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Tensor Symmetry

1 Symmetry in Tensor Spaces

With all the preliminary work done this will now be a short section; it serves as an
introduction to the first fundamental theorem of invariant theory, according to the
terminology of H.Weyl.

1.1 Intertwiners and Invariants

We have seen in Chapter 1, §2.4 that, given two actions of a group G, an equivariant
map is just an invariant under the action of G on maps.

For linear representations the action of G preserves the space of linear maps, so
if U, V are two linear representations,

homg (U, V) = hom(U, V).
For finite-dimensional representations, we have identified, in a G-equivariant way,
hom(U, V) =U*®@V = (U ® V*)*.

This last space is the space of bilinear functions on U x V*.
Explicitly, a homomorphism f : U — V corresponds to the bilinear form

(flu® @) = (@] fw)).

We thus have a correspondence between intertwiners and invariants.

We will find it particularly useful, according to the Aronhold method, to use this
correspondence when the representations are tensor powers U = A®". V = B®p
and hom(U, V) = A*®™ @ B®P,

In particular when A = B; m = p we have

(1.1.1) End(A®™) = End(A4)®" = A*®" @ A®™ = (A*®" @ A®™)*.

Thus in this case we have
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Proposition. We can identify, at least as vector spaces, the G-endomorphisms of

A®™ with the multilinear invariant functions on m variables in A and m variables
in A*.

Let V be an m-dimensional space. On the tensor space V®" we consider two
group actions, one given by the linear group GL(V) by the formula

(1.1.2) WO - Qu,) =g Qg R X gu,,
and the other by the symmetric group S, given by
(1.1.3) OV @O ®Up) =11 ®Uy-128 -+ ® Vg1

We will refer to this second action as the symmetry action on tensors. By the defini-
tion it is clear that these two actions commute.

Before we make any further analysis of these actions, recall that in Chapter 5,
§2.3 we studied symmetric tensors. Let us recall the main points of that analysis.
Given a vector v € V the tensor v" = v ® v ® v - - - ® v is symmetric.

Fix abasis ey, ez, ..., e, of V. The basis elements ¢;, Qe;, - - - Q¢;, are permuted
by S, and the orbits are classified by the multiplicities A1, k3, . .., h,, with which the
elements ej, e, ..., e, appearintheterme;, ey, ... e,

The sum of the elements of the corresponding orbit are a basis of the symmetric
tensors. The multiplicities &, hy, ..., h, are nonnegative integers, subject only to
Zi h,' =n.

If h := hy, ho, ..., hy is such a sequence, we denote by e, the sum of elements

in the corresponding orbit. The image of the symmetric tensor ¢ in the symmetric

algebra is
n hy h A
<h1h2- ~-hm>611622 SRR

If v =73, xxex, we have
n hy _hy N

v = E xlxz---xm

hy+hy+-Ahm=n

€.

A linear function ¢ on the space of symmetric tensors is defined by {(¢|e;) = a; and
computing on the tensor v” gives

<¢| (Zxkek) > = S x'x . xiray
k

By oty =n

This formula shows that the dual of the space of symmetric tensors of degree # is
identified with the space of homogeneous polynomials of degree n.

Let us recall that a subset X C V is Zariski dense if the only polynomial vanish-
ing on X is 0. A typical example that we will use is: when the base field is infinite,
the set of vectors where a given polynomial is nonzero (easy to verify).
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Lemma. (i) The elements v®", v € V, span the space of symmetric tensors.
(ii) More generally, given a Zariski dense set X C V, the elements v®, v € X,
span the space of symmetric tensors.

Proof. Given a linear form on the space of symmetric tensors we restrict it to the
tensors v®", v € X, obtaining the values of a homogeneous polynomial on X. Since
X is Zariski dense this polynomial vanishes if and only if the form is 0, hence the
tensors v®”, v € X span the space of symmetric tensors. o

Of course the use of the word symmetric is coherent with the general idea of
invariant under the symmetric group.

1.2 Schur-Weyl Duality

We want to apply the general theory of semisimple algebras to the two group actions
introduced in the previous section. It is convenient to introduce the two algebras of
linear operators spanned by these actions; thus

(1) We call A the span of the operators induced by GL(V) in End(V®").
(2) We call B the span of the operators induced by S, in End(V®").

Our aim is to prove:

Proposition. If V is a finite-dimensional vector space over an infinite field of any
characteristic, then B is the centralizer of A.

Proof. We start by identifying
End(V®") = End(V)®".
The decomposable tensor A} ® A, ® - - - ® A, corresponds to the operator:
AQA® QAWM - Qu,)=A11 QAU Q - Q A,v,.

Thus, if g € GL(V), the corresponding operator in V®" is g ® ¢ ® - -- ® g. From
Lemma 1.1 it follows that the algebra A coincides with the symmetric tensors in
End(V)®" since GL(V) is Zariski dense.

It is thus sufficient to show that for an operator in End(V)®", the condition of
commuting with S, is equivalent to being symmetric as a tensor.

It is sufficient to prove that the conjugation action of the symmetric group on
End(V®") coincides with the symmetry action on End(V)®".

It is enough to verify the previous statement on decomposable tensors since they
span the tensor space; thus we compute:

0AI®A® ®A0 (V@1 ® - Q)
=0A1®A28 QA (U1 ®Us2 @+ ® Vgp)
=0(A1V51 ® A2Up2 @+ @ ApUon) = Ag-1101 @ Ag-1202. .. Ag-1nUn
= (A1 ®Ag-12... Ag-1,) (V1 V2 Q@ - - @ Up).
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This computation shows that the conjugation action is in fact the symmetry action
and finishes the proof. 0

We now draw a main conclusion:

Theorem. If the characteristic of F is 0, the algebras A, B are semisimple and each
is the centralizer of the other.

Proof. Since B is the span of the operators of a finite group it is semisimple by
Maschke’s theorem (Chapter 6, §1.5); therefore, by the Double Centralizer Theorem
(Chapter 6, Theorem 2.5) all statements follow from the previous theorem which
states that A is the centralizer of B. ul

Remark. 1f the characteristic of the field F is not 0, in general the algebras A, B are
not semisimple. Nevertheless it is still true (at least if F is infinite or big enough)
that each is the centralizer of the other (cf. Chapter 13, Theorem 7.1).

1.3 Invariants of Vectors

We formulate Theorem 1.2 in a different language.

Given two vector spaces V, W we have identified hom(V, W) with W ® V* and
with the space of bilinear functions on W* x V by the formulas (A € hom(V, W),
ae W ve V)

13.1) (a]Av).

In case V, W are linear representations of a group G, A is in homg(V, W) if and
only if the bilinear function {(¢|Av) is G-invariant.

