
Semisimple Algebras 

1 Semisimple Algebras 

1.1 Semisimple Representations 

One of the main themes of our theory will be related to completely reducible repre­
sentations. It is thus important to establish these notions in full detail and generality. 

Definition 1. Let 5 be a set of operators acting on a vector space U. 

(i) We say that the vector space U is irreducible or simple under the given set S of 
operators if the only subspaces of U which are stable under S are 0 and U. 

(ii) We say that the vector space U is completely reducible or semisimple under the 
given set S of operators if U decomposes as a direct sum of 5-stable irreducible 
subspaces. 

(iii) We say that the vector space U is indecomposable under the given set S of op­
erators if the space U cannot be decomposed in the direct sum of two nontrivial 
^-stable subspaces. 

A space is irreducible if and only if it is completely reducible and indecomposable. 
The previous notions are essentially notions of the theory of modules. In fact, 

let 5 be a set of linear operators acting on a vector space U. From 5, taking linear 
combinations and products, we can construct an algebra £{S)^^ of linear operators 
on U. U is then an £(S)-modu[e. It is clear that a subspace W C U is stable under S 
if and only if it is stable under the algebra £(5), so the notions introduced for S are 
equivalent to the same notions for £(S). 

A typical example of completely reducible sets of operators is the following. Let 
U = C^ and let 5 be a set of matrices. For a matrix A let A* = A be its adjoint (Chap­
ter 5, 3.8). For a set S of matrices we denote by S* the set of elements A*, A e S. 

Lemma 1. If a subspace M ofC^ is stable under A, then M^ (the orthogonal under 
the Hermitian product) is stable under A*. 

^^ This is sometimes called the envelope of S. 
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Proof. If m e M,u e M^, we have (m, A*M) = (Am, u) = 0 since M is A stable. 
Thus A*M € M-^. D 

Proposition l.IfS = S*, then C" is the orthogonal sum of irreducible submodules, 
in particular it is semisimple. 

Proof Take an ^-stable subspace M of C" of minimal dimension. It is then neces­
sarily irreducible. Consider its orthogonal complement M-^. By adjunction and the 
previous lenmia we get that M^ is S stable and C" = M 0 M^. 

We then proceed in the same way on M- .̂ D 

A special case is when 5 is a group of unitary operators. More generally, we 
say that S is unitarizable if there is a Hermitian product for which the operators of 
S are unitary. If we consider a matrix mapping the standard basis of C" to a basis 
orthonormal for some given Hermitian product we see 

Lemma 2. A set of matrices is unitarizable if and only if it is conjugate to a set of 
unitary matrices. 

These ideas have an important consequence. 

Theorem 1, A finite group G of linear operators on a finite-dimensional complex 
space U is unitarizable and hence the module is semisimple. 

Proof We fix an arbitrary positive Hermitian product iu,v) on U. Define a new 
Hermitian product as 

(1.1.1) ^u,v):=-l-T^gu,gv). 

Then {hu,hv) = j^\T.geG(shu, ghv) = y^EgGG^" '^^) = <"'^) ^^^ ^ ^̂  
unitary for this new product. If G was already unitary the new product coincides 
with the initial one. D 

The previous theorem has a far-reaching generalization, by replacing the average 
given by the sum with an integral, as we will see in Chapter 8 where we prove among 
other things: 

Theorem 3. A compact group G of linear operators on a finite-dimensional complex 
space U is unitarizable and hence the module is semisimple. 

1.2 Self-Adjoint Groups 

For noncompact groups there is an important class that we have already introduced 
for which similar results are valid. These are the self-adjoint subgroups of GL(n, C), 
i.e., the subgroups H such that A e H implies A* e H. 
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For a self-adjoint group on a given (finite-dimensional) Hilbert space U the or­
thogonal of every invariant subspace is also invariant; thus any subspace or quotient 
module of U is completely reducible. 

Take a self-adjoint group G and consider its induced action on the tensor algebra. 
The tensor powers of f/ = C" have an induced canonical Hermitian form for which 

(Ml 0W2<8) ••• '^Un\Vx ^V2^-'-^Vn) = ("i l^i) (M2|I^2) •*• ("MII^M}. 

It is clear that this is a positive Hermitian form for which the tensor power of an 
orthonormal basis is also an orthonormal basis. 

The map g -> g®"" is compatible with adjunction, i.e., (̂ *)*^" = (g®")*: 

{g^'^ivx (8) U2 (8) • • • 0 Vm)\wx (g) W2 0 • • • 0 u;^) := f ] t e i ; / k / ) 

m 

= n^^ ' l^*^ ' ) = (t;i 0 1̂2 0 • • • 0 Vm\(g*)^'^(wx 0 w;2 0 • • • 0 w;^)). 

Thus: 

Proposition. IfG is self-adjoint, the action of G on T {U) is self-adjoint, hence all 
tensor powers ofU are completely reducible under G. 

Corollary. The action ofG on the polynomial ring V(U) is completely reducible. 

Proof The action of G on U* is self-adjoint, so it is also self-adjoint on T(U*), and 
V(U) is a graded quotient of T(U*). D 

1.3 Centralizers 

It is usually more convenient to use the language of modules since the irreducibility 
or complete reducibility of a space U under a set S of operators is clearly equivalent 
to the same property under the subalgebra of operators generated by S. 

Let us recall that in Chaper 1, §3.2, given a group G, one can form its group alge­
bra F[G]. Every linear representation of G extends by linearity to an F[G]-module, 
and conversely. A map between F[G] modules is a (module) homomorphism if and 
only if it is G-equivariant. Thus from the point of view of representation theory it is 
equivalent to studying the category of G representations or that of F[G] modules. 

We thus consider a ring R and its modules, using the same definitions for re­
ducible, irreducible modules. We define R^ to be the set of (isomorphism classes) of 
irreducible modules of R. We may call it the spectrum of R. 

Given an irreducible module Â  we will say that it is of type of if a e 7?̂  is its 
isomorphism class. 

