binary forms of degree n. We obtain on the space of binary forms of even degree, 
a nondegenerate symmetric form and, on the ones of odd degree a nondegenerate 
skew-symmetric form. 

The group SL(2, C) acts correspondingly on these spaces by orthogonal or sym­
plectic transformations. 

34 The theory in characteristic 2 can be developed but it is rather more complicated. 
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One can explicitly evaluate these forms on the special symmetric tensors given 
by taking the power of a linear form 

[M (g) w (8)... M, u 0 i; (g) • • • (g) f] = [M, U]". 

lfu=ax-\- by, v = ex -\- dy, we get 

Setting Uij := [x"~'y', JC"~^>^^] we get 

E (•) E (")«o-"-'-̂ 'c"-̂ ^ = E (^)(-i)H«^)HM"-. 

Comparing the coefficients of the monomials we finally have 

3.8 Hermitian Forms 

When one works over the complex numbers there are several notions associated with 
complex conjugation.^^ 

Given a vector space U over C one defines the conjugate space U to be the group 
U with the new scalar multiplication o defined by 

a o u :=au. 

A linear map from A : U -^ V to another vector space V, is the same as an antilinear 
map from U to V, i.e., a map A respecting the sum and for which A{au) = aA{u). 

The most important concept associated to antilinearity is perhaps that of a Her­
mitian form and Hilbert space structure on a vector space U. 

From the algebraic point of view: 

Definition. An Hermitian form is a bilinear map U x U -> C denoted by (w, i;) 
with the property that (besides the linearity in u and the antilinearity in v) one has 

(u, u) = (w, i;), VM, V e U. 

An Hermitian form is positive if ||M ||̂  := (u,u) > 0 for all M 7̂  0. 
A positive Hermitian form is also called a pre-Hilbert structure on U. 

^^ One could extend several of these notions to automorphisms of a field, or automorphisms 
of order 2. 
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Remark. The Hilbert space condition is not algebraic, but is the completeness of U 
under the metric ||M || induced by the Hilbert norm. 

In a finite-dimensional space, completeness is always ensured. A Hilbert space 
always has an orthonormal basis M, with (M,, UJ) — 8ij. In the infinite-dimensional 
case this basis will be infinite and it has to be understood in a topological way 
(cf. Chapter 8). The most interesting example is the separable case in which any 
orthonormal basis is countable. 

A pre-Hilbert space can always be completed to a Hilbert space by the standard 
method of Cauchy sequences modulo sequences converging to 0. 

The group of linear transformations preserving a given Hilbert structure is called 
the unitary group. In the finite-dimensional case and in an orthonormal basis it is 
formed by the matrices A such that A A = 1. 

The matrix A is denoted by A* and called the adjoint of A. It is connected with 
the notion of adjoint of an operator T which is given by the formula {Tu, v) — 
(M, T'V). In the infinite-dimensional case and in an orthonormal basis the matrix of 
the adjoint of an operator is the adjoint matrix. 

Given two Hilbert spaces H\, H2 one can form the tensor product of the Hilbert 
structures by the obvious formula (M 0 f, if (8) x) := (w, w)(v, x). This gives a pre-
Hilbert space H\ 0 7/2; if we complete it we have a complete tensor product which 
we denote by Hi^Hi. 

Exercise. If w/ is an orthonormal basis of H\ and Vj an orthonormal basis of H2, 
then Ui (8) Vj is an orthonormal basis of H\^H2. 

The real and imaginary parts of a positive Hermitian form (w, v) :=• S(u, v) + 
iA(u, v) are immediately seen to be bilinear forms on L̂  as a real vector space. 
S(u, u) is a positive quadratic form while A(u,v) is a nondegenerate alternating 
form. 

An orthonormal basis wi , . . . , w„ for L̂  (as Hilbert space) defines a basis for U 
as real vector space given by M I , . . . , w„, /wi , . . . , /M„ which is an orthonormal basis 
for S and a standard symplectic basis for A, which is thus nondegenerate. 

The connection between 5, A and the complex structure on U is given by the 
formula 

A(w, v) = S{u, iv), S(u, v) = —A(u, iv). 

3.9 Reflections 

Consider a nondegenerate quadratic form 2 on a vector space V over a field F of 
characteristic 7̂  2. Write \\vf = Q(v), (v, w) = UQ(V -\-W) - Q{v) - Q(w)). 

If u G V and Q(v) 7̂  0, we may construct the map Sy : w ^^ w — ^^^v-
Clearly Sy(w) = w; if u; is orthogonal to v, while Syiv) = —v. 

The map Sy is called the orthogonal reflection relative to the hyperplane orthog­
onal to f. It is an improper orthogonal transformation (of determinant —1) of order 
two {si = 1). 
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Example. Consider the hyperbolic space V of dimension 2. In a hyperbolic basis the 
matrices | ̂  ̂  | of the orthogonal transformations satisfy 

ac = bd = 0, cb -\-ad = I. 
a c\ 
b d\ 

0 1 
1 0 

\a b 
\c d = 

0 1 
1 0 

From the above formulas one determines the proper transformations 

0 

, and 

improper transformations which are the reflections ^(-a,i). 

Theorem (Cartan-Dieudonne). /f dim V = m, every orthogonal transformation of 
V is the product of at most m reflections. 

Proof Let T : V -> V be an orthogonal transformation. If T fixes a non-isotropic 
vector V, then T induces an orthogonal transformation in the orthogonal subspace 
f-̂ , and we can apply induction. 

The next case is when there is a non-isotropic vector v such that u := v — T(v) 
is non-isotropic. Then (D, U) = {v, v) — (u, T{v)), (M, U) = (v, v) — (u, T(v)) — 
{T(v), V) -f {T(v), Tiv)) = 2((i;, i;) - (u, Tiv))) so that | ^ = 1 and s^iv) = 
T(v). Now SuT fixes v and we can again apply induction. 

This already proves the theorem in the case of a definite form, for instance for 
the Euclidean space. 

The remaining case is that in which every fixed point is isotropic and for every 
non-isotropic vector v we have u :— v — T(v) is isotropic. We claim that if dim V > 
3, then: 

(1) V — T(v) is always isotropic. 
(2) V has even dimension 2m. 
(3) r is a proper orthogonal transformation. 

Let s := \ — T, and let Vi = ker 5 be the subspace of vectors fixed by T. 
Let V be isotropic and consider v^ which is a space of dimension n — I > n/2. 

Thus v-^ contains a non-isotropic vector w, and also Xi; — u; is non-isotropic for all 
k. Thus by hypothesis 

0 = Qisiw)) = Q{s{v - w)) = Qisi-v - w)). 

From these equalities follows 

0 = Q{s{v)) + Qisiw)) - lisiv), siw)) = Qisiv)) - 2isiv), siw)), 

0 = Qisiv)) -f Qisiw)) + 2(^(i;), siw)) = Qisiv)) + 2isiv), siw)). 

Hence Qisiv)) = 0. From (i; - Tiv), v - Tiv)) = 0 for all v follows iv - Tiv), 
w — Tiw)) = 0 for all i;, If. From the orthogonality of T follows that 

iv, 2w) + iv, -Tiw)) -h iv, -T-^w) = 0 
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for all V,WOT2-T -T-^ =0. Hence 2T - T^ - I =0OT s^ = (I - Tf = 0. 
We have, by hypothesis, that Vi = kers is a totally isotropic subspace, so 

2dim Vi < dim V. Since 5-̂  = 0 we have that s(V) C Vi, thus s(V) is made of 
isotropic vectors. Since dim V = dim5(V) + dim(ker^), it follows that V\ = s(V) 
is a maximal totally isotropic subspace and V is of even dimension 2m. We have that 
r = 1 + 5" has only 1 as an eigenvalue and so it has determinant 1, and is thus a 
proper orthogonal transformation. If Suj is any reflection, we have that SyjT cannot 
satisfy the same conditions as T, otherwise it would be of determinant 1. Thus we 
can apply induction and write it as a product of < 2m reflections, but this number 
must be odd, since Sw T has determinant — 1. So 5 ;̂ T is a product of < 2m reflections 
hence T = Su^iS^jT) is the product of < 2m reflections. 