In particular we see that for a linear representation V the space of G-linear endo-
morphisms of V®" is identified with the space of multilinear functions of an n covec-
tor® and n vector variables f(ai, s, ..., oy, v1, V2, . . ., U,) Which are G-invariant.

Let us see the meaning of this for G = GL(V), V an m-dimensional vector
space. In this case we know that the space of G-endomorphisms of V®" is spanned
by the symmetric group S,. We want to see which invariant function f, corresponds
to a permutation o. By the formula 1.3.1 evaluated on decomposable tensors we get

fola, a0y, 01,02, ..., U) = {1 Q@2 @ Qplo (V1 QU2 ® -+ ® V)
={ @y @ @ anlvy1n
R Uy-12® - - @ Vg-1,)

n

= li[(a,-lva-x,-) = H(aoilvi)'
i=1

i=1
We can thus deduce:

66 Covector means linear form.
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Proposition. The space of GL(V) invariant multilinear functions of n covector and
n vector variables is spanned by the functions

n
(13.2) A o e § (L
i=1

1.4 First Fundamental Theorem for the Linear Group (FFT)

Up to now we have made no claim on the linear dependence or independence of
the operators in S, or of the corresponding functions f,. This will be analyzed in
Chapter 13, §8.

We want to drop now the restriction that the invariants be multilinear.

Take the space (V*)? x V4 of p covector and g vector variables as the represen-
tation of GL(V)(dim(V) = m). A typical element is a sequence

*
(@1, a0, ...,0p,01,02,...,0g), b €V, v; €V,

On this space consider the pg polynomial functions (o;|v;) which are clearly
G L(V) invariant. We prove:®’

Theorem (FFT First fundamental theorem for the linear group).  The ring of
polynomial functions on V*? x V4 that are GL(V)-invariant is generated by the
functions {;|v;).

Before starting to prove this theorem we want to make some remarks about its mean-
ing.

Fix a basis of V and its dual basis in V*. With these bases, V is identified with
the set of m-dimensional column vectors and V* with the space of m-dimensional
TOW VECIOrs.

The group GL(V) is then identified with the group Gl(m, C) of m x m invertible
matrices. Its action on column vectors is the product Av, A € GI(m,C), v e V,
while on the row vectors the action is by ¢ A=,

The invariant function (¢;|v;) is then identified with the product of the row vector
«; with the column vector v;. In other words identify the space (V*)? of p-tuples of
row vectors with the space of p x m matrices (in which the p rows are the coordinates
of the covectors) and (V9) with the space of m x ¢ matrices. Thus our representation
is identified with the space of pairs:

X.NNXeMypu, YeM,,.
The action of the matrix group is by
AX,Y):= (XA}, AY).

67 At this moment we are in characteristic 0, but in Chapter 13 we will generalize our results
to all characteristics.
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Consider the multiplication map:
(14.1) fiMpm xMyy— My, f(X,Y):=XY.

The entries of the matrix XY are the basic invariants (e;|v;); thus the theorem can
also be formulated as:

Theorem. The ring of polynomial functions on My, X My, 4 that are Gl(m, C)-
invariant is given by the polynomial functions on M, , composed with the map f.

Proof. We will now prove the theorem in its first form by the Aronhold method.

Let g(ay, a3, ..., ap, V1, V2, ..., v,) be a polynomial invariant. Without loss of
generality we may assume that it is homogeneous in each of its variables; then we
polarize it with respect to each of its variables and obtain a new multilinear invariant
of the form g(ay, o2, ..., ap, Vi, U2, ..., vy ) where N and M are the total degrees
of g in the «, v respectively.

First we show that N = M. In fact, among the elements of the linear group
we have scalar matrices. Given a scalar A, by definition it transforms v to Av and «
to A~ 'a and thus, by the multilinearity hypothesis, it transforms the function g in
AM=Ng_ The invariance condition implies M = N.

We can now apply Proposition 1.3 and deduce that g is a linear combination of
functions of the form ]_[,N: @i |vi).

We now apply restitution to compute g from g. It is clear that g has the desired
form. o

The study of the relations among invariants will be the topic of the Second Fun-
damental Theorem, SFT. Here we only remark that by elementary linear algebra, the
multiplication map f has, as image, the subvariety D, ,(m) of p x g matrices of rank
< m. This is the whole space if m > min(p, ¢); otherwise, it is a proper subvariety,
called a determinantal variety defined, at least set theoretically, by the vanishing of
the determinants of the (m+-1) x (m+1) minors of the matrix of coordinate functions
Xij on M p.q-

The Second Fundamental Theorem will prove that these determinants generate a
prime ideal which is thus the full ideal of relations among the invariants {o;|v;).

In fact it is even better to introduce a formal language. Suppose that V is an affine
algebraic variety with the action of an algebraic group G. Suppose that p : V — W
is a morphism of affine varieties, inducing the comorphism p* : k[W] — k[V].

Definition. We say that p : V — W is a quotient under G and write W := V//G if
p* is an isomorphism from k[ W] to the ring of invariants k[V1°.

Thus the FFT says in this geometric language that the determinantal variety
D, ,(m) is the quotient under GL(m, C) of (V*)®? ¢ V&4,
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2 Young Symmetrizers

2.1 Young Diagrams

We now discuss the symmetric group. The theory of cycles (cf. Chapter 1, §2.2)
implies that the conjugacy classes of S, are in one-to-one correspondence with the
isomorphism classes of Z actions on [1, 2, ..., n] and these are parameterized by
partitions of 7.

As in Chapter 1, we express that & := ky, k2, . .., k, is a partition of n by & - n.

We shall denote by C(u) the conjugacy class in S, formed by the permutations
decomposed in cycles of length ki, k3, . . ., k,, hence S, = Uy, C(1).

Consider the group algebra R := Q[S, ] of the symmetric group. We wish to work
over QQ since the theory has really this more arithmetic flavor. We will (implicitly)
exhibit a decomposition as a direct sum of matrix algebras over Q:58

@2.1.1) R=QIS:) =P, Maw@.

The numbers d(u) will be computed in several ways from the partition p.
Recall, from the theory of group characters, that we know at least that

Re :=C[S,]:= ) _ M, (C),

where the number of summands is equal to the number of conjugacy classes, hence
the number of partitions of n. For every partition A - n we will construct a primitive
idempotent e, in R so that R = €p,,, Re; R and dimg e;Re; = 1. In this way the
left ideals Re, will exhaust all irreducible representations. The description of 2.1.1
then follows from Chapter 6, Theorem 3.1 (5).