Given a set S of operators on U we set S' := {A e End(L^)|A5' = sA, Ws e S}. 
S' is called the centralizer of S. Equivalently S' should be thought of as the set of all 
S-linear endomorphisms. One immediately verifies: 
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Proposition 1. 

(i) S' is an algebra, 
(ii) S C S''. 

(Hi) S' = S'". 

The centralizer of the operators induced by /? in a module M is also usually 
indicated by hom/e(M, M) or End/?(M) and called the endomorphism ring. 

Any ring R can be considered as a module on itself by left multiplication (and as 
a module on the opposite of R by right multiplication). 

Definition 1. R considered as module over itself is called the regular representation. 

Of course, for the regular representation, a submodule is the same as a left ideal. 
An irreducible submodule is also referred to as a minimal left ideal. 

A trivial but useful fact on the regular representation is: 

Proposition 2. The ring of endomorphisms of the regular representation is the op­
posite of R acting by right multiplications. 

Proof Letting / G End/?(/?) we have f{a) = f{a\) = af(l) by linearity, thus / 
is the right multiplication by / ( I ) . 

Given two homomorphisms / , g we have fg(l) = f(gW) = ^(1)/(1), and so 
the mapping / -^ / ( I ) is an isomorphism between End/?(/?) and R^. D 

Exercise. Another action of some interest is the action of R 0 R^ on R given by 
a (g) b(c) := acb; in this case the submodules are the two-sided ideals and the cen­
tralizer is easily seen to be the center of R. 

One can generalize the previous considerations as follows. Let /? be a ring. 

Definition 2. A cyclic module is a module generated by a single element. 

A cyclic module should be thought of as the linear analogue of a single orbit. 
The structure of cyclic modules is quite simple. If M is generated by an element m, 
we have the map (p : R ^^ M given by (p{r) = rm (analogue of the orbit map). 

By hypothesis cp is surjective, its kernel is a left ideal 7, and so M is identi­
fied with R/J. Thus a module is cyclic if and only if it is a quotient of the regular 
representation. 

Example. Consider Mn(F), the full ring of n x n matrices over a field F. As a 
module we take F" and in it the basis element e\. 

Its annihilator is the left ideal /i of matrices with the first column 0. In this case 
though we have a more precise picture. 

Let Ji denote the left ideal of matrices having 0 in all colunms except for the 
first. Then M„(F) = /i 0 /i and the map a -> aei restricted to /i is an isomor­
phism. 

In fact we can define in the same way /, (the matrices with 0 outside the i^^ 
colunm). 
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Proposition 3. Mn(F) = 0"=i Ji is a direct sum of the algebra Mn(F) into irre­
ducible left ideals isomorphic, as modules, to the representation F". 

Remark. This proof, with small variations, applies to a division ring D in place of F. 

Lemma. The module D^ is irreducible. We will call it the standard module of 
Mn(D). 

Proof. Let us consider a column vector u with its i^^ coordinate ut nonzero. Acting 
on u with a diagonal matrix which has u^^ in the i^^ position, we transform u into 
a vector with i^^ coordinate L Acting with elementary matrices we can make all the 
other coordinates 0. Finally, acting with a permutation matrix we can bring 1 into 
the first position. This shows that any submodule contains the vector of coordinates 
(1, 0, 0 , . . . , 0). This vector, in turn, generates the entire space again acting on it by 
elementary matrices. n 

Theorem. The regular representation ofMn(D) is the direct sum ofn copies of the 
standard module. 

Proof. We decompose M„ (D) as direct sum of its columns. D 

Remark. In order to understand Mn(D) as module endomorphisms we have to take 
D^ as a right vector space over D or as a left vector space over D^. 

As done for groups in Chapter 1, §3.1, given two cyclic modules R/J, R/I we 
can compute hom/?(/?//, R/I) as follows. 

Letting / : R/J -> R/I be a homomorphism and T € / ? / / is the class of 1, 
set / ( I ) =x, X e R so that / : r l ^- rx. We must have then JJ = f(JJ) = 0, 
hence Jx C I. Conversely, if 7JC c / the map / : r l -> rjc is a well-defined 
homomorphism. 

Thus if we define the set {I : J) := {x e R\Jx c 1], we have 

/ C (/ : 7), hom/?(/?//, R/I) = (/ : / ) / / . 

In particular for 7 = / we have the idealizer, 1(1) of / , 1(1) := {x € R\Ix C / } . 
The idealizer is the maximal subring of R in which / is a two-sided ideal, and 

1(1)/1 is the ring homR(R/I, R/I) = End/?(/?//). 

1.4 Idempotents 

It is convenient in the structure theory of algebras to introduce the simple idea of 
idempotent elements. 

Definition. An idempotent in an algebra R, is an element e, such that e^ = e. Two 
idempotents e, f are orthogonal if ef = fe = 0; in this case ^ + / is also an 
idempotent. 
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Exercise. In a ring R consider an idempotent e and set / :— I — e. We have the 
decomposition 

R = eRee eRf 0 fRe 0 fRf 

which presents R as matrices: 

eRe eRfI 
R = 

Prove that EndR{Re) = eRe. 

fRe fRf 

1.5 Semisimple Algebras 

The example of matrices suggests the following: 

Definition. A ring R is semisimple if it is semisimple as a left module on itself. 

This definition is a priori not synmietric although it will be proved to be so from 
the structure theorem of semisimple rings. 

Remark. Let us decompose a semisimple ring R as direct sum of irreducible left 
ideals. Since 1 generates R and 1 is in a finite sum we see: 

Proposition 1. A semisimple ring is a direct sum of finitely many minimal left ideals. 

Corollary. If D is a division ring then Mn{D) is semisimple. 

We wish to collect some examples of semisimple rings. 
First, from the results in 1.1 and 1.2 we deduce: 

Maschke's Theorem. The group algebra C[G] of a finite group is semisimple. 

Remark. In fact it is not difficult to generalize to an arbitrary field. We have (cf. 
[JBA]): 

The group algebra F[G] of a finite group over afield F is semisimple if and only 
if the characteristic of F does not divide the order ofG. 