In the case dim V = 2, we may assume that the space has isotropic vectors. 
Hence it is hyperbolic, and we have the formulas of the example. The elements 

_i (\\ ^^ reflections, and clearly the proper transformations are products of two 

reflections. D 

3.10 Topology of Classical Groups 

Over the complex or real numbers, the groups we have studied are Lie groups. In 
particular it is useful to understand some of their topology. For the orthogonal groups 
we have just one group 0(n,C) over the complex numbers. Over the real numbers, 
the group depends on the signature of the form, and we denote by 0(p,q;R) the 
orthogonal group of a form with p entries +1 and q entries —1 in the diagonal 
matrix representation. Let us study the connectedness properties of these groups. 
Since the special orthogonal group has index 2 in the orthogonal group, we always 
have for any form and field 0(V) = SO(V)USOiV)r] where r] is any given improper 
transformation. Topologically this is a disjoint union of closed and open subsets, so 
for the study of the topology we may reduce to the special orthogonal groups. 

Let us remark that if Ti, T2 can be joined by a path to the identity in a topological 
group, then so can T1T2. In fact if 0/(r) is a path with 0/(0) = 1, 0/(1) = 7], we 
take the path 0i (002(0-

Proposition. The groups SO(n,C), SO{n,W) are connected. 

Proof. It is enough to show that any element T can be joined by a path to the identity. 
If we write T as a product of an even number of reflections, it is enough by the 
previous remark to treat a product of two reflections. In this case the fixed vectors 
have codimension 2, and the transformation is essentially a rotation in 2-dimensional 
space. Then for the complex groups these rotations can be identified (in a hyperbolic 
basis) with the invertible elements of C which is a connected set. 50(2, M) is the 
circle group of rotations of the plane, which is clearly connected. D 

Things are different for the groups SO{p, q\R). For instance 50(1, 1; R) = M* 
has two components. In this case we claim that if p,q > 0, then SO{p, q; R) has two 
components. Let us give the main ideas of the proof, leaving the details as exercise. 
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Suppose p = I. The quadratic form can be written as Q(x, y) := x^ — Yll=\ yf-
The set of elements with x^ - ^11=1 yf = 1 ^^^ ^^^ connected components. The 
group SO(l,q; R) acts transitively on these vectors, and the stabilizer of a given 
vector is SO(q', R) which is connected. 

If p > 1, the set of elements X]f-i xj = l-{- Xlfz=i yf is connected. The stabilizer 
of a vector is SO(p — 1, ̂ ; R) so we can apply induction. 

Exercise. Prove that the groups GL(n, C), SLin, C), SL{n, R) are connected while 
GL(n, R) has two connected components. 

More interesting is the question of which groups are simply connected. We have 
seen in Chapter 4, §3.7 that SL{n, C) is simply connected. Let us analyze SO(n, C) 
and Sp(2n, C). We use the same method of fibrations developed in Chapter 4, §3.7. 
Let us treat Sp(2n, C) first. As for SL(n, C), we have that Sp{2n, C) acts transitively 
on the set W of pairs of vectors w, i; with [u,v] = 1. The stabilizer of e\, f\ is 
Sp{2{n - 1), C). Now let us understand the topology of W. Consider the projection 
(M, u) h^ M which is a surjective map to C^" — {0} with fiber at e\ the set f\ + ae\ + 
Hi>2 ^i^i + ^ifi^ ^ contractible space. 

Thisisaspecialcaseof Chapter 4, §3.7.1 for the groups 5/7(2(« — l), C) C / / C 
Sp(2n, C) where H is the stabilizer, in Sp(2n, C), of the vector ei. 

Thus 7ti(Sp{2n, C)) = 7ti(Spi2in - 1), C)). By induction we have: 

Theorem. Sp(2n, C) is simply connected. 

As for SO(n, C) we make two remarks. In Chapter 8, §6.2 we will see a 
fact, which can be easily verified directly, implying that SOin, C) and SO(n, R) 
are homotopically equivalent. We discuss SO{n, R) at the end of §5, proving that 
7ri(50(n,R)) = Z/(2). 

At this point, if we restrict our attention only to the infinitesimal point of view 
(that is, the Lie algebras), we could stop our search for classical groups. 

This, on the other hand, misses a very interesting point. The fact that the special 
orthogonal group is not simply connected implies that, even at the infinitesimal level, 
not all the representations of its Lie algebra arise from representation of this group. 

In fact we miss the rather interesting spin representations. In order to discover 
them we have to construct the spin group. This will be done, as is customary, through 
the analysis of Clifford algebras, to which the next section is devoted. 

4 Clifford Algebras 

4.1 Clifford Algebras 

Given a quadratic form on a space U we can consider the ideal J of T(U) generated 
by the elements M*̂ ^ - Q{u). 

Definition 1. The quotient algebra T{U)/J is called the Clifford algebra of the 
quadratic form. 
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Notice that the Clifford algebra is a generalization of the Grassmann algebra, which 
is obtained when (2 = 0. We will denote it by CIQ(U) or by Cl(U) when there is no 
ambiguity for the quadratic form. 

By definition the Clifford algebra is the universal solution for the construction of 
an algebra R and a linear map j : U -^ R with the property that j(u)^ = Q(u). Let 
us denote by (w, v) := l/2(Q(u + u) — Q(u) — Q(v)) the bilinear form associated 
to 2- We have in the Clifford algebra: 

(4.1.1) v,weU, => vw -h wv = (v -\- w)^ - v^ — u? = 2{v, w). 

In particular if i;, K; are orthogonal they anticommute in the Clifford algebra vw = 
—wv. 

If G D F is a field extension, the given quadratic form Q onU extends to a 
quadratic form QG on UG '= U (S>F G. By the universal property it is easy to verify 
that 

CIQ,{UG) = CIQ{U)^FG. 

There are several efficient ways to study the Clifford algebra. We will go through 
the theory of superalgebras ([ABS]). 

One starts by remarking that, although the relations defining the Clifford algebra 
are not homogeneous, they are of even degree. In other words, decompose the tensor 
algebra T{U) = TQ{U) 0 Tx{U), where To{U) = 0^ (g)̂ ^ U, Ti(U) = 0^ 0^^+^ U, 
as a direct sum of its even and odd parts. The ideal / defining the Clifford algebra 
decomposes also as / = /Q 0 /i and Cl(U) = To(U)/Io 0 T\{U)/I\. This suggests 
the following: 

Definition 2. A superalgebra is an algebra A decomposed as AQ 0 Ai, with AiAj C 
Ai^j, where the indices are taken modulo 2?^ 

A superalgebra is thus graded modulo 2. For a homogeneous element a, we set 
d{a)io be its degree (modulo 2). We have the obvious notion of (graded) homomor-
phism of superalgebras. Often we will write AQ = A'^, A\ = A~. 

Given a superalgebra A, a superideal is an ideal I = IQ^ Ii, and the quotient is 
again a superalgebra. 

More important is the notion of a super-tensor product of associative superalge­
bras. 

Given two superalgebras A, B we define a superalgebra: 

A(S^B := (Ao 0 5o 0 Ai (g) Bi) 0 (AQ 0 ^i 0 AI 0 ^o), 

(4.1.2) (a 0 Z7)(c 0 d) := (-if^^^'^^'^ac 0 bd. 