In fact we will construct idempotents e,, A F n so that dimge,Re;, = 1 and
exRe, = 0if A # u. By the previous results we have that R contains a direct sum-
mand of the form @u,_n My (@), or R = @u,_n M, ,y(Q) @ R’. We claim that
R’ = 0; otherwise, once we complexify, the algebra Re = @m_n M,,)(C) & R¢
would contain more simple summands than the number of partitions of n, a contra-
diction.

For a partition A + n let B be the corresponding Young diagram, formed by n
boxes which are partitioned in rows or in columns. The intersection between a row
and a column is either empty or it reduces to a single box.

In a more formal language consider the set N* x N+ of pairs of positive integers.
For apair (i, j) e Nx Nset C;; == {(h, k)|l <h <i, 1 <k <j} (thisisa
rectangle).

These rectangular sets have the following simple but useful properties:

(1) Cij CCprifandonlyif (i, j) € Cyp.
(2) If a rectangle is contained in the union of rectangles, then it is contained in one
of them.

%8 S0 in this case all the division algebras coincide with Q.
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Definition. A Young diagram is a subset of N* x N+ consisting of a finite union of
rectangles C; ;.

In the literature this particular way of representing a Young diagram is also called a
Ferrer diagram. Sometimes we will use this expression when we want to stress the
formal point of view.

There are two conventional ways to display a Young diagram (sometimes referred
to as the French and the English way) either as points in the first quadrant or in the
fourth:

Example. The partition 4311:
French English

Any Young diagram can be written uniquely as a union of sets C; ; so that no rect-
angle in this union can be removed. The corresponding elements (i, j) will be called
the vertices of the diagram.

Given a Young diagram D (in French form) the set C; := {(i, j) € D}, i fixed,
will be called the i column, the set R; := {(i, j) € D}, j fixed, will be called the
j™ row.

The lengths &y, k3, k3, ... of the rows are a decreasing sequence of numbers
which completely determine the diagrams. Thus we can identify the set of diagrams
with n boxes with the set of partitions of n; this partition is called the row shape of
the diagram.

Of course we could also have used the column lengths and the so-called dual
partition which is the column shape of the diagram.

The map that to a partition associates its dual is an involutory map which geo-
metrically can be visualized as flipping the Ferrer diagram around its diagonal.

The elements (#, k) in a diagram will be called boxes and displayed more picto-
rially as (e.g., diagrams with 6 boxes, French display):

R

HH Hio Hrmo musaas

2.2 Symmetrizers

Definition 1. A bijective map from the set of boxes to the interval
(1,2,3,...,n — 1,n) is called a tableau. It can be thought as a filling of the dia-
gram with numbers. The given partition A is called the shape of the tableau.
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Example. The partition 4311:%°

French

= W
—_ Wk

2 7 6 8

9 6 8 2 5 9

The symmetric group S, acts on the tableaux by composition:
oT:B—— (1,2,3,....n—1,n) —2— (1,2,3,...,n—1,n).

A tableau induces two partitions on (1,2,3,...,n — 1,n):

The row partition is defined by: i, j are in the same part if they appear in the
same row of T'. The column partition is defined similarly.

To a partition 7 of (1,2,3,...,n — 1,n)"° one associates the subgroup S, of
the symmetric group of permutations which preserve the partition. It is isomorphic
to the product of the symmetric groups of all the parts of the partition. To a tableau
T one associates two subgroups Ry, Cr of S,.

(1) Ry is the group preserving the row partition.
(2) Cr is the subgroup preserving the column partition.

It is clear that Ry N Cr = 1 since each box is an intersection of a row and a column.

Notice thatif s € S,,, the row and column partitions associated to s T are obtained
by applying s to the corresponding partitions of 7. Thus

(2.2.1) Ryr = sRps™!,  Cor =sCps™\.
We define two elements in R = Q[S,,]:

2.2.2) ST = Z o the symmetrizer on the rows
UGRT

ar = Z €,0 the antisymmetrizer on the columns.
oeCr

Recall that €, denotes the sign of the permutation. The two identities are clear:
s%:l_[h,-!sr, a%:ﬂki!aT
i i

where the &; are the lengths of the rows and k; are the lengths of the columns.
It is better to get acquainted with these two elements from which we will build
our main object of interest.

% The reader will notice the peculiar properties of the right tableau, which we will encounter
over and over in the future.

70 There is an ambiguity in the use of the word partition. A partition of n is just a non-
increasing sequence of numbers adding to n, while a partition of a set is in fact a decompo-
sition of the set into disjoint parts.
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2.2.3) pst =st =srp, Vp € Ryp; gar =arq = €gar, ¥q € Cr.

Conversely psy = sy or s, = sy implies p € Ry. Similarly gar = €,ar orarqg =
€,ar implies g € Cr. It is then an easy exercise to check the following.

Proposition. The left ideal Q[S,]st has as a basis the elements gst as g runs over
a set of representatives of the cosets gRr and it equals, as a representation, the
permutation representation on such cosets.

The left ideal Q[S, ]ar has as a basis the elements gar as g runs over a set of rep-
resentatives of the cosets gCr and it equals, as a representation, the representation
induced to S, by the sign representation of Ct.

Now the remarkable fact comes. Consider the product

2.2.4) cr = Srar = E €09
peRr, qeCr

We will show that:

Theorem. There exists a positive integer p(T) such that the element er := % is
a primitive idempotent.

Definition 2. The idempotent ey :=
the given tableau.

7)%) is called the Young symmetrizer relative to

Remark.

2.2.5) csr = sers .

We thus have for a given A + n several conjugate idempotents, which we will
show to be primitive, associated to tableaux of row shape A. Each will generate an
irreducible module associated to A which will be denoted by M,.

For the moment, let us remark that from 2.2.5 it follows that the integer p(T)
depends only on the shape A of T, and thus we will denote it by p(T) = p(A).

2.3 The Main Lemma

The main property of the element ¢y which we will explore is the following, which
is clear from its definition and 2.2.3:

2.3.1) per =cr, Yp € Rr; crq = €4c7, Vg € Cr.

We need a fundamental combinatorial lemma. Consider the partitions of n as de-
creasing sequences of integers (including 0) and order them lexicographically.”!
For example, the partitions of 6 in increasing lexicographic order:

111111,21111,2211,222,3111, 321,411, 42, 51, 6.

7 We often drop 0 in the display.
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Lemma. Let S and T be two tableaux of row shapes:
A=hi>2h>...2h, u=k >k >... >k,

with & > . Then one and only one of the two following possibilities holds:

(i) Two numbers i, j appear in the same row in S and in the same column inT.
(ii) A =pand pS = qT where p € Rg, q € Cr.

Proof. We consider the first row r; of S. Since h; > k;, by the pigeonhole principle
either there are two numbers in r; which are in the same column in T or &; = ky and
we can act on 7 with a permutation s in C7 so that S and sT have the first row filled
with the same elements (possibly in a different order).