Next we have the obvious fact: 

Proposition 2. The direct sum of two semisimple rings is semisimple. 

In fact we let the following simple exercise to the reader. 

Exercise. Decomposing a ring A in a direct sum of two rings A = Ai 0 A2 is 
equivalent to giving an element e e A such that 

e^ = e, ea = ae, "ia e A, 

Ai = Ae, A2 = A(l — ^) ^ is called a central idempotent. 

Having a central idempotent e, every A module M decomposes canonically as the 
direct sum eM 0 ( 1 - e)M. Where eM is an Ai module, (1 - e)M an A2 module. 
Thus the module theory of A = Ai 0 A2 reduces to the ones of Ai, A2. 

From the previous corollary. Proposition 2, and these remarks we deduce: 

Theorem. A ring A := 0 - MmiDj), with the Di division rings, is semisimple. 
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1.6 Matrices over Division Rings 

Our next task will be to show that also the converse to Theorem 1.5 is true, i.e., that 
every semisimple ring is a finite direct sum of rings of type Mm(D), D a division 
ring. 

For the moment we collect one further remark. Let us recall that: 

Definition. A ring R is called simple if it does not possess any nontrivial two-sided 
ideals, or equivalently, if R is irreducible as a module over R<Si R^ under the left and 
right action (a 0 b)r := arb. 

This definition is slightly confusing since a simple ring is by no means semi-
simple, unless it satisfies further properties (the d.c.c. on left ideals [JBA]). 

A classical example of an infinite-dimensional simple algebra is the algebra of 
differential operators F(X/, g|-) {F a field of characteristic 0) (cf. [Cou]). 

We have: 

Proposition. If D is a division ring, Mm{D) is simple. 

Proof. Let / be a nontrivial two-sided ideal, a e I a. nonzero element. We write a 
as a linear combination of elementary matrices a = Yl^ij^ij'^ ^^^^ ^a^^jj — ^ij^tj 
and at least one of these elements must be nonzero. Multiplying it by a scalar matrix 
we can obtain an element etj in the ideal / . Then we have ehk = ^hi^tj^jk and we see 
that the ideal coincides with the full ring of matrices. D 

Exercise. The same argument shows more generally that for any ring A the ideals 
of the ring M^ (A) are all of the form M^ (/) for / an ideal of A. 

1.7 Schur's Lemma 

We start the general theory with the following basic fact: 

Theorem (Schur's lemma). The centralizer A := End/?(M) of an irreducible mod­
ule M is a division ring. 

Proof. Let a : M —> M be a nonzero /^-linear endomorphism. Its kernel and image 
are submodules of M. Since M is irreducible and a ^ OWQ must have Ker(a) = 0, 
Im(a) = M, hence a is an isomorphism and so it is invertible. This means that every 
nonzero element in A is invertible. This is the definition of a division ring. D 

This lemma has several variations. The same proof shows that: 

Corollary. If a \ M -^ N is a homomorphism between two irreducible modules, 
then either a =0 or a is an isomorphism. 
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1.8 Endomorphisms 

A particularly important case is when M is a finite-dimensional vector space over C. 
In this case since the only division ring over C is C itself, we have that: 

Theorem. Given an irreducible set S of operators on a finite-dimensional space 
over C, then its centralizer S' is formed by the scalars C. 

Proof Rather than applying the structure theorem of finite-dimensional division al­
gebras one can argue that, given an element x ^ S' and an eigenvalue a of JC, the 
space of eigenvectors of jc for this eigenvalue is stable under S and so, by irreducibil-
ity, it is the whole space. Hence x =a. u 

Remarks. 1. If the base field is the field of real numbers, we have (according to the 
theorem of Frobenius (cf. [Her])) three possibilities for A: R, C, or H, the algebra of 
quaternions. 

2. It is not necessary to assume that M is finite dimensional: it is enough to 
assume that it is of countable dimension. 

Sketch of proof of the remarks. In fact M is also a vector space over A and so A, 
being isomorphic to an R-subspace of M, is also countably dimensional over R. 

This implies that every element of A is algebraic over R. Otherwise A would con­
tain a field isomorphic to the rational function field R(0 which is impossible, since 
this field contains the uncountably many linearly independent elements \/(t — r), 
r G R . 

Now one can prove that a division algebra"̂ ^ over R in which every element is 
algebraic is necessarily finite dimensional,"^^ and thus the theorem of Frobenius ap­
plies. D 

Our next task is to prove the converse of Theorem 1.5, that is, to prove that every 
semisimple algebra A is a finite direct sum of matrix algebras over division algebras 
(Theorem 1.9). In order to do this we start from a general remark about matrices. 

Let M = Ml 0 M2 0 M3 0 • • 0 Mjt be an /?-module decomposed in a direct 
sum. 

For each /, 7, consider A{j, i) := hom/?(M/, Mj). For three indices we have the 
composition map A{k, j) x A{j, i) -^ A{k, i). 

The groups A (7, /) together with the composition maps allow us to recover the 
full endomorphism algebra of M as block matrices: 

A = {aji), aji e A(jJ). 

(One can give a formal abstract construction starting from the associativity prop­
erties). 

^•^ When we want to stress the fact that a division ring A contains a field F in the center, we 
say that A is a division algebra over F. 

^^ This depends on the fact that every element of A algebraic over R satisfies a quadratic 
polynomial. 
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In more concrete form let ei e End(M) be the projection on the sununand M/ 
with kernel 0,.^/ Mj. The elements ei are a complete set of orthogonal idempotents 
in End(M), i.e., they satisfy the properties 

k 

e\ = ei, etej = ejei = 0 , i ^^ j , and /_^^r = 1-

/=i 

When we have in a ring S such a set of idempotents we decompose S as 

k \ / k 

^ = (E-')^(E^') = 0„/'^--

This sum is direct by the orthogonality of the idempotents. 
We have eiSejejSek C etSek, etSejehSek = 0, when j ^ h.ln our case S = 

End/?(M) and etSej = hom/?(Afy, M/). 
In particular assume that the Mi are all isomorphic to a module Â  and let A := 

End/?(A^). Then 

(1.8.1) EndRiN®^) = Mk(A). 