It is left to the reader to show that this defines an associative superalgebra. 

^̂  Superalgebras have been extensively used by physicists in the context of the theory of 
elementary particles. In fact several basic particles like electrons are Fermions, i.e., they 
obey a special statistics which is suitably translated with the spin formalism. Some further 
proposed theories, such as supersymmetry, require the systematic use of superalgebras of 
operators. 
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Exercise. A superspace is just a Z/(2) graded vector space U = UQ^ Ui,we can 
grade the endomorphism ring End(U) in an obvious way: 

End{U)o = EndiUo) 0 End(f/i), End(f/)i = hom(f/o, ^i) 0 hom([/i, UQ). 

Prove that, given two superspaces U and V, we have a natural structure of superspace 
on L̂  0 y such that End(U O V) is isomorphic to End([/)(8) End(y) as superalgebra. 

In this vein of definitions we have the notion of a supercommutator, which on 
homogeneous elements is 

(4.1.3) {a, b} := ab - (-l)^^^^^^^^^a. 

Definitions 4.1.2,3 are then extended to all elements by bilinearity. 
Accordingly we say that a superalgebra is supercommutative \i{a,b} = 0 for all 

the elements. For instance, the Grassmann algebra is superconmiutative.-^^ 
The connection between supertensor product and supercommutativity is in the 

following: 

Exercise. Given two graded maps /, 7 : A, 5 -> C of superalgebras such that the 
images supercommute we have an induced map A^B -^ C given hy a <^ b -^ 
i{a)j{b). 

Exercise. Discuss the notions of superderivation (D{ab) = D{a)b + (—1)̂ ^̂ ^ 
aD(b)), supermodule, and super-tensor product of such supermodules. 

We can now formulate the main theorem: 

Theorem 1. Given a vector space U with a quadratic form and an orthogonal de­
composition U = U\ ^ U2, we have a canonical isomorphism 

(4.1.4) Cl{U) = Cl(Ui)<^ CKUi). 

Proof First consider the linear map j : U -^ Cl(Ui)<S> Cl(U2) which on Ui is 
j(ui) := Ml (g) 1 and on U2 is j{u2) = 1 0 M2-

It is easy to see, by all of the definitions given, that this map satisfies the uni­
versal property for the Clifford algebra and so it induces a map j : Cl{U) -^ 
Cl(Ui)<S)Cl(U2). 

Now consider the two inclusions of Ui, f/2 in [/ which define two maps Cl{U\) -^ 
Cl{U), CKU2) -> Cl{U). 

It is again easy to see (since the two subspaces are orthogonal) that the images 
supercommute. Hence we have a map / : Cl{lJ\)^ Cl{U2) -^ Cl(U). 

On the generating subspaces t/, L'̂ i (g) 1 0 1 (g) f/2, the maps 7, / are isomorphisms 
inverse to each other. The claim follows. • 

^̂  Somedmes in the literature just the term commutative, instead of supercommutative, is used 
for superalgebras. 
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For a 1-dimensional space with basis u and Q(u) = of, the Clifford algebra has basis 
1, u withM^ = a. 

Thus we see by induction that: 

Lemma 1. If we fix an orthogonal basis e\,... ,en of the vector space U, then the 
2" elements ei^ei^... /̂̂ , /i < /2 < . . . < ik give a basis ofCl(U). 

For an orthogonal basis et we have the defining commuting relations ef = 
Qiei), etej = —ejCt, i ^ j . If the basis is orthonormal we have also ej = I. 

It is also useful to present the Clifford algebra in a hyperbolic basis, i.e., the 
Clifford algebra of the standard quadratic form on V 0 V* which is convenient to 
renormalize by dividing by 2, so that Q((v, 0)) = (0 | v). If V = C we denote this 
Clifford algebra by C2„. 

The most efficient way to treat Cin is to exhibit the exterior algebra / \ V as an 
irreducible module over Cl{V 0 V*), so that Cl(V 0 V*) = End(A V). This is 
usually called the spin formalism. 

For this let us define two linear maps /, j from V, V* to End(/\ V) : 

i{v)(u) := V Au, 
k 

(4.1.5) j((p){vi AV2...AVk) :=^{-iy~^{(p\vt)vi A i;2 . . . i5 , . . . A i;^, 
r = l 

where i;, means that this term has been omitted. 
Notice that the action of / (v) is just the left action of the algebra / \ V while j (cp) 

is the superderivation induced by the contraction by (̂  on V. 
One immediately verifies 

(4.1.6) i(vf = j{(pf = 0, i{v)j(cp)^j{(p)iiv) = {(p\v). 

Theorem 2. The map i-\-j : V 0 V* -> End(/\ V) induces an isomorphism between 
the algebras Cl{V 0 V*) and End(/\ V) (as superalgebras). 

Proof From 4.1.6 we have that / + j satisfies the universal condition defining the 
Clifford algebra for 1/2 of the standard form. 

To prove that the resulting map is an isomorphism between Cl(V 0 V*) and 
End(/\ V) one has several options. One option is to show directly that / \ V is an 
irreducible module under the Clifford algebra and then remark that, if n = dim(y) 
then dimC/(V 0 V*) = 2̂ "̂ = dimEnd(A V)- The second option is to analyze 
first the very simple case of dim V = I where we verify the statement by direct 
inspection. Next we decompose the exterior algebra as the tensor product of the 
exterior algebras on 1-dimensional spaces. Each such space is a graded irreducible 2-
dimensional module over the corresponding Clifford algebra, and we get the identity 
by taking super-tensor products. • 

The Clifford algebra in the odd-dimensional case is different. Let us discuss the 
case of a standard orthonormal basis, ^i, ^2, • • •. ^2n+i- Call this Clifford algebra 
C2n+1-
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Lemma 2. The element c := e\e2 . . . ^2n+i ^^ central and c^ = (—1)". 

Proof. From the defining commutation relations we immediately see that. 

ac = eieie2 . . . ^ / - l ^ / . . . ^2n+l = ( -1 ) ' " ^^1^2 • • • ̂ / - l ^ ? • • • ̂ 2n+i; 

cei = exe2 . . . ^ /_ i^ / . . . ^2n+î / = (-l)^""^^"'^i^2 • • • ei-xe] . . . ^2n+i-

As for c^, we have again by commutation relations: 

e\e2 . . . ^2n+1^1^2 . • • ^2n+l = ^?^2 • • • ̂ 2n+1^2 • • • ^2n+l 

= ^2 . • . ^2n+1^2 • • . ^2n+l = " ^ 2 ^ 3 • • • ̂ 2n+1^3 • • • ^2n+l 

= - ^ 3 . . . ^ 2 n + 1 ^ 3 •••^2A2-hl = • • • = ( - 1 ) " . ^ 

Take the Clifford algebra Cin on the first In basis elements. Since ^2n+i = 
^2n^2n-i • • • ^\C, wc scc that C^n^x = Cin + C2n<̂ . We havc provcd that: 

Theorem 3. C2„+i = C^n ^F F[C]. IfF[c] = F ® F, which happens if (-IT has a 
square root in F, then Cin+x is isomorphic to Cm 0 Cin-

4.2 Center 

One may apply the previous results to have a first study of Clifford algebras as fol­
lows. Let L̂  be a quadratic space of dimension n over a field F and let G = F be 
an algebraic closure. Then U (S)F F is hyperbolic, so we have that CIQ{U) (8)F G is 
the Clifford algebra of a hyperbolic form. Thus if n = 2k is even, CIQ(U) (S>F G = 
M2k(G) is the algebra of matrices over G, while if n = 2/: + 1 is odd, we have 
CIQ(U) (SIF G = M2k(G) 0 M2Jt(G). We can draw some consequences from this 
statement using the following simple lemma: 

Lemma. Let R be an algebra over a field F with center Z and let G be a field 
extension of F. Then the center ofR^fGisZ^fG. 