Observe that two numbers appear in the same column in 7 if and only if they
appear in the same column in s7 or Cy = C,r.

We now remove the first row in both § and 7' and proceed as before. At the end
we are either in case (i) or A = w and we have found a permutation ¢ € Cr such that
S and g T have each row filled with the same elements.

In this case we can find a permutation p € Ry such that pS = gT.

In order to complete our claim we need to show that these two cases are mutually
exclusive. Thus we have to remark that if pS = ¢gT as before, then case (i) is not
verified. In fact two elements are in the same row in § if and only if they are in the
same row in p S, while they appear in the same column in 7 if and only if they appear
in the same column in g7 . Since pS = ¢ T two elements in the same row of p§ are
in different columns of g 7. O

Corollary. (i) Given A > p partitions, S and T tableaux of row shapes A, u respec-
tively, and s any permutation, there exists a transposition u € Rg and a transposition
v € Cr such that us = sv.

(ii) If, for a tableau T, s is a permutation not in Ry Cr, then there exists a trans-
position u € Ry and a transposition v € Ct such that us = sv.

Proof. (i) From the previous lemma there are two numbers i and j in the same row
for S and in the same column for sT. If u = (i, j) is the corresponding transposition,
we have u € Rg, u € C,r. We set v := s~ 'us and we have v € s71C;ps = Cr by
2.2.1. By definition sv = uv.

(ii) The proof is similar. We consider the tableau T, construct s~! T, and apply
the lemma to s~!7T, 7.

If there exists a p’ € Ry-i7, g € Cp with p's™'T = qT, since p' = s~ !ps,
p € Ry, we would have that s™'p = g, s = pg~' against the hypothesis.
Hence there is a transposition v € Cy and v € Ri-1i7 or v = s~lus, u € Ry, as
required. o
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2.4 Young Symmetrizers 2

We now draw the conclusions relative to Young symmetrizers.

Proposition. (i) Let S and T be two tableaux of row shapes . > L.
If an element a in the group algebra is such that

pa=a, Vp € Rg, andaq = €a, Vq € Cr,

thena = (.
(ii) Given a tableau T and an element a in the group algebra such that

pa=a, Vp € Ry, andaq = ¢;a, Vq € Cr,
then a is a scalar multiple of the element ct.

Proof. (i) Letus writea = ), 5, a(s)s; for any given s we can find u, v as in the
previous lemma.

By hypothesis ua = a,av = —a. Then a(s) = a(us) = a(sv) = —a(s) =0
and thus a = 0.

(ii) Using the same argument as above, we can say that if s ¢ RyCr, then
a(s) = 0. Instead, let s = pg, p € Ry,q € Cr. Then a(pg) = €,a(1), hence
a=a(l)cr. m]

Before we conclude let us recall some simple facts about algebras and group
algebras.

If R is a finite-dimensional algebra over a field F, we can consider any element
r € R as a linear operator on R (as vector space) by right or left action. Let us
define tr(r) to be the trace of the operator x —> xr.”> Clearly tr(1) = dimr R. For
a group algebra F[G] of a finite group G, an element g € G, g # 1, gives rise to
a permutation x — xg, x € G of the basis elements without fixed points. Hence,
tr(1) = |G|, tr(g) = 0if g # 0.

We are now ready to conclude. For R = Q[S,] the theorems that we aim at are:

Theorem 1.

(i) ctrRer = crRar = stRer = sy Rar = Qcer.

(ii) c% = p(A)cr with p(A) # 0 a positive integer.
(iii) dimg Rer = .
(iv) If U, V are two tableaux of shapes ). > i, then sy Ray = ayRsy = 0.

(v) If U, V are tableaux of different shapes X, u, we have cy Rcy = 0 = sy Ray.

Proof. (i) We cannot have ¢y Rcr = 0 since R is semisimple. Hence it is enough to
prove st Rar = Qcr. We apply the previous proposition and get that every element
of s7 Rar satisfies (ii) of that proposition, hence st Rar = Qcr.

(i1) In particular we have c% = p(A)cr. Now compute the trace of ¢y for the right
regular representation. From the previous discussion we have tr(cy) = n!, hence

72 One can prove in fact that the operator x — rx has the same trace.
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c% # 0. Since C% = p(A)cr we have that p(A) # 0. Since p(A) is the coefficient of
1 in the product c%, it is clear that it is an integer.

(i) er = p—c(f\—) is idempotent and P—”(;—) = ‘;f(c{)) = tr(er). The trace of an
idempotent operator is the dimension of its image. In our case Rer = Rcr, hence
;% = dimg Rcr. In particular this shows that p(}) is positive.

(iv) If & > p we have, by part (i), sy Ray = 0.

(v) If & > p we have, by (iv), cy Rey = syay Rsyay C sy Ray = 0. Otherwise
cy Rey = 0, which, since R has no nilpotent ideals, implies ¢y Rcy = 0 (Chapter 6,

§3.1).

From the general discussion performed in 2.1 we finally obtain

Theorem 2. (i) The elements er = ﬁ are primitive idempotents in R = Q[S,].
(ii) The left ideals Rey give all the irreducible representations of S, explicitly
indexed by partitions.

(iii) These representations are defined over Q.

We will indicate by M, the irreducible representation associated to a (row) par-
tition A.

Remark. The Young symmetrizer a priori does not depend only on the partition A
but also on the labeling of the diagram. Two different labelings give rise to conjugate
Young symmetrizers which therefore correspond to isomorphic irreducible represen-
tations.

We could have used, instead of the product srar, the product arsy in reverse
order. We claim that also in this way we obtain a primitive idempotent ‘;T(if) , relative
to the same irreducible representation.

The same proof could be applied, but we can also argue by applying the anti-
automorphism @ — @ of the group algebra which sends a permutation ¢ to o~

Clearly,

ar = dar, St = St, S7Adr = 4TST.

Thus pTlﬂaTsT = e is a primitive idempotent.

Since clearly crarsy = srararsr is nonzero (a% is a nonzero multiple of ar
and so (crarsr)ar is a nonzero multiple of c%) we get that e7 and er are primitive
idempotents relative to the same irreducible representation, and the claim is proved.

We will need two more remarks in the computation of the characters of the sym-
metric group.

Consider the two left ideals Rs7, Rar. We have given a first description of their
structure as representations in §2.2. They contain respectively ar Rsy, st Rar which
are both 1 dimensional. Thus we have

Lemma. M, appears in its isotypic component in Rst (resp. Rar) with multiplicity
1. If M,, appears in Rsr, then ju < A, and if it appears in Rar, then . > 1.7

73 We shall prove a more precise theorem later,
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Proof. To see the multiplicity with which M, appears in a representation V it suf-
fices to compute the dimension of ¢ Vor of ¢7V where T is a tableau of shape p.
Therefore the statement follows from the previous results. ul

In particular we see that the only irreducible representation which appears in both
RST, RaT is MA.