Assume now that we have two modules Â , P such that hom/?(A ,̂ P) = 
hom/?(P, Â ) = 0. Let A := End/?(A^), B := End/?(P); then 

EndR(N®^ 0 P®^) = Mk(A) 0 Mh(B). 

Clearly we have a similar statement for several modules. 
We can add together all these remarks in the case in which a module M is a finite 

direct sum of irreducibles. 
Assume Ni, N2,..., Nk arc the distinct irreducible which appear with multiplic­

ities /zi, / i2 , . . . , /zjt in M. Let Dt = End/?(A /̂) (a division ring). Then 

(1.8.2) E n d . ( 0 ; ^ , A r f ' ) = 0 ;^ ,M, , (D , ) . 

1.9 Structure Theorem 

We are now ready to characterize semisimple rings. If R is semisimple we have that 
R = 0J^^i N^' (as in the previous section) as a left R module; then 

P^ = End,,(P) = End, , (0.^^ A^f') = 0 , , , ^^m,(A/). 

We deduce that P = P^^ = 0.^^ M^, (A,)^ 
The opposite of the matrix ring over a ring A is the matrices over the opposite 

ring (use transposition) and so we deduce finally: 

Theorem. A semisimple ring is isomorphic to the direct sum of matrix rings Ri over 
division rings. 
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Some comments are in order. 

1. We have seen that the various blocks of this sum are simple rings. They are thus 
distinct irreducible representations of the ring R<S>R^ acting by the left and right 
action. 

We deduce that the matrix blocks are minimal two-sided ideals. From the 
theory of isotypic components which we will discuss presently, it follows that 
the only ideals of R are direct sums of these minimal ideals. 

2. We have now the left-right symmetry: if R is semisimple, so is R^. 

Since any irreducible module Â  is cyclic, there is a surjective map R -^ N. This 
map restricted to one of the Ni must be nonzero, hence: 

Corollary 1. Each irreducible R module is isomorphic to one of the Nt (appearing 
in the regular representation). 

Let us draw another consequence, a very weak form of a more general theorem. 

Corollary 2. For afield F every automorphism 0 of the F-algebra Mn(F) is inner 

Proof Recall that an inner automorphism is an automorphism of the form X \-^ 
AXA~^. Given 0 we define a new module structure F^ on the standard module F" 
by setting X o<̂  i; := (p(X)v. Clearly F^ is still irreducible and so it is isomorphic to 
F". We have thus an isomorphism (given by an invertible matrix A) between F" and 
F^. By definition then, for every X e Mn (F) and every vector f G F" we must have 
(t)(X)Av = AXv, hence 0(X)A = AX or 0(Z) = AXA-\ D 

A very general statement by Skolem-Noether is discussed in [Jac-BA2], Theo­
rem 4.9. 

2 Isotypic Components 

2.1 Semisimple Modules 

We will complete the theory with some general remarks: 

Lemma 1. Given a module M and two submodules A, B such that A is irreducible, 
either AcBorAnB=0. 

Proof Trivial since AH B is a. submodule of A and A is irreducible. D 

Lemma 2. Given a module M a submodule N and an element m ^ N there exists a 
maximal submodule NQ D N such that m ^ AQ. M/NQ is indecomposable. 

Proof Consider the set of all submodules containing N and which do not contain 
m. This has a maximal element since it satisfies the hypotheses of Zom's lemma; 
call this maximal element NQ. Suppose we could decompose M/NQ. Since the class 
of m cannot be contained in both summands we could find a larger submodule not 
containing m. • 
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The basic fact on semisimple modules is the following: 

Theorem. For a module M the following conditions are equivalent: 

(i) M is a sum of irreducible submodules. 
(ii) Every submodule N of M admits a complement, i.e., a submodule P such that 

M = N ®P. 
(Hi) M is completely reducible. 

Proof. This is a rather abstract theorem and the proof is correspondingly abstract. 
Clearly (iii) impUes (i), so we prove (i) implies (ii) impUes (iii). 
(i) implies (ii). Assume (i) holds and write M = J2iei ^i where / is some set 

of indices. 
For a subset A of / set NA := Z!/eA ^i • Let Â  be a given submodule and consider 

all subsets A such that A^n Â A = 0. It is clear that these subsets satisfy the conditions 
of Zom's lenrnia and so we can find a maximal set among them; let this be AQ. We 
have then the submodule Â  0 Â ô and claim that M = N ^ NAQ-

For every / e I consider (Â  0 NAQ) H Nt. If (Â  0 NAQ) f) Ni = 0 we have that 
i ^ AQ. We can add / to AQ getting a contradiction to the maximality. 

Hence by the first lemma Nt C (A/̂  0 NAQ), and since / is arbitrary, M = 
Yli^j Ni C (Â  0 NAO) as desired. 

(ii) implies (iii). Assume (ii) and consider the set J of all irreducible submod­
ules of M (at this point we do not even know that J is not empty!). 

Consider all the subsets A of 7 for which the modules in A form a direct sum. 
This clearly satisfies the hypotheses of Zom's lemma, and so we can find a maximal 
set adding to a submodule Â . 

We must prove that N = M. Otherwise we can find an element m ^ N and 
a maximal submodule No D N such that m ^ N.By hypothesis there is a direct 
summand P of NQ. 

We claim that P is irreducible. Otherwise let T be a nontrivial submodule of P 
and consider a complement Qio NQ^T. We have thus that M/NQ is isomorphic to 
7 0 2 and so is decomposable, against the conclusions of Lemma 2. 

P irreducible is also a contradiction since P and Â  form a direct sum, and this 
contradicts the maximal choice of Â  as direct sum of irreducibles. n 

Comment. If the reader is confused by the transfinite induction he should easily 
realize that all these inductions, in the case where M is a finite-dimensional vector 
space, can be replaced with ordinary inductions on the dimensions of the various 
submodules constructed. 