Proof Let w ̂  be a basis of G over F. Consider an element s :=:J2i^i^^i ^ R^FG. 
To say that it is in the center implies that forreR we have 0 = rs — sr = 
^iirri — rir) (g) M/. Hence rrt — r^r = 0 for all / and r, G Z for all /. The converse 
is also obvious. D 

As a consequence we have that: 

Proposition. The center ofClgiU) is F ifn is even. Ifn = 2k+l, then the center is 
F + cF, where c := M1W2 . . . U2k-\-\ for any orthogonal basis wi, ^2^ • • • ^ J^2k-\-i ofU. 

Proof. First, one uses the fact that the center of the algebra of matrices over a field 
is the field itself. Second, up to multiplying c by a nonzero scalar, we may assume 
that the basis is orthonormal. Finally we are reduced to the theory developed in the 
previous paragraph. D 

Remark. In the case of odd dimension the center may either be isomorphic to F 0 F 
or to a quadratic extension field of F. This depends on whether the element c^ e F* 
is a square or not (in F*). 
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4.3 Structure Theorems 

It is also important to study the Clifford algebras C{n), C'(n) over M for the negative 
and positive definite forms — ^ " xf, Yll xf. 

Forn = IwegetC(l) :=R[x]/ix^-^\) = C, ^ (1 ) :== R W / U ^ - l ) = R0M. 
For n = 2 we get C(2) := H, the quaternions, since setting / := e\, j := 62, the 

defining relations are /^ = — 1, j ^ = —l,ij = —ji. 
C\2) is isomorphic to M2(M), the 2 x 2 matrices over R. In fact in this case the 

defining relations are /^ = \, j ^ = \,ij = —ji, which are satisfied by the matrices: 

1 0 
0 - 1 J '= 

0 1 
1 0 -Ji =iJ = 

0 1 
- 1 0 

To study Clifford algebras in general we make a remark. Let (2 be a nondegen-
erate quadratic form on the space U. Decompose U into an orthogonal direct sum 
U = U\^ U2, with dim U\ = 2. Denote by Q\, Q2 the induced quadratic forms on 
UuU2. 

Fix an orthogonal basis u,v of U\ and an orthogonal basis e\,... ,ek of U2. Let 
u^ = a, v^ = P, Xi := e^ = Q{ei) and set 6 \= a^ ^ 0, since the form is 
nondegenerate. We have the commutation relations: 

uei = —eiu, vet = —vet, uvei = etuv, uv = —vu, (uv)^ — —8, 

Moreover, uuv = —uvu, vuv = —uvv. If we set // := uvei we deduce the follow­
ing commutation relations: 

From these commutation relations we deduce that the subalgebra F{fi,..., f^) 
of the Clifford algebra generated by the elements ft is a homomorphic image of the 
Clifford algebra on the space U2 but relative to the quadratic form —^Qi- Moreover, 
this subalgebra commutes with the subalgebra F(u,v) = CIQ^ (Ui). We have thus a 
homomorphism: 

CIQ,(U,)^CLSQ2(U2)-^CIQ{U). 

Proposition. The map i is an isomorphism. 

Proof. Since the dimensions of the two algebras are the same, it is enough to show 
that the map is surjective, i.e., that the elements w, f, // generate CQ{U). This is 
immediate since et = —8~^uvfi. D 

We can apply this proposition to the Clifford algebras C(n), C'{n) over R for the 
negative and positive definite quadratic form. In this case 5 = 1, so we get 

C{n) = e 0 C\n - 2), C\n) = MiCR) 0 C(n - 2). 

Iterating, we get the recursive formulas: 

C(n) = C(4k) (8) C{n - 4k), C\n) = C\4k) (g) C\n - 4k). 

In order to complete the computations we need the following simple facts: 
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Lemma. 

(1) If A, B are two F-algebras and Mh(A), MkiB) denote matrix algebras (over 
A, B respectively), we have 

Mh{A) ^F MkiB) = MhkiA ^F B). 

(2) M 0 R e = M4(R), e(8)RC = M2(C). 

Proof. (1) is an easy exercise. (2) can be shown as follows. We have a homomor-
phism V̂  : H (8)R M -^ EndRH given by V (̂a (g) b){c) := acb which one easily 
verifies is an isomorphism. 

For the second consider C C IHI in the usual way, and consider H as vector space 
over C by right multiplication. We have a homomorphism 0 : H (8)R C -^ Endc HI 
given by 0(a 0 b)(c) := acb which one easily verifies is an isomorphism. D 

We deduce the following Hst for C(n), n = 0, 1, 2 . . . , 8: 

R, C, H, H e M , M2(W}, M4(C), MgCE), M8(M)0M8(R), Mi6(M) 

mdperiodicity 8: C{n) = Mie(C{n - S))?^ 

The list of the same algebras but over the complex numbers 

C(n) (g)R C := Ccin) = C^(n) = C\n) OR C 

is deduced by tensoring with C as 

c, c e c , M2(C), M2(C)eM2(C), M4(C) 
and periodicity 2: Cc(n) = M2(Cc(« — 2)). Of course over the complex num­
bers the form is hyperbolic, so we get back the result we already knew by the spin 
formalism. 

4.4 Even Clifford Algebra 

It is also important to study the degree 0 part of the CHfford algebra, i.e., Cl^{U), 
since it will appear in the definition of the spin groups. This is the subalgebra of 
CIQ{U) spanned by products u\U2 >. .uik of an even number of vectors in U. Let 
dim U = 5 + 1, and fix an orthogonal basis which we write M, ^ i , . . . , ^̂  to stress the 
decomposition U = Fu® U\ Let Q' be the restriction of Q to U'. Define /, := uet. 
The f are elements of Cl'^iU). Let 8 := u^ = Q(u). 

We have from the commutation relations: 

^ # 7' fifj = uciuej = —uetejU = uejCiU = —uejuet = —fjf, 

fi = ueiuei = —u e\. 

It follows then that the elements fi satisfy the conmiutation relations for the Clifford 
algebra of the space U' equipped with the form -hQ. Thus we have a homomor­
phism/ : Cl-sQ'iU') -> Cl^(U). 

38 This is related to the Bott periodicity theorem for homotopy groups and ^-theory. 
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Proposition 1. The map i is an isomorphism. 

Proof. Since the dimensions of the two algebras are the same it is enough to show 
that the map is surjective, i.e., that the elements ft generate CgiU). Let a = u^ :^0. 
We have that et = ot'^ufi. Moreover fu = uetu = —ufi. Take an even monomial 
in the elements u,e\,... ,es, such that u appears h times and the ei appear 2k — h 
times. Substitute et = a"^w/). Up to a nonzero scalar, we obtain a monomial in M, / 
in which u appears 2k times. Using the commutation relations we can bring u^^ in 
front and then use the fact that this is a scalar to conclude. D 

If we apply the previous result to C(«), we obtain C^{n) = C{n - \). 
As preparation for the theory of the spin group let us make an important remark. 
Let us take a space V with a nondegenerate synmietric form {a, b) and let C(y) 

be the Clifford algebra for \/2{a, b).^'^ Consider the space L := {ab \a,b e V} C 
C+(y) and the map a : /\^ V -^ C+(y), a(v A w) := [i;, w]/2. Fixing an orthog­
onal basis ei for V we have a(ei A ej) = etej, i < j . From Lemma 1, 4.1 it then 
follows that a is injective, so we identify /\^ V C C"^(V). 