The reader should apply to the idempotents that we have discussed the following
fact:

Exercise. Given two idempotents e, f in a ring R we can identify

homg(Re, Rf) = eRf.

2.5 Duality

There are several deeper results on the representation theory of the symmetric group
which we will describe.

A first remark is about an obvious duality between diagrams. Given a tableau
T relative to a partition A, we can exchange its rows and columns obtaining a new
tableau T relative to the partition A, which in general is different from A. It is thus
natural to ask in which way the two representations are tied.

Let Q(¢) denote the sign representation.

Proposition. M; = M, ® Q(e¢).

Proof. Consider the automorphism 7 of the group algebra defined on the group ele-
ments by 7(0) := €,0.

Clearly, given a representation g, the composition g7 is equal to the tensor prod-
uct with the sign representation; thus, if we apply t to a primitive idempotent asso-
ciated to M,, we obtain a primitive idempotent for Mj.

Let us therefore use a tableau T of shape A and construct the symmetrizer. We
have

)= Y. etlpg= (Z epp)(z q).

péRT, qECT pERT qGCT

We remark now that since A is obtained from A by exchanging rows and columns we
have

Rr =C;, Cr =Rj.
Thus t(cr) = azsj = ¢, hence t(er) = e;. m]

Remark. From the previous result it also follows that p(}) = pR).
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3 The Irreducible Representations of the Linear Group 1

3.1 Representations of the Linear Groups

We now apply the theory of symmetrizers to the linear group.

Let M be a representation of a semisimple algebra A and B its centralizer. By
the structure theorem (Chapter 6) M = @N; ®,, P; with N; and P; irreducible
representations, respectively of A, B. If ¢ € B is a primitive idempotent, then the
subspace e P; # 0 for a unique index ig and eM = N;, ® eP; = N, is irreducible as
a representation of A (associated to the irreducible representation of B relative to e).

Thus, from Theorem 2 of §2.4, to get a list of the irreducibie representations of
the linear group GI(V) appearing in V®", we may apply the Young symmetrizers er
to the tensor space and see when ey VO £ 0.

Assume we have ¢ columns of length |, ns, ..., n,, and decompose the column
preserving group Cr as a product Hl'-:l Sy, of the symmetric groups of all columns.

By definition we get ar = [] an,, the product of the antisymmetrizers relative to
the various symmetric groups of the columns.

Let us assume, for simplicity of notation, that the first n; indices appear in the
first column in increasing order, the next n; indices in the second column, and so on,
so that

V=YgV ... @ VO,
aTv®n =anlv®n‘ ®anzv®"2 ®"‘®an,v®n' = /\n1V®/\nZV®"'®/\nl V.

Therefore we have that if there is a column of length > dim(V), then ay V®" = 0.

Otherwise, we have n; < dim(V), Vi, and we prove the equivalent statement that
arstV® #£0.Lete, ez, ..., e, be abasis of V and use the corresponding basis of
decomposable tensors for V®"; let us consider the tensor

3.1.1)
U=(1Rea® - Ve)R0(e1R0Q ®e,)RQ - Q1 Qe ®---Qey,).

This is the decomposable tensor having ¢; in the positions corresponding to the in-
dices of the i™ row. By construction it is symmetric with respect to the group Ry of
row preserving permutations, hence s7U = pU, p = Ry} # 0.

Finally,

(3.12) arU =
(einexn-—-Ney)Re1Aer N - Nep,) Q- Rlet Aex A--- Ney) #0.

Recall that the length of the first column of a partition A (equal to the number of
its rows) is called the height of A and indicated by A7 (A). We have thus proved:

Proposition. If T is a tableau of shape X, then ey V®" = 0 if and only if ht () >
dim(V).
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For a tableau T of shape A, define
(3.1.3) S (V) = er V&, the Schur functor associated to A.

We are implicitly using the fact that for two different tableaux T and T’ of the same
shape we have a unique permutation o with ¢(T) = T’. Hence we have a canonical
ismorphism between the two spaces er V&, ey VO,

Remark. We shall justify the word functor in 7.1.

As a consequence, we thus have a description of V®" as a representation of
Sy X GL(V).

Theorem.
®n _
(3.1.4) Ve =B, 00 <amey, M ® (V).

Proof. We know that the two algebras A and B, spanned by the linear and the sym-
metric group, are semisimple and each the centralizer of the other. By the structure
theorem we thus have V& = @D, M; ® S; where the M; are the irreducible repre-
sentations of S, which appear. We have proved that the ones which appear are the
M,, ht(A) < dim(V) and that S, (V) is the corresponding irreducible representation
of the linear group.

4 Characters of the Symmetric Group

As one can easily imagine, the character theory of the symmetric and general linear
group are intimately tied together. There are basically two approaches: a combinato-
rial approach due to Frobenius, which first computes the characters of the symmetric
group and then deduces those of the linear group, and an analytic approach based
on Weyl’s character formula, which proceeds in the reverse order. It is instructive to
see both. There is in fact also a more recent algebraic approach to Weyl’s character
formula which we will not discuss (cf. [Hul]).

4.1 Character Table

Up to now we have been able to explicitly parameterize both the conjugacy classes
and the irreducible representations of S, by partitions of n. A way to present a parti-
tion is to give the number of times that each number i appears.

If i appears k; times in a partition u, the partition is indicated by

4.1.1) po=1khksks ko

Let us write

(4.1.2) a(p) :=kytkotks! . kil b(u) = 1k2k3k kL
(4.1.3) n(w) = a()b() := k11" k128 k3135 kit

We need to interpret the number () in terms of the conjugacy class C(u):
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Proposition. If s € C(u), then n(u) is the order of the centralizer G of s and
[C(wW)n(u) = nl

Proof. Let us write the permutation s as a product of a list of cycles ¢;. If g central-
izes 5, we have that the cycles gc;g~! are a permutation of the given list of cycles.

It is clear that in this way we get all possible permutations of the cycles of equal
length. Thus we have a surjective homomorphism of G; to a product of symmetric
groups [] Sk, its kernel H is formed by permutations which fix each cycle.

A permutation of this type is just a product of permutations, each on the set
of indices appearing in the corresponding cycle, and fixing it. For a full cycle the
centralizer is the cyclic group generated by the cycle, so H is a product of cyclic
groups of order the length of each cycle. The formula follows. O

The computation of the character table of S, consists, given two partitions 4, u,
of computing the value of the character of an element of the conjugacy class C(u)
on the irreducible representation M, . Let us denote this value by x; (it).