Corollary 1. Let M = Yli^j Ni be a semisimple module, presented as a sum of 
irreducible submodules. We can extract from this sum a direct sum decomposing M. 

Proof We consider a maximal direct sum out of the given one. Then any other irre­
ducible module Ni must be in the sum, and so this sum gives M. n 

Corollary 2. Let M = 0 , ^ / Ni be a semisimple module, presented as a direct sum 
of irreducible submodules. Let N be an irreducible submodule of M. Then the pro­
jection to one of the Ni, restricted to N, is an isomorphism. 
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2.2 Submodules and Quotients 

Proposition. 

(i) Submodules and quotients of a semisimple module are semisimple, as well as 
direct sums of semisimple modules. 

(ii) R is semisimple if and only if every R module is semisimple. In this case its 
spectrum is finite and consists of the irreducible modules appearing in the regu­
lar representation. 

(Hi) If R has a faithful semisimple module M, then R is semisimple. 

Proof, (i) Since the quotient of a sum of irreducible modules is again a sum of irre-
ducibles the statement is clear for quotients. But every submodule has a complement 
and so it is isomorphic to a quotient. For direct sums the statement is clear. 

(ii) If every module is semisimple clearly R is also semisimple. Conversely, let 
R be semisimple. Since every /^-module is a quotient of a free module, we get from 
(i) that every module is semisimple. Proposition 1.4 implies that /? is a finite direct 
sum of irreducibles and Corollary 1, §1.9 implies that these are the only irreducibles. 

(iii) For each element m of M take a copy M^ of M and form the direct sum 
M := 0 ^ ^ ^ Mm- M is a semisimple module. 

Map R -> ^fneM ^rn by r h-> (rm)meM' This map is clearly injective so R, as 
a submodule of a semisimple module, is semisimple. D 

2.3 Isotypic Components 

An essential notion in the theory of semisimple modules is that of isotypic compo­
nent. 

Definition. Given an isomorphism class of irreducible representations, i.e., a point 
of the spectrum a e R^ and a module M, we set M" to be the sum of all the irre­
ducible submodules of M of type a. This submodule is called the isotypic component 
of type a. 

Let us also use the notation M^ to be the sum of all the irreducible submodules 
of M which are not of type a. 

Theorem. The isotypic components of M decompose M into a direct sum. 

Proof. We must only prove that given an isomorphism class a, M" O M^ = 0. 
M" can be presented as a direct sum of irreducibles of type a, while Ma can be 

presented as a direct sum of irreducibles of type different from a. 
Thus every irreducible submodule in their intersection must be 0; otherwise by 

Corollary 2 of 2.1, it is at the same time of type a and of type different from a. 
From Proposition 2.2 (i), any submodule is semisimple, and so this implies that the 
intersection is 0. D 
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Proposition 1. Given any homomorphism f : M ^^ N between semisimple modules 
it induces a morphism fa : M" -> N^ for every a and f is the direct sum of the /„. 
Conversely, 

(2.3.1) hom/?(M, Â ) = ]~[hom(M", TV"). 
a 

Proof The image under a homomorphism of an irreducible module of type ot is 
either 0 or of the same type, since the isotypic component is the sum of all the sub-
modules of a given type the claim follows. D 

Now that we have the canonical decomposition M = 0c^g/̂ v M", we can con­
sider the projection JT" : M -> M" with kernel M^. We have: 

Proposition 2. Given any homomorphism f : M ^^ N between semisimple modules 
we have a commutative diagram, for each a G R^: 

(2.3.2) 

M — ^ Â  

M" — ^ Â « 

Proof This is an immediate consequence of the previous proposition. n 

2.4 Reynold's Operator 

This rather formal analysis has an important implication. Let us assume that we have 
a group G acting as automorphisms on an algebra A. Let us furthermore assume that 
A is semisimple as a G-module. Thus the subalgebra of invariants A^ is the isotypic 
component of the trivial representation. 

Let us denote by Ac the sum of all the other irreducible representations, so that 
A = A^ ^AG. 

Definition. The canonical projection TT^ : A -^ A^ is usually indicated by the 
symbol R and called the Reynold's operator. 

Let us now consider an element a e A^; since, by hypothesis, G acts as algebra 
automorphisms, both left and right multiplication by « are G equivariant. We thus 
have the commutative diagram 2.3.2, for jZa = R and / equal to the left or right 
multiplication by a, and deduce the so-called Reynold's identities. 

Proposition. 

R(ab) = aRib), R{ba) = R{b)a, Wb e A, a € A^. 

We have stated these identities since they are the main tool to develop the the­
ory of Hilbert on invariants of forms (and its generalizations) (see [DL], [SPl]) and 
Chapter 14. 
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2.5 Double Centralizer Theorem 

Although the theory could be pursued in the generality of Artinian rings (cf. [JBA]), 
let us revert to finite-dimensional representations. 

Let R = 0 , ^ / Ri = 0 / e / ^m,(A/) be a finite-dimensional semisimple algebra 
over a field F. In particular, now all the division algebras A/ will be finite dimen­
sional over F. In the case of the complex numbers (or of an algebraically closed 
field) they will coincide with F. For the real numbers we have the three possibilities 
already discussed. 

If we consider any finite-dimensional module M over R we have seen that M is 
isomorphic to a finite sum 

^ = ©, f^i = 0 , „ /̂ 
where M, is the isotypic component relative to the block Rj and Â , = Aj"'. 

We have also from 1.8.2: 

S := Endfi(M) = 0 . ^ , End«(M,) = 0.^^ EndAN,") = 0.^^ Mp.CA,") 

The block 5/ acts on Np as m, copies of its standard representation, and as zero 
on the other isotypic components. In fact by definition 5/ = EndR(Np) acts as 0 on 
all isotypic components different from the i^^ one. 

As for the action on this component we may identify Ni := A^' and thus view 
the space Np as the set Mmi,piiAi) of mi x pi matrices. Multiplication on the right 
by a Pi X Pi matrix with entries in A/ induces a typical endomorphism in 5/. The 
algebra of such endomorphisms is isomorphic to Mp. (A^), acting by multiplication 
on the right, and the m, subspaces of M;„.,p. (A/) formed by the rows decompose this 
space into irreducible representations of Si isomorphic to the standard representation 
(Ap^'. Summarizing: 

Theorem. 