Proposition 2. L = F e /\^ V is a Lie subalgebra of C+(V), [L,L] = /\^ V. 
Under the adjoint action, V is an L-submodule for which f\ V is isomorphic to the 
Lie algebra of SO(V). 

Proof ab-\-ba = (a, b) means that aZ? = ^ + {a, b)/2 so ab = a Ab-\-(a, b)/2, 
ya,b e y . It follows that L = F 0 /\^ V is the span of the products ab,a,b e V. 
Next, given a,b,c,d e V "we have (applying the relations): 

cdab = abed 4- [(b, d)ac + {a, d)cb — {a, c)db — (b, c)ad]. 

Hence [cd, ab] = [(b, d)ac + (a, d)cb — {a, c)db — {b, c)ad] 

= l/2{(b, d)[a, c] + (a, d)[c, b] - (a, c)[J, b] - (b, c)[a, d]}. 

So L is a Lie algebra and [L, L] c /\^ V. Furthermore 

(4.4.1) [c Ad,a Ab] = (b, d)a Ac -\- (a,d)c Ab - (a, c)d Ab - (b, c)a A d. 

(4.4.2) [ab, c] = {b, c)a - {a, c)b, [a Ab,c] = (b, c)a - (a, c)b. 

Then 

{[a A b, c], d) = (b, c)(a, d) - {a, c)(b, d) 

is skew-symmetric as a function of c, d. This shows that L acts as so{V). An element 
of L is in the kernel of the action if and only if it is a scalar. Of course we get F from 
the elements a^. 

Since / \ V and soiV) have the same dimension we must have the isomor­
phism. D 

^̂  The normalization 1/2 is important to eliminate a lot of factors of 2 and also reappears in 
the spin formahsm. 
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4.5 Principal Involution 

The Clifford algebra has an involution (cf. 3.4.3). 
Consider the embedding of V in ClQ(Vy. This embedding still satisfies the 

property /(i;)^ = Q(v), and hence it extends to a homomorphism * : CIQ(V) -> 
ClQ(Vy. In other words there is an antihomomorphism * : CIQ{V) -> C/g(V) 
such that u* = u, Vu G V. The homomorphism r -> (r*)* is the identity on V and 
therefore, by the universal property, it must be the identity of CIQ{V). This proves 
the existence of an involution, called the principal involution on CIQ{V), such that 
u* = u, Vi; G V. 

Remark. The subalgebra C/g(V) is stable under the principal involution. 
In fact, for the elements defined in 4.4, we have f* = {ueiY = e*u* = etu = 

-fi-
This formula could of course be defined in general; one could have defined an 

involution setting u* := —v. For C(l) = C this last involution is just complex 
conjugation. For C(2) = HI it is the standard quaternion involution q = a -{- bl + 
cj -\- dk\-^ q := a — bi — cj — dk. 

5 The Spin Group 

5.1 Spin Groups 

The last of the groups we want to introduce is the spin group. Consider again the 
Clifford algebra of a quadratic form 2 on a vector space V over a field F. Write 
lli^ll' = Q(v), (V, w) = \{Q(v + w)- Q(v) - Qiw)), 

Definition 1. The Clifford group r{V, Q) is the subgroup of invertible elements 
X e ClQ(Vy with xVx'^ = V. The Clifford group r+ (y , Q) is the intersection 

r+(V,G):=r(v,G)nc/+(y). 
Let X e r ( y , Q) and w G V. We have {xux'^)^ = xu^x~^ = Q(u). Therefore 

the map u \-^ xux"^ is an orthogonal transformation of V. We have thus a homo­
morphism TT : r(V, Q) -^ 0(V). If v,w e V and Q(v) y^ 0, we have that v is 
invertible and 

V = , VW -^ WV = 2(VyW), VWV z= —-——-V — W. 

Q(v)' Qiv) 

The map w -^ w — ̂ ^^v is the orthogonal reflection r^ relative to the hyper-
plane orthogonal to v. Thus conjugation by i; induces —r̂ . If dim V is even, it is an 
improper orthogonal transformation. 

We have that v e r{V, Q) and that a product v\V2. •. vik of an even number of 
such V induces an even product of reflections, hence a special orthogonal transforma­
tion in V. By the Cartan-Dieudonne theorem, any special orthogonal transformation 
can be so induced. Similarly, a non-special (or improper) orthogonal transformation 
is the product of an odd number of reflections. We obtain: 
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Proposition 1. The image of the homomorphism n : T{V, Q) -> 0{V) contains 
SO{V). /f dim V is even, n is surjective. If dim V is odd, the image ofrt is SO{y). 

Proof Only the last statement has not been checked. If in the odd case re were sur­
jective, there is an element x € r(V, Q) with xvx ^ = —u, Vî  G V. It follows that 
xcx~^ = —c which is absurd, since c is in the center. D 

The kernel of n is composed of elements which commute with the elements of 
V. Since these elements generate the Clifford algebra, we deduce that Ker TT is the set 
Z* of invertible elements of the center of CIQ{V). We have thus the exact sequence: 

(5.1.1) 1 -> Z* -> r ( y , Q) -^ 0{V), 

li n = dim V is even the center is the field F, otherwise it is the set a + ^c, 
a, P e F and c := MI W2 • • • ti2k-\-i for any given orthogonal basis MI , W2. • • • ^ ^2k-\-i of 
U (cf. 4.2). Let us consider now r^(V, Q), its intersection with the center is clearly 
F*. Since every element of 0(V) is a product of reflections, we deduce that every 
element y of r ( V, Q) is a product aui i;2 • • î t̂. of an element a e Z* and elements 
Vi e V. If dim V is odd, by Proposition 1 we can assume that this last product is even 
(k = 2h). If y € r+ (y , Q) we deduce a € F*. If dim V is even we have Z* = F* 
and so again, if y € r"^(V, Q) we deduce that k = 2h is even. The image of y in 
0(V) is contained in SO(V), and we have an exact sequence: 

(5.1.2) 1 -> F* -> r+(V, Q) - ^ SO(V) -^ 1. 

Let us compute N(r) := rr* when r — v\V2" -Vj e T{V, Q). We have r* = 
VjVj-\.. .v\ and by easy induction we obtain 

(5.1.3) rr^ = Q{v,)Q{v2)...Q{vj)eF\ 

Lemma. The map r -> N{r) = rr* restricted to T^{V, Q) is a homomorphism 
toF\ 

Proof For two elements r = v\V2 ... Vj, s = u\U2 .. • Uh wehave A/̂ (r) = f]/ 2(^/) ' 
^(^) = Y\k Q(^k) and ^(r^) = fl GC /̂) FI^ GC"^)- Every element of r+ (y , Q) is 
of the form ai'ii;2... f2;, Qf G F* and the claim follows from 5.1.3. D 

Proposition 2. f^j F/?̂  L/^ algebra ofV'^iV, Q) is the Lie algebra L of 4.4. 
(b) Given ab e L we have N(Qxip{ab)) = exp(2(tz, b)). 

Proof (a) First, taking ab e Lwt claim that exp(r ab) e r+( V, g) , V^ 
Clearly cxp(tab) e Cl'^(V), on the other hand, by Proposition 4.4, we have 

[ab, V] c V. Hence exp(t ab)V Qxp(-t ab) C V, and cxp(t ab) is by definition 
in the CHfford group. To prove that L is the entire Lie algebra V of r+(V, Q), we 
remark that L and V induce the same Lie algebra so(V) by acting on V. In both 
cases the kernel of the Lie algebra action is the scalars. 