The final result of this analysis is expressed in compact form through symmet-
ric functions. Recall that we denote ¥ (x) = [, xi". For a partition u = n =
ki ko, ..., ky,,set

Y (x) i= Y, ()P, () - . P, ().

Using the fact that the Schur functions are an integral basis of the symmetric
functions there exist (unique) integers c; (i) for which

4.14) Yu(x) =) a(w)Six),
A

We interpret these numbers as class functions ¢, on the symmetric group

a(C(p)) == an(p)
and we have

Theorem (Frobenius). For all partitions A, - n we have

4.1.5) () = ().

The proof of this theorem is quite elaborate, and we divide it into five steps.

Step 1 First we transform the Cauchy formula into a new identity.

Step 2 Next we prove that the class functions c; are orthonormal.

Step 3 To each partition we associate a permutation character §;.

Step 4 We prove that the matrix expressing the functions B, in terms of the ¢, is
triangular with 1 on the diagonal.

Step 5 We formulate the Theorem of Frobenius in a more precise way and prove it.
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Step 1 In order to follow the Frobenius approach we go back to symmetric func-
tions in n variables x1, x2, ..., x,. We shall freely use the Schur functions and the
Cauchy formula for symmetric functions:

[

i,j=1,n

= Z S ()81 (y)

l—x,yj

proved in Chapter 2, §4.1. We change its right-hand side as follows. Compute

log (1‘[ ) Z Z (xi y, g 2:: (xiy;)"

ij= ll—x’y] i,j=1 h=

(4.1.6) _ Z Y (X)hl/fh » ‘

Taking the exponential we get the following expression:

00 k
@17 exp (Z wh(x)wh(y)) 5 (Z wh(x:/fh(y)>

h=1 k=0 =1

=

_ i s ( k )dn OF P (R Yok (y)e
k=0 k! Y ki=k kiky ... 1 2k,
E

Then from 4.1.3 we deduce

(4.1.8)

(4.1.9) Z ()Wx)l//u(y) Z&(x)SA(y).

Step 2 Consider two class functions a and b as functions on partitions. Their
Hermitian product is

1 - 1 —
2 D a@be) =) —IC(M)Ia(u)b(M) > .

pbn 7 geClu) m—n ukn

Let us now substitute in the identity 4.1.9 the expression ¥, = Y, ¢;(u)S», and get

0 if A #A
1.
(4.1.10) ; ()M(u) =1 = .

We thus have that the class functions c; are an orthonormal basis, completing Step 2.

Step 3 We consider now some permutation characters.
Take a partition A := hy, hy, ..., b of n. Consider the subgroup S, = Sp, x
Sk, x -+ x 8y, and the permutation representation on:
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4.1.11) Sn/Shy X Spy, X -+ X Sy, .

We will indicate the corresponding character by B,.

A permutation character is given by the formula x(g) = )_; [tg((ggi))l[ (§1.4.3 of
Chapter 8). Let us apply it to the case G/H = S,,/Sp, X Sp, X -+ X Sp,, and for a
permutation g relative to a partition y := 171272373 | jPi . . pPr.

A conjugacy class in S, X Sp, X --- x Sy, is given by k partitions u; = h; of
the numbers k1, ko, ..., hy. The conjugacy class of type u, intersected with S, x
Sn, X -+ % Sp,, gives all possible k tuples of partitions 11, (o, ..., pe of type

Up = 1PwQPm3IP jPih

and

k
Z Pin = Di-
h=1

In a more formal way we may define the direct sum of two partitions A =
1712P23Ps P = 19293% | {9 .. asthe partition

A®u = 1Pty pstas iPite

and remark that, with the notations of 4.1.2, b(A @ ) = b(M)b(w).
When we decompose © = @Ll i, we have b(u) = []b(us).

The cardinality m,,, ., ., of theclass py, po, ..., pein Sy, X Sp, X -+ X Sy, is
h;! Eohto 1
m ey = =
e E n(u;) U a(u) b(w)’
Now
k k n

l—[a(llq) = 1—[ (l—[ ch')

j=1 h=1 \i=1
So we get

1 n
m — | | A;! .
Mzt = 00 )H i ] I(leplz pik)

j=1 i=
Finally for the number 8 (11) we have

n{i)
Bu) = l_[ P kz My g tia
=1 =y s b hy

_ - pi
B Z U(PilpiZ---pik).

=, i, wirh; =1
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This sum is manifestly the coefficient of x{"x;’ T .x,':k in the symmetric function

Y. (x). In fact when we expand
Yu(x) = Y1) Y2 ()P i O

for each factor ¥ (x) = Z?:l xi" , one selects the index of the variable chosen and

constructs a corresponding product monomial.
For each such monomial, denote by p;; the number of choices of the term x} in

the p; factors ¥ (x). We have []; (p_lp_’:"'__pk) such choices and they contribute to the
monomial x/' x*2 .. x}* if and only if Y, ipi; = h;.
Step 4 If m, denotes the sum of all monomials in the orbit of x{"xé’z .. .x,i'*, we

get the formula

(4.1.12) V() =Y Bilwymy(x).
A

We wish now to expand the basis m, (x) in terms of the basis S, (x) and conversely:

(4.1.13) M) =Y pauSu(x), $i(x) =Yk umy (x).
u u

In order to make explicit some information about the matrices:

(Pk,u)’ (kl,u.)

recall that the partitions are totally ordered by lexicographic ordering. We also or-
der the monomials by the lexicographic ordering of the sequence of exponents
hy, hs, ..., h, of the variables x1, x, ..., x,.

We remark that the ordering of monomials has the following immediate property:

If My, M, N are 3 monomials and M, < M,, then M|\ N < M,N. For any poly-
nomial p(x), we can thus select the leading monomial /(p) and for two polynomials
p(x), g(x) we have

I(pg) = 1(p)l(q).

For a partition u - n := hy > hy > ... > h, the leading monomial of m,, is

xt = x{“xé’z cox
Similarly, the leading monomial of the alternating function A, 4, (x) is
xfAnlghtn=2 e = gpte,
We now compute the leading monomial of the Schur function S,,:
XM = 1Ay () = LS (D V(1)) = I(Su(x))x?.
We deduce that
1(S,(x)) = xH.

This computation has the following immediate consequence:
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Corollary. The matrices P := (py ), Q := (k; ) are upper triangular with 1 on
the diagonal.

Proof. A symmetric polynomial with leading coefficient x* is clearly equal to m,,
plus a linear combination of the m;, A < p. This proves the claim for the matrix Q.
The matrix P is the inverse of Q and the claim follows. O

Step 5 We can now conclude a refinement of the computation of Frobenius:

Theorem 2. (l) ,BA =c; + Z¢<A k¢,AC¢, k¢,)\ e N. C, = ZI’LZ)» Pukb#-

(ii) The functions c, () are a list of the irreducible characters of the symmetric
group.