(i) Given a finite-dimensional semisimple R module M the centralizer S of R is 
semisimple. 

(ii) The isotypic components of R and S coincide. 
(Hi) The multiplicities and the dimensions (relative to the corresponding division 

ring) of the irreducibles appearing in an isotypic component are exchanged, 
passing from R to S. 

(iv) If for a given i, Mi ^ 0, then the centralizer ofS on Mi is Ri (or rather the ring 
of operators induced by Ri on Mi). In particular if R acts faithfully on M we 
have R = S' = R" (Double Centralizer Theorem). 

All the statements are implicit in our previous analysis. 
We wish to restate this in case F = C for a semisimple algebra of operators as 

follows: 
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Given two sequences of positive integers mi, m i , . . . , m̂ t and pi, /?2, • • •. Pfc we 
form the two semisimple algebras A = 0^^^ Mm^ (C) and B = 0 f^ i Mp. (C). 

We form the vector space W = 0 f^ i C"' (8)C '̂ and consider A, B as commuting 
algebras of operators on W in the obvious way, i.e., (^1,^2, • • - ,cik)J2^i ^ ^t — 
Y^ UiUi 0 Vi for A and (Z?!, ^2, • • •, ^it) 1] "« ^ ^̂z = Z!" ' ^ ^' ̂ i ^^^ ^- Then: 

Corollary. Given a semisimple algebra R of operators on a finite-dimensional vec­
tor space M over C and calling S = R' its centralize^ there exist two sequences 
of integers mi,m2,...,mjt and p\, pi,..., Pk ^^d an isomorphism of M with 
W = 0 j ^ i C^' 0 C^' under which the algebras R, S are identified with the al­
gebras A, B. 

This corollary gives very precise information on the nature of the two algebras 
since it claims that on each isotypic component we can find a basis indexed by pairs 
of indices such that, if we order the pairs by setting first all the pairs which end with 
1, then all that end with 2 and so on, the matrices of R appear as diagonal block 
matrices. 

We get a similar result for the matrices of S if we order the indices by setting first 
all the pairs which begin with 1 then all that begin with 2 and so on. 

Let us continue a moment with the same hypotheses as in the previous section. 
Choose a semisimple algebra A = 0f=i Mm. (C) and two representations: 

Wi = 0^"^^ C"' 0 CP', and W2 = 0^"^^ C^' 0 C '̂ 

which we have presented as decomposed into isotypic components. According to 
1.8.1 we can compute as follows: 

homA(Wi, W2) = 0 . ^ ^ hom^CC^' 0 C^', C'"' 0 C^') 

(2.5.1) =0'^^homc(C^',O'). 

We will need this computation for the theory of invariants. 

2.6 Products 

We want to deduce an important application. Let /f, K be two groups (not necessar­
ily finite) and let us choose two finite-dimensional irreducible representations U, V 
of these two groups over C. 

Proposition 1. [/ 0 V is an irreducible representation of H x K, and any finite-
dimensional irreducible representation of H x K is of this form. 

Proof The maps C[H] -^ End(L^), C[K] -^ End( V) are surjective, hence the map 
C[H X K]^ End(U) 0 End(y) = End(U 0 V) is also surjective, and so 6̂  0 V 
is irreducible. 

Conversely, assume that we are given an irreducible representation W of H x K 
so that the image of the algebra C[H x K] is the whole algebra End(W). 
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Let W^ be the sum of all irreducible //-submodules of a given type appearing in 
W. Since K commutes with H we have that W is K stable. Since W is irreducible 
we have W = W\ So Ĥ  is a semisimple C[//]-module with a unique isotypic 
component. 

The algebra of operators induced by H is isomorphic to the full matrix alge­
bra M„(C), and its centralizer is isomorphic to Mm(C) for some m, n. W is nm-
dimensional and M„(C) 0 M^iC) is isomorphic to End(W). 

The image R of C[^] is contained in the centralizer Mm(C). Since the operators 
from HxK span End( W) the algebra R must coincide with M^ (C), and the theorem 
follows. n 

This theorem has an important application to matrix coefficients. 
Let / o : G - > G L ( f / ) b e a finite-dimensional representation of G. Then we have 

a mapping iu \ U* '^ U ^^ C[G] to the functions on G defined by (cf. Chapter 5, 
§L5.4): 

(2.6.1) iu{<t> (8) u){g) := (0 I gu) = iY(p(g) o M 0 0). 

Proposition 2. iu isGxG equivariant. The image ofiu is called the space of matrix 
coefficients of U. 

Proof We have iuihcp 0 ku)(g) = (hcf) \ gku) = (0 | h'^gku) =%{({) 0 uf. D 

In the last part of 2.6.1 we are using the identification of U* <S^ U with 
U <S)U* = End(U). Under this identification the map iy becomes X i-> tr(Xp(^)), 
forZ GEnd(l7). 

Theorem. 

(i) IfU is irreducible, the map ijj : U* (^ U -^ C[G] is injective. 
(ii) Its image equals the isotypic component of type U inC[G] under the right action 

and equals the isotypic component of type U* inC[G] under the left action. 

Proof (i) U* (S) U is an irreducible G x G module, and iu is clearly nonzero, then 
iu is injective. 

(ii) We do it for the right action; the left is similar. 
Let us consider a G-equivariant embedding j : U ^^ C[G] where C[G] is 

considered as a G-module under right action. We must show that its image is in 
iu(U*^U). 

Let 0 G f/* be defined by 

{(P\u):=j(u)(l). 

Then 

(2.6.2) j(u)(g) = j(u)ilg) = j(gu)(l) = {(P\gu) = iuicP 0 u)(g). 

Thus j(u) = iu((t> 0 u). • 
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Remark. The theorem proved is completely general and refers to any group. It will 
be possible to apply it also to continuous representations of topological groups and 
to rational representations of algebraic groups. 