(b) Qxp(ab)* = exp(ba) = exp(—ab -h 2{a, b)) = Qxp(—ab) exp(2(fl, b)). D 
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Example. For V = R^ with the negative definite quadratic form, we have seen that 
C(3) = IH 0 H and that C"^(3) = M. From the preceding analysis, we may explicitly 
identify C^(2) = H by setting ( := e\e2, j := ^1^3 and k := ^i^2^i^3 = ^2^3- Let 
us consider c = ^i^2^3 which generates the center of C(3). The map i; i-> ci; is a 
linear map which embeds V into the subspace H^ of C^(2) = HI of quaternions q 
with q = —q. 

We claim that r"^(R^, Q) = H*, the group of all invertible quaternions. 
In fact we have the elements cv with u / 0 which are the nonzero quaternions in 

H^, and we leave to the reader the easy verification that these elements generate the 
group H*. 

Definition 2. The spin group is the subgroup: 

(5.1.4) Spin(y) := {r e r+(V, Q) \ N(r) = 1}. 

We assume now that F is the field of real numbers and Q is definite, or F is the 
complex numbers. 

Theorem, (a) The spin group is a double cover of the special orthogonal group. We 
have an exact sequence 1 —> ±1 -> Spin(V) —> SO(V) -^ 1. 

(b) The Lie algebra o/Spin(V) is X^ V = [L, L] (notations of 4.4). 

Proof (a) Consider r := U1U2 . . . fiy, and compute N{r) = H^ii 2(^i)- If we are 
in the case of complex numbers we can fix an / G C so that f^N(r) = 1 and 
N(fr) = 1. Similarly, if F = E and Q is definite, we have that N(r) > 0 and we 
can fix an / € R so that f^N{r) = 1. In both cases we see thatSpin(V) —^SO{V) 
is surjective. As for the kernel, if / G F* we have N{f) = f^.So f e Spin(y) if 
andonly if / = ±1 . 

(b) Since the spin group is a double cover of SO{V) it has the same Lie algebra, 
which is [L,L] = so{V) by Proposition 4.4. n 

When V = F" with form - X^Li -̂ f ^e denote Spin(V) = Spin(n, F). 

Example. For V = R^ with the negative definite quadratic form, we have seen that 
r"^(R^, Q) = H*, the group of all invertible quaternions, hence: 

Spin(3, R) = {̂  G IH I ^^ = 1}, q=a^-bi^- cj + dk, 

N(q) = qq=a^ + b^ + c^+d\ 

Therefore, topologically Spin(3, R) = 5^, the 3-dimensional sphere. 
As groups, M* = /?+ X SU{2, C), Spin(3, R) = SU{2, C) = Sp(l). This can 

be seen using the formalism of 5.2 for H. 

q=a-h jp, N{q) = aa + ^^, (a + JP)j = - ^ + ja. 

Formula 5.2.1 expresses q as the matrix 

^ •= P a 
Niq) = det(q) = a a + ^)S. 

The previous statements follow immediately from this matrix representation. 
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If we take F = C, the spin group is an algebraic group (see next chapter) so 
we have the algebraic form Spin(n, C). If we take F =R and the negative definite 
quadratic form we have the compact form Spin(n, M) of the spin group. 

The main point is that the extension 1 ^- ±1 -^ Spin(A7, R) —> SO(n, R) ^- 1 
(n > 2) is not split, or in better words, that Spin(n, R) is a connected and simply 
connected group. 

Let us sketch the proof using some elementary algebraic topology. First, the map 
Spin(n, R) - ^ SO(n, R) is a locally trivial fibration (as for all surjective homomor-
phisms of Lie groups, cf. Chapter 4, 3.7). Since SO(n, R) is connected it is enough 
to exhibit a curve connecting dbl € Spin(«, R). Since Spin(« — 1, R) C Spin(«, R) 
it is enough to look at Spin(2, R). 

In this case the Clifford algebra C(2) is the quaternion algebra. The space V is 
spanned by /, y and C+(2) = C = R + Rk (k = ij). 

Spin(2, R) = U{\) = {a € C I |a| = 1} = {cos0 + sin0 ^ = ^^^} 

and we have, from ^ [ = —(^, k^j = —jk 

from which the double covering and the connectedness is clear. 
For the simple connectedness of Spin(n, R), we need some computations in ho-

motopy theory. Basically we need to compute the fundamental group of the special 
orthogonal group and prove that 

;ri(50(n,R)) = Z/(2), Vn > 3. 

This can be seen by considering the transitive action of SO{n, R) on the n — 1-
dimensional sphere S^~^ by rotations. The stabilizer of a given point is SO{n — 1, R), 
and thus 5""^ = SO{n, R)/SO{n - 1, R). We thus have that SO{n, R) fibers over 
S^~^ with fiber SO(n — 1, R). We have therefore an exact sequence of homotopy 
groups: 

^2(5""^) -^ nx{SO{n - 1,R)) -> 7ii(S0{n,R)) -^ 7ri(r-^). 

If n > 3, Jr2(5«-i) = 7ri(5"-i) = 0. Hence 7ri(S0(n - 1,R)) = 7ri(50(n,R)) 
and we have Ti:i(SO(n, R)) = 7ri(SO(3, R)), Vn > 3. For n = 3 we have seen that 
we have a double covering 1 -> Z/(2) -^ SU(2X) -> 50(3, R) -^ 1. Since 
5/7(2, C) = 5^, it is simply connected. The exact sequence of the fibration gives the 
isomorphism 

7ri(5^) = 0 -> 7ri(50(3, R)) -> Z/(2) = 7ro(Z/(2)) -> 0 = 7ro(5^). 

For further details we refer to standard texts in algebraic topology (cf. [Sp], [Hat]). 
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6 Basic Constructions on Representations 

6.1 Tensor Product of Representations 

Having the formalism of tensor algebra we can go back to representation theory. 
Here representations are assumed to be finite dimensional. 

The distinctive feature of the theory of representations of a group, versus the 
general theory of modules, lies in the fact that we have several ways to compose 
representations to construct new ones. This is a feature that groups share with Lie 
algebras and which, once it is axiomatized, leads to the idea of Hopf algebra (cf. 
Chapter 8, §7). 

Suppose we are given two representations V, W of a group, or of a Lie algebra. 

Theorem. There are canonical actions on V*, V ^ W and hom(y, W), such that 
the natural mapping V* 0 W -^ hom( V, W) is equivariant. 

First we consider the case of a group. We already have (cf. Chapter 1, 2.4.2) 
general definitions for the actions of a group on hom(V, W)\ recall that we set 
(gf)(^) •= g(f(g~^))' This definition applies in particular when W = F with 
the trivial action and so defines the action on the dual (the contragredient action). 

The action on V (g) W is suggested by the existence of the tensor product of 
operators. We set g(v (g) w) := ^i; 0 gw. In other words, if we denote by ^i , Q2, Q 
the representation maps of G into: GL{V), GL{W), GLiV (g) W) we have Q{g) = 
Q\(g) 0 Qiig)- Summarizing 

= gif(g-')). 

= {(l>\g-'v), 

= gv (S) gw. 

for hom(y, W), igf)(v) 

forV*, {g(l>\v) 

for V (S>W, giv (g) w) 

We can now verify: 

Proposition 1. The natural mapping / : W (g) V* -> hom(y, W) is equivariant. 

Proof. Given geG,a = w<S^(pe W (g) V*, we have ga — gw ^ gcp where 
{g(p\v) = {(p\g~^v). Thus, (ga)(v) = {g(p\v)gw = {(p\g~^v)gw = g{a(g-^v)), 
which is the required equivariance by definition of the action of G on hom( V, W). D 

Let us now consider the action at the level of Lie algebras. 
First, let us assume that G is a Lie group with Lie algebra Lie(G), and let us 

consider a one-parameter subgroup exp(rA) generated by an element A e Lie(G). 
Given a representation ^ of G we have the induced representation dg of Lie(G) 

such that ^(exp(rA)) = Qxp(tdQ{A)). In order to understand the mapping dg it is 
enough to expand ^(exp(r A)) in a power series up to the first term. 