(iii) x» = cy.

Proof. From the various definitions we get

(4.1.14) cr =) Porby. B = kpics.
¢ ¢

Therefore the functions ¢, are virtual characters. Since they are orthonormal they are
= the irreducible characters.

From the recursive formulas it follows that ) = i + Y _; ks,1Cs, Mi g € Z.

Since B, is a character it is a positive linear combination of the irreducible char-
acters. It follows that each ¢, is an irreducible character and that the coefficients
ks, € N represent the multiplicities of the decomposition of the permutation repre-
sentation into irreducible components.’™

(iii)) Now we prove the equality x; = ¢, by decreasing induction. If A = n is
one row, then the module M, is the trivial representation as well as the permutation
representation on S,/S,,.

Assume x,, = ¢, forall & > A. We may use Lemma 2.4 and we know that M,
appears in its isotypic component in Rsy with multiplicity 1 and does not appear in
Rsy for any tableau of shape ;v > A.

We have remarked that Rsy is the permutation representation of character §, in
which, by assumption, the representation M, appears for the first time (with respect
to the ordering of the ). Thus the contribution of M, to its character must be given
by the term c;. |

Remark. The basic formula ¥, (x) = ), cx()Sx(x) can be multiplied by the
Vandermonde determinant, obtaining

(4.1.15) V)V () =Y cx () Argo ().

A

Now we may apply the leading monomial theory and deduce that ¢; (i) is the coef-
ficient in ¥, (x)V (x) belonging to the leading monomial x*** of A, .

This furnishes a possible algorithm; we will discuss later some features of this
formula.

4 The numbers kg,» are called Kostka numbers. As we shall see they count some combinato-
rial objects called semistandard tableaux.
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4.2 Frobenius Character

There is a nice interpretation of the theorem of Frobenius.

Definition. The linear isomorphism between characters of S, and symmetric func-
tions of degree n which assigns to yx, the Schur function S, is called the Frobenius
character. It is denoted by x — F(x).

Lemma. The Frobenius character can be computed by the formula
x ()
@2.1) F(O == Z @OV (¥) = )_ S vu).
! cES, ukn

Proof. By linearity it is enough to prove it for x = x,. From 4.1.4 and 4.1.10 we
have

_ () _ (1)
F(x) = ; G Ve = ; 0D ;cyuosy(x)

_ Z Z C)\(IL)C)/(,U«)S @) = 8,(x). g
n(u)

Recall that n(u) is the order of the centralizer of a permutation with cycle struc-
ture . This shows the following important multiplicative behavior of the Frobenius
character.

Theorem. Given two representations V, W of S, Su, respectively, we have
4.2.2) F(Indﬁ:;'"sm(v ® W)) = F(VYF(W).

Proof. Let us denote by x the character of Inds'”*x"s (V ® W). Recall the discus-
sion of induced characters in Chapter 8. There we proved (formula 1.4.2) x(g) =
Y llg((g))}l xv{(gi). Where |G(g)| is the order of the centralizer of g in G, the ele-
ments g; run over representatives of the conjugacy classes O; in H, decomposing
the intersection of the conjugacy class of g in G with H.

In our case we deduce that x (o) = O unless o is conjugate to an element (a, b)
of S, x 8. In terms of partitions, the partitions v - n + m which contribute to
the characters are the ones of type A & w. In the language of partitions the previous
formula 1.4.2 becomes

_ n(A + p) )
xXW) = v;ﬂ GG xv (W) xw (W)

since Yo, = ¥a ¥, we obtain for F(x):
X(”)‘/’v ¥y n(h + w)
- A
v};—n ; n(v) U;M n()‘)n(M)XV( )XW(H/)

_ xV(X)xW(u)
smn IR

V¥ = FQOF (). o
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4.3 Molien’s Formula

We discuss a complement to the representation theory of S,,.

It will be necessary to work formally with symmetric functions in infinitely many
variables, a formalism which has been justified in Chapter 2, §1.1. With this in mind
we think of the identities of §4 as identities in infinitely many variables.

First, a convention. If we are given a representation of a group on a graded vector
space U := {U;}72 (i.e., a representation on each U;) its character is usually written
as a power series with coefficients in the character ring in a variable g:7°

43.1) xu@® =Y xd',

where y; is the character of the representation U;.
Definition. The expression 4.3.1 is called a graded character.

Graded characters have some formal similarities with characters. Given two graded
representations U = {U;};, V = {V;}; we have their direct sum, and their tensor
product

UeVy=UeV, UV =, UiV
For the graded characters we clearly have

(4.3.2) xuev (@) = xu(@) + xv(@). xvev(@) = xu(q)xv(q).
Let us consider a simple example.”®

Lemma (Molien’s formula). Given a linear operator A on a vector space U its
action on the symmetric algebra S(U) has as graded character:

(4.3.3) ;tr(S (A)g' = dot(l —qA)’

Its action on the exterior algebra N\ U has as graded character:

dim U

(4.3.4) > tr(AT(A)g' = det(1 + g A).
i=0

7 1t is now quite customary to use g as a variable since it often appears to come from com-
putations on finite fields where ¢ = p” or as a quantum deformation parameter.

76 Strictly speaking we are not treating a group now, but the set of all matrices under multi-
plication, which is only a semigroup, for this set tensor product of representations makes
sense, but not duality.
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Proof. For every symmetric power S¥(U) the character of the operator induced by
A is a polynomial in A. Thus it is enough to prove the formula by continuity and
invariance when A is diagonal.

Take a basis of eigenvectors u;, { = 1, ..., n with eigenvalue A;. Then

SW) = Sw) ® Su) ® -+ ® Sw,) and  S(u) = ) Fuf.

h=0
The graded character of S(u;) is Y oo Alg" = '1—lx,-q’ hence
@ =] T s @ : !
X = XSu; = 7 = X
sw\qg 11 Su)\g T (= hq) — det(l = gA)

Similarly, A U = Alu;] ® Alu] ® -+ - ® Alu,] and Alu;] = F @ Fu;, hence

n n
Xawi@ = [ [ xawa@ = [ [0 + Aiq) = det(1 + qA). D
i=1 i=1

We apply the previous discussion to S, acting on the space C" permuting the co-
ordinates and the representation that it induces on the polynomial ring
Clxy, x2, ..., x,].

We denote by 3 7o, xiq' the corresponding graded character.