Notice that, for a finite group G, since the group algebra is semisimple, we have: 

Corollary. 

(2.6.3) C[G] = 0 . U; 0 Ui 

where Ui runs over all the irreducible representations. 
C[G] is isomorphic as an algebra to 0 - End(L^/). 

Proof. By definition, for each / we have a homomorphism of C[G] to End(L^/), given 
by the module structure. Since it is clear that restricted to the corresponding matrix 
coefficients this is a Unear isomorphism, the claim follows. D 

Important Remark. This basic decomposition will be the guiding principle 
throughout all of our presentation. It will reappear in other contexts: In Chapter 7. 
§3.1.1 for linearly reductive algebraic groups, in Chapter 8, §3.2 as the Peter-Weyl 
theorem for compact groups and as a tool to pass from compact to linearly reductive 
groups; finally, in Chapter 10, §6.1.1 as a statement on Lie algebras, to establish the 
relation between semisimple Lie algebras and semisimple simply connected alge­
braic groups. We will see that it is also related to Cauchy's formula of Chapter 2 and 
the theory of Schur's functions, in Chapter 9, §6. 

2.7 Jacobson Density Theorem 

We discuss now the Jacobson density theorem. This is a generalization of Wedder-
bum's theorem which we will discuss presently. 

Theorem. Let N be an irreducible R-module, A its centralize^ 

Ml, ui,... ,Un e N 

elements which are linearly independent relative to A and 

f l , i;2, . . . , fn ^ N 

arbitrary. Then there exists an element r G R such that rui = Vj, V/. 

Proof. The theorem states that the module Â " is generated over R by the element 
a := ( M I , U2, . . . , Ufi). 

Since N^ is completely reducible, Â " decomposes ^s Ra^P. Let n G End/?(A^") 
be the projection to P vanishing on the submodule Ra. 

By 1.8.1 this operator is given by an n x n matrix dij in A and so we have 
5^. dijUj = 0, V/ since these are the components of7t{a). 

By hypothesis the elements MI, M2, . . . ,«« G Â  are linearly independent over A; 
thus the elements dij must be 0 and so TT = 0 and P =Oas desired. D 

The term "density" comes from the fact that one can define a topology (of finite 
approximations) on the ring EndACA'̂ ) so that R is dense in it (cf. [JBA]). 
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2.8 Wedderbum's Theorem 

Again let Â  be an irreducible /^-module, and A its centralizer. Assume that Â  is a 
finite-dimensional vector space over A of dimension n. 

There are a few formal difficulties in the noncommutative case to be discussed. 
If we choose a basis ui,U2,... ,Un of N we identify Â  with A". Given the set 

of «-tuples of elements of a ring A thought of as column vectors, we can act on the 
left with the algebra Mn(A) ofnxn matrices. This action clearly commutes with 
the multiplication on the right by elements of A. 

If we want to think of operators as always acting on the left, then we have to 
think of left multiplication for the opposite ring A^. 

We thus have dually the general fact that the endomorphism ring of a free module 
of rank « on a ring A is the ring ofnxn matrices over A^. We return now to modules. 

Theorem 1 (Wedderbum). R induces on N the full ring EndA i^) isomorphic to 
the ring ofmxm matrices Mm{^^). 

Proof. Immediate consequence of the density theorem, taking a basis u\,U2,... ,Un 
ofN. D 

We end our abstract discussion with another generality on characters. 
Let R be an algebra over C (we make no assumption of finite dimensionality). 

Let M be a finite-dimensional semisimple representation. The homomorphism PM -
R -^ End(M) allows us to define a character on R setting ^M(^) •= ^^(PM(^))' 

Theorem 2. Two finite-dimensional semisimple modules M, N are isomorphic if and 
only if they have the same character 

Proof It is clear that if the two modules are isomorphic the traces are the same. 
Conversely, let 7^, I^^ be the kernels respectively of pM, PN-

By the theory of semisimple algebras we know that R/IM is isomorphic to a 
direct sum 0 - M„. (C) of matrix algebras and similarly for R/IN-

Assume that M decomposes under 0 / ^ i M„. (C) with multiplicity pi > 0 for the 
i^^ isotypic component. Then the trace of an element r = (a\,a2,... ,ak) ^is operator 
on M is X!/=i Pi Tr(a/) where Tr(a/) is the ordinary trace as an «, x nt matrix. 

We deduce that the bilinear form iv{ab) is nondegenerate on R/IM and so IM is 
the kernel of the form induced by this trace on R. Similarly for R/IN-

If the two traces are the same we deduce that the kernel is also the same and so 
/ ^ = 7;̂ , and 7^/7^ = 0 , M„,(C) = R/IN- In order to prove that the representa­
tions are the same we check that the isotypic components have the same multiplici­
ties. This is clear since pi is the trace of ^/, a central unit of M„. (C). D 

3 Primitive Idempotents 

3.1 Primitive Idempotents 

Definition. An idempotent is called primitive if it cannot be decomposed as a sum 
e = e\ -\- e2 of two nonzero orthogonal idempotents. 
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If R = Mk{F) is a matrix algebra over a field F, an idempotent e e Mk{F) 
is a projection to some subspace W := eF^ C F^Aiis then easily verified that a 
primitive idempotent is a projection to a 1-dimensional subspace, i.e., an idempotent 
matrix of rank 1 which, in a suitable basis, can be identified w îth the elementary 
matrix ^11. 

When e = e\^\, the left ideal Re is formed by all matrices with 0 on the columns 
different from the first one. As an /^-module it is irreducible and isomorphic to F^. 
Finally eRe = Fe. 

More generally the same analysis holds for matrices over a division ring D, 
thought of as endomorphisms of the right vector space Z)". In this case, again if 
e is primitive, one can identify eRe = D. 