We do this for the representations V*, V (S> W and hom(y, W). We denote the 
actions on V, W simply as gv or Aw both for the group or Lie algebra. 

Since (cxp(tA)(p\v) = {(p\ exp(-tA)v) the Lie algebra action on V* is given by 
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{A(p\v) = {(p\ - Av). 

In matrix notation the contragredient action of a Lie algebra is given by minus the 
transpose of a given matrix. 

Similarly we have the formulas: 

(6.1.1) A(v<Siw) = Av<S)W + v(S> Aw, (A/)(i;) = Aif(v)) - f(A(v)). 

for the action on tensor product or on homomorphisms. As a consequence we have: 

Proposition l.IfG is a connected Lie group 

homcCV, W) = {f e hom(V, W)\Af = 0, A G Lie(G)}. 

Proof. Same as Chapter 4, Remark 1.4 on fixed points. D 

One final remark, which is part of the requirements when axiomatizing Hopf 
algebras, is that both a group G and a Lie algebra L have a trivial 1-dimensional 
representation, which behaves as unit element under tensor product. 

On the various algebras T(U), S(U), /\U the group GL(U) acts as automor­
phisms. Hence the Lie algebra gl(U) acts as derivations induced by the linear action 
on the space U of generators. For example, 

A(Ui A M2 • • • A Uk) = AU\ AU2 . . . /\ Uk -\- U\ A Au^ . . . A Wjt + " ' ' 

(6.1.2) + Ml A W2 • • • A AMjt-

On the Clifford algebra we have an action as derivations only of the Lie algebra 
of the orthogonal group of the quadratic form, since only this group preserves the 
defining ideal. We have seen in 4.4 that these derivations are inner (Chapter 4, §1.1) 
and induced by the elements of /\^ V. 

6.2 One-dimensional Representations 

We complete this part with some properties of 1-dimensional representations. 
A 1-dimensional representation is just a homomorphism of G into the multiplica­

tive group F* of the base field. Such a homomorphism is also called a multiplicative 
character. 

The tensor product of two 1-dimensional spaces is 1-dimensional and so is the 
dual. 

Moreover a linear operator on a 1-dimensional space is just a scalar, the tensor 
product of two scalars is their product and the inverse transpose is the inverse. Thus: 

Theorem. The product of two multiplicative characters is a multiplicative character, 
and so is the inverse. The multiplicative characters of a group G form a group, called 
the character group ofG (usually denoted by G). 
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Notice in particular that if V is one-dimensional, V (8) V* is canonically isomor­
phic to the trivial representation by the map i; (g) 0 -^ (0|i;) (the trace). Sometimes 
for a 1-dimensional representation it is convenient to use the notation V~^ instead 
of y*. 

Let us show a typical application of this discussion: 

Proposition. IfL and U are representations of a group G such that dim L = 1, then 
U is irreducible if and only if L ^U is irreducible. 

Proof If W C L'̂  is a proper submodule then also L ^W C L 0 f / i s a proper 
submodule, so we have the implication in one direction. But now 

U = (L-^ 0 L) (8) ^ = L-^ (g) (L (8) U), 

and we have also the reverse implication. D 

7 Universal Enveloping Algebras 

7.1 Universal Enveloping Algebras 

There is one further construction we want to briefly discuss since it is the natural 
development of the theory of Capelli of Chapter 3. Given a Lie algebra L we consider 
in the tensor algebra T(L) the ideal Ii generated by the quadratic relations a^b — 
b^a — {a,b]. 

Definition. The associative algebra U{L) := T(L)/Ii is called the universal en­
veloping algebra of the Lie algebra L. 

The meaning of these relations is that the commutator of the elements a,b e L c 
T(L) performed in the associative algebra U{L) must coincide with the commutator 
defined in L by the Lie algebra law. In other words we impose the minimal relations 
which imply that the morphism L -> T(L)/IL is a. Lie homomorphism (where on 
the associative algebra T{L)/Ii the Lie algebra structure is induced by the usual 
commutator). 

As for other universal constructions this algebra satisfies the universal property 
of mapping into associative algebras. In fact we have that: 

Proposition 1. A Lie homomorphism i : L ^^ A where A is an associative alge­
bra with induced Lie structure, extends uniquely to a homomorphism of algebras 
U{L) -> A. 

Proof By the universal property of tensor algebra the linear map / extends to a 
homomorphism / : r (L) -> A. Since / is a Lie homomorphism we have 

i(a^b-b<S>a- [a, b]) = i(a)i(b) - i{b)i{a) - /([«, b]) = 0 

so / factors through Ii to the required homomorphism. n 
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The first important result on universal enveloping algebras is the Poincare-
Birkhoff-Witt theorem, which states that: 

PBW Theorem. (1) If ui,U2,... ,Uk ... form a linear basis of L, the ordered 
monomials u^^U2 - -- u^ • • - give a linear basis ofU(L). 

(2) In characteristic 0 we have a direct sum decomposition T(L) — 
II e TT=Q ^i(L) (^^^^^ ^i(L) denotes the space of symmetric tensors of degree i). 

Proof It is almost immediate by induction that the monomials w^^w^^..M;J^.. are 
linear generators. In fact if we have in a product a pair w, Uj in the wrong order, j < i 
we replace it be UjUi — [w/, Uj]. Expanding [M, , Uj] in the given basis we obtain lower 
degree monomials and proceed by induction. The independence requires a nontrivial 
argument. 

Consider thus the tensors M = M/̂  0 • • • (g) M/̂  which as the indices it and k vary, 
give a basis of the tensor algebra. 

We look at the sequence of indices /i, i2,..., ik, for a tensor M, and count the 
number of descents, i.e., the positions j for which ij > ij+i: we call this number the 
index, i{M) of M. When i{M) = 0, i.e., when ii < ij S " - S ik we say that M is 
standard. Let us define r„ to be the span of all tensors of degree < n and by T^ C r„ 
the span of the standard tensors. We need a basic lenmia. 

Lemma. For each n, there is a unique linear map cr : Tn -^ T^ such that: 

(1) cr is the identity on T^. 
(2) Given a tensor A (g) a 0 ^ 0 J5, a,b e L, A, B e T{L), we have 

a{A (S)a^b^ B)= a(A 0 Z? 0 « 0 5) + or(A 0 [a, b] 0 B). 

Proof We define a on the tensors M = M/J 0 • • 0 M/̂  by induction on the degree 
k and on the index i(M). When i(M) = 0 by definition we must set a(M) = M. 
When i(M) > 0 we have an expression A ^ ui ^ Uj ̂  B with / > j and hence 
i{A 0 Uj 0 Ui 0 B) = i{M) — 1. Thus we may set recursively: 

or(A 0 Ui 0 Uj 0 5 ) = a(A 0 Uj 0 «,- 0 5) -h a(A 0 [M/, UJ] 0 B). 

If i{M) = 1 this definition is well posed; otherwise, when we have at least two 
descents we have to prove that the definition of (7(M) is independent of the descent 
we choose. We have two cases: (1) The descents a r e i n A 0 ^ 0 ( 3 0 J 5 0 ( i 0 c 0 C . 
(2) We have consecutive descents A 0 c 0 Z 7 0 « 0 5 . 

In the first case we have by induction, starting from the descent in ^ 0 a: 

a{A ^a^b^B^d^c^C) + a(A 0 [̂ , a] 0 J5 0 J 0 c 0 C) 

= a(A 0 « 0 ^ 0 5 0 c 0 j 0 C ) + or(A 0 dz 0 Z? 0 B 0 [J, c] 0 C) 

+ or(A 0 [Z?, fl] 0 5 0 C 0 fif 0 C) + or(A 0 [^, «] 0 i? 0 [J, c] 0 C). 

Clearly when we start from the other descent we obtain the same result. 
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For the other case, write for convenience T(X) := a (A <S> X <SI B). We need to 
compare: 

T(Z? 0 c 0 (2 4- [c, Z?] (8) a), t(c (8)« (8) Z? + c 0 [Z?, a\) 

We iterate the formulas by induction, the two terms are: 

1: T(Z7 (8)« 0 c + ^ 0 [c, a] + [c, Z?] (g) a), 

2: r(a 0 c 0 Z? + [c, «] 0 Z? + [Z?, «] 0 c + [c, [b, a]]) 

Applying again the same rules (notice that either the index or the degree is dimin­
ished so we can apply induction) we have: 

1: r(a 0 ^ 0 c + [fc, a] 0 c + [c, a] 0 ^ + [b, [c, a]] -h [c, b] 0 a) 

2: T(a <S) b <S) c -\- [b, a] (S> c -^ [c, a] (S) b -\- [c, b] ^ a + [a, [c, b]] + [c, [b, a]]). 

From the Jacobi identity [b, [c, a]] = [a, [c, b]] -\- [c, [b, a]] so iht claim follows. D 

We can now conclude the proof of the PB W theorem. 
The linear map a by definition vanishes on the ideal I^ defining U(L), thus it 

defines a linear map U{L) -^ T^ which, by the previous remarks, maps the images 
of the standard tensors which span U(L) into themselves, thus it is a linear isomor­
phism. 

The second part follows easily since a basis of symmetric tensors is given by 
symmetrization of standard tensors. The image under cr of the symmetrization of a 
standard tensor M is M. D 

There is a simple but important corollary. Let us filter U(L) by setting UiL)i to 
be the span of all monomials in elements of L of degree < /. Then we have: 

Proposition 2. (i) The graded algebra ^U(L)i/U{L)i-\ is isomorphic to the sym­
metric algebra S(L). 

(ii) If the characteristic is 0, for every i we have Ui^\(L) = Si(L) 0 Ui(L), 
where Si(L) is the image in Ui+\(L) of the symmetric tensors. 

The importance of the second statement is this. The Lie algebra L acts on T(L) 
by derivations and, over C, on its associated group G by automorphisms. Both II 
and Si(L) are stable subspaces. Thus the actions factor to actions on U(L). The 
subspaces Ui(L) are subrepresentations and in characteristic 0, we have that Ui(L) 
has the invariant complement 5/ (L) in Ui+\ (L). 

Exercise. If L C M are Lie algebras, the PBW theorem for M implies the same 
theorem for L; we also can prove it for linear Lie algebras from Capelli's theory."̂ ^ 

^^ The PBW theorem holds for any Lie algebra, not necessarily finite dimensional. For 
finite-dimensional algebras there is a deep theorem stating that these algebras are indeed 
Hnear (Ado's theorem, Chapter 10). Usually this theorem is proved after proving the PBW 
theorem. 
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7.2 Theorem of Capelli 

We want to use the previous analysis to study the center of U(L), in particular to 
give the full details of the Theorem of Capelli, sketched in Chapter 3, §5.3 on the 
center of the algebra of polarizations. 

From Proposition 2 of the preceding section, if G is a group of automorphisms of 
the Lie algebra L, G acts as automorphisms of the tensor algebra T(L) and preserves 
the ideal II. Thus G extends to a group of automorphisms of U(L). Moreover it 
clearly preserves the spaces 5/(L). In particular we can consider as in Chapter 4, 
§4.1 the adjoint group G^ generated by the one-parameter groups e^ ^^^^\ Notice that 
ad(a) extends to the inner derivation: r -> ar — ra of U{L), preserving all the terms 
U(L)i of the filtration. We have: 

Proposition. The center ofU(L) coincides with the invariants under G^. 

Proof. By definition an element of U(L) is fixed under G^ if and only if it is fixed 
by all the one-parameter subgroups e^^^^^K An element is fixed by a one-parameter 
subgroup if and only if it is in the kernel of the generator, in our case ad(fl), i.e., if it 
commutes with a. Since U{L) is generated by L it is clear that its center is the set of 
elements which commute with L. D 

Let us apply the theory to gl(n, C), the Lie algebra of nxn matrices. In this case 
gl(n, C) is also an associative algebra. Its group G of automorphisms is induced by 
conjugation by invertible matrices. Given a matrix A, we have that the group of linear 
transformations B -^ e^^Be~^^ has as infinitesimal generator B i-> AB — BA = 
ad(A)(5). 

The Lie algebra gl{n, C) is isomorphic to the Lie algebra of polarizations of 
Chapter 3. The elementary matrix eij with 1 in the /, j position and 0 otherwise 
corresponds to the operator A/j. The universal enveloping algebra of gl(n, C) is 
isomorphic to the algebra Un generated by polarizations. Formulas 5.3.3 and 5.3.6 of 
Chapter 3, give elements Ki in the center of ZY„, Ki is a polynomial of degree / in the 
generators. 

Let us analyze the development of the determinant 5.3.3 and, in particular, 
the terms which contribute to Kip^~\ In such a term the contribution of a factor 
A// -\-m — i can be split into the part involving A/, and the one involving m — i. This 
last one produces terms of strictly lower degree. Therefore in the associated grading 
the images of the Ki can be computed by dropping the constants on the diagonal and 
thus are, up to sign, the coefficients a, of the characteristic polynomial of a matrix 
with entries the classes Xij of the etj = A/^. By Chapter 2, Theorem 5.1 we have that 
these coefficients generate the invariants under conjugation. We then get: 

Theorem. The elements Ki generate the center of Un which is the polynomial ring 
in these generators. 

Proof Let / be in the center, say f e (Un)i. Its symbol is an invariant in the graded 
algebra. Hence it is a polynomial in the coefficients a,. We have thus a polynomial g 
in the Ki which lies also (Un)i and has the same symbol. Therefore f — g ^ {Un)i-i, 
and we can finish by induction. D 
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This theorem has of course a natural generalization to semisimple Lie alge­
bras. One has to replace the argument of Capelli with more general arguments of 
Chevalley and Harish-Chandra but the final result is quite similar. The center of the 
universal enveloping algebra of a semisimple Lie algebra is a ring of polynomials 
in generators vv̂ hich correspond to symmetric functions under the appropriate group, 
the Weyl group. 

7.3 Free Lie Algebras 

As usual, given a Lie algebra L and a set X C L we say: 

Definition. L is free over X if, given any Lie algebra M and any map f : X -> M, 
f extends to a unique homomorphism / : L -> M of Lie algebras. 

The PBW Theorem immediately tells us how to construct free Lie algebras. Let 
F{X) be the free associative noncommutative polynomial algebra over X (the ten­
sor algebra on a vector space with basis X). Let L be the Lie subalgebra of F{X) 
generated by X. 

Proposition. L is free over X. 

Proof. Let M and / : X ^- M be given. Consider the universal enveloping algebra 
UM of M. By PBW we have M c UM- Since F{X) is the free associative algebra, 
/ extends to a homomorphism / : F{X) -> UM- Since L is generated by the 
elements X as Lie algebra, / restricted to L maps L to M extending the map / on the 
generators X. The extended map is also uniquely determined since L by construction 
is generated by X. D 

The free Lie algebra is a very interesting object. It has been extensively studied 
([Reu]). 