If an algebra /? = /?i 0 /?2 is the direct sum of two algebras, then every idempo­
tent in R is the sum ei + 2̂ of two orthogonal idempotents et e Rf. In particular the 
primitive idempotents in R are the primitive idempotents in R\ and the ones in 7̂ 2-

Thus, if R = J2i ^rii (F) is semisimple, then a primitive idempotent e e R is 
just a primitive idempotent in one of the sunmiands M„. (F). Thus Af„. (F) = ReR 
and Re is irreducible as an /^-module (and isomorphic to the module F"' for the 
summand M„. (F)). 

We want a converse of this statement. We first need a lemma: 

Lemma. Let M be a semisimple module direct sum of a finite number of irreducible 
modules. Let P, Q be two submodules ofM and i : P -^ Q a module isomorphism. 
Then i extends to an automorphism of the module M. 

Proof We first decompose M, P, Q into isotypic components. Since every isotypic 
component under a homomorphism is mapped to the isotypic component of the same 
type we can reduce to a singe isotypic component. Let Â  be the irreducible module 
relative to this component. M is isomorphic to A '̂" for some m. 

By isomorphism we must have P, Q both isomorphic to Â^ for a given k. If we 
complete M = P 0 P', M = Q ® 2 ' we must have that P^ Q^ are both isomorphic 
to N"^~^. Any choice of such an isomorphism will produce an extension of /. D 

Theorem. Let R = ®Ri be a semisimple algebra over afield F with Rt simple and 
isomorphic to the algebra of matrices M^. (D,) over a division algebra Di. 

(1) Given a primitive idempotent e e Rwe have that Re is a minimal left ideal, i.e., 
an irreducible module. 

(2) All minimal left ideals of R are of the previous form. 
(3) Two primitive idempotents e, f e R give isomorphic modules Re, Rf if and 

only ifeRf ^ 0. 
(4) Two primitive idempotents e, f give isomorphic modules Re, Rf if and only if 

they are conjugate, i.e., there is an invertible element r e R with f = rer~^. 
(5) A sufficient condition for an idempotent e e R to be primitive is that dim^ eRe = 

1. In this case ReR is a matrix algebra over F. 

Proof. (1) We have seen that if e is primitive, then e e Rt for some /. Hence Re = 
RiC, e is the projection on a 1-dimensional subspace and by change of basis, P, = 
Mki (Di). RiC is ihQ first column isomorphic to the standard irreducible module D-'. 
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(2) We first decompose R as direct sum of the Rt = Mk-iDi) and then each 
MkiiDi) as direct sum of the columns Rteii (eij being the diagonal matrix units). 
A minimal left ideal is an irreducible module N c R, and it must be isomorphic to 
one of the colunms, call this Re with e primitive. By the previous lemma, there is an 
isomorphism (/) : R ^^ R, such that (piRe) = N. By Proposition 2 of 1.3, we have 
that 0(«) = ar for some invertible r, hence Â  = Rf with f = r~^er. 

(3) We have that each primitive idempotent lies in a given summand Rt. If Re is 
isomorphic to Rf, the two idempotents must lie in the same summand Rt. If they lie 
in different summands, then eRf C Rt D Rj = 0. Otherwise, eR — eRt, Rf = Rif 
and, since Rt is a simple algebra we have Rt = RteRi = RifRi and Rt = RtRt = 
RteRfRi ^ 0. 

(4) If e = rfr~^ we have that multiplication on the right by r estabHshes an 
isomorphism between Re and Rf. Conversely, let Re, Rf be isomorphic. We may 
reduce to R = Mk(D) and e, f are each a projection to a 1-dimensional subspace. 
In two suitable bases the two idempotents equal the matrix unit ^i,i, so the invertible 
matrix of base change conjugates one into the other. 

(5) eRe = 0 - eRie. Hence if dim/r eRe = 1, we must have that eRt^e ^ 0 for 
only one index /Q and e e Rt^. If e = a + b were a decomposition into orthogonal 
idempotents, we would have a = aea, b = beb e eRe, a contradiction. Since e is 
primitive in Ri^ = MkiDi^) in a suitable basis, it is a matrix unit and so the division 
algebra eRe = Dt^ reduces to F since dim/r D/̂  = dim/r eRe = 1 . n 

Assume as before that R = 0/?/ is a semisimple algebra over a field F and 
dim f eRe = 1. 

Proposition 1. Given a module M over R the multiplicity of Re in its isotypic com­
ponent in M is equal to dim^ eM. 

Proof Let MQ := ®^Re be the isotypic component. We have eM = CMQ = 
®^eRe = FK D 

Proposition 2. 

(1) Let R be a semisimple algebra and I an ideal; then I^ = I. 
(2) IfaRb = 0, then bRa = 0. Furthermore aRa =0 implies a = 0. 

Proof (1) An ideal of 0 - Rt is a sum of some Rj and RJ = Rj. 
(2) In fact from aRb = 0 we deduce (RbRaRf = 0. Since RbRaR is an ideal, 

by (1) we must have RbRaR = 0. Hence bRa = 0. 
Similarly, aRa = 0 implies (RaR)^ = 0. Hence the claim. n 

In particular we see that a semisimple algebra has no nonzero nilpotent ideals, or 
ideals / for which 1^ = 0 for some k. 

It can in fact be proved that for a finite-dimensional algebra this condition is 
equivalent to semisimplicity (cf. [JBA]). 
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3.2 Real Algebras 

It is interesting to study also real semisimple algebras R and real representations. We 
state the basic facts leaving the proofs to the reader. 

A real semisimple algebra is a direct sum of matrix algebras over the three basic 
division algebras M, C or H. The representations will decompose according to these 
blocks. Let us analyze one single block, M/i(A) in the three cases. It corresponds to 
the irreducible module A^ with centralizer A. When we complexify the algebra and 
the module we have Mh (A (8)R C ) acting on (A (8)̂  C)^ with centralizer A 0M C . We 
have 

(3.2.1) E ( 8 ) R C = C , C(8)RC = C e C , M ^ R C = MiCC). 

Exercise. Deduce that the given irreducible module for R, in the three cases, remains 
irreducible, splits into the sum of two non-isomorphic irreducibles, splits into the 
sum of two isomorphic irreducibles. 