If o is a permutation with cycle decomposition of lengths (o) = p := my, mo,

., my, the standard basis of C" decomposes into k-cycles each of length m;. On

the subspace relative to a cycle of length m, o acts with eigenvalues the m-roots of 1
and

k
det(1 — go) = l_[n ( ejZHﬂ/m,q) _ H(l —g™).
i=l]

i=l j=
Thus the graded character of ¢ acting on the polynomial ring is

M‘HZW" l?[!/fm.-(l,q,qz,...,q",...)

i j=0

:wu(l,q,qz,...,qk,...)=ZXA(U)SA(I,q,qz,...,qk,...).

Abn
To summarize

Theorem 1. The graded character of S, acting on the polynomial ring is

4.3.5) > wSiq.q% g5 ).
An

Exercise, Prove this formula directly.
(Hint.) C[x1, ..., x,] = C[x]®" = @, M, ® Si(C[x]).
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We have a corollary of this formula. If A = hy > h,... > h,, the term of

lowest degree in g in S,(1,4, 4%, ...,4¢%,...) is clearly given by the leading term
xPxle  xh computed in 1,4, %, ..., q", and this gives gh 2ttt e

deduce that the representation M, of S, appears for the first time in degree hy +
2hy+43h3+- - - +nh, and in this degree it appears with multiplicity 1. This particular
submodule of C[xy, x3, . .., x,] is called the Specht module and it plays an important
role.”’

Now we want to discuss another related representation.

Recall first that Ci{x, x5, ..., x,,] is a free module over the ring of symmetric
functions Clo1, 03, .. ., 0,] of rank n!. It follows that for every choice of the num-
bers a 1= ai, ..., ay, thering R, = Clxy, x2, ..., x,1/{0; — a;) constructed from
Clxi, x2, . .., x,], modulo the ideal generated by the elements o; —a;, is of dimension
n! and a representation of S,,.

We claim that it is always the regular representation.

Proof. First, we prove it in the case in which the polynomial #* — a;t"~! 4 apt"~2

— «-+ 4+ (—=1)'a, has distinct roots «,...,q,. This means that the ring
Clxy, x2, ..., x41/{0; — a;) is the coordinate ring of the set of the n! distinct points
Qg (1), - - -+ Uo(m)s O € Sy. This is clearly the regular representation.

We know that the condition for a polynomial to have distinct roots is given by
the condition that the discriminant is not zero (Chapter 1). This condition defines a
dense open set.

It is easily seen that the character of R, is continuous in g and, since the charac-
ters of a finite group are a discrete set, this implies that the character is constant. 0O

It is of particular interest (combinatorial and geometric) to analyze the special
case ¢ = 0 and the ring R := C[x}, x3, ..., x,]/{0;) which is a graded algebra af-
fording the regular representation. Thus the graded character xg(q) of R is a graded
form of the regular representation. To compute it, notice that, as a graded represen-
tation, we have an isomorphism

Clx1, x2,...,x,] = R® Cloy, 02, ..., 0],

and thus an identity of graded characters.

The ring Cloy, 03, . . ., 0] has the trivial representation, by definition, gnd gen-
erators in degree 1,2, ..., n; so its graded character is just H;’zl(l — g We
deduce:

Theorem 2.

Xe(@) =Y xSilq.q%....q" O ]Ja—g).
i=1

Abn

Notice then that the series Si(1, g, q%, ..., g%, ...) [1'=;(1 — ¢’) represent the mul-
tiplicities of y, in the various degrees of R and thus are polynomials with positive
coefficients with the sum being the dimension of ;.

77 1t appears in the Springer representation, for instance, cf. [DP2].
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Exercise. Prove that the Specht module has nonzero image in the quotient ring
R :=Clxq, x2, ..., x,1/{0}).

The ring R := Z[x1, X2, ..., x,]/{0;) has an interesting geometric interpreta-
tion as the cohomology algebra of the flag variety. This variety can be understood
as the space of all decompositions C* = V|, L V, L .- L V, into orthogonal
1-dimensional subspaces. The action of the symmetric group is induced by the topo-
logical action permuting the summands of the decomposition (Chapter 10, §6.5).

5 The Hook Formula

5.1 Dimension of M,

We want to now deduce a formula, due to Frobenius, for the dimension d(}) of the
irreducible representation M, of the symmetric group.

From 4.1.15 applied to the partition 1", corresponding to the conjugacy class of
the identity, we obtain

R

(5.1.1) (Zx,-) Vi) = Y d() o).
i=1 )
Write the expansion of the Vandermonde determinant as

n
—i+1)-1
ST

oges, i=1

Letting A +p = £; > £, > --- > £,, the number d(1) is the coefficient of [ [, xf

Y (o) T e T
1R2

ki 4tk =n g€eS, i=1

in

Thus a term & (", ) [T7, X7 DI contributes to [, x) if and only if k; =

£ —o(m—i+ 1)+ 1. We deduce

n!
diy) = Z Gan?:l(ei_a(n_i+l)+l)!.

oeS, Vi
ti—o(n—i+1)+1>0

We change the term

n‘nﬂ—o(n—z+1)+1)|= Z'H n (i — k)

i=1 O<k<
o(n—i+1)-2

and remark that this formula makes sense, and it is 0 if o does not satisfy the restric-
tionl; —o(n—i+1)+1>0.
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Thus
¢)
l<j J

d()) is the value of the determinant of a matrix with HOsks j_Z(Zi — k) in the
n—i+ 1, j position;

1 6 6= o Tlockens(n =0
1 & G- . Jloens — 0.
1 6 6= ... Tlockens® =5

This determinant, by elementary operations on the columns, reduces to the Vander-
monde determinant in the £; with value []; — £;). Thus we obtain the formula
of Frobenius:

(5.12) A0 = =— ] E)_n'l_[ Kjev et = &)

11’1<]

1<]

5.2 Hook Formula

We want to give a combinatorial interpretation of 5.1.2. Notice that, fixing j, in

D%—— the j — 1 factors of the numerator cancel the corresponding factors in the
1

denominator, leaving £; — j + 1 factors. In all Zj £ — ijx( j — 1) = n factors
are left. These factors can be interpreted as the hook lengths of the boxes of the
corresponding diagram.

More precisely, given a box x of a French diagram its hook is the set of elements
of the diagram which are either on top or to the right of x, including x. For example,
we mark the hooksof 1,2; 2,1; 2,2in4,3,1,1:

a

0 . O ] O . O O
O O d

The total number of boxes in the hook of x is the hook length of x, denoted by h,.
The Frobenius formula for the dimension d(A) can be reformulated in the settings
of the hook formula.

Theorem. Denote by B(A) the set of boxes of a diagram of shape A. Then

(5.2.1) d()) = hook formula.

erB(A) hy’



268 9 Tensor Symmetry

Proof. Itis enough to show that the factors in the factorial £;!, which are not canceled
by the factors of the numerator, are the hook lengths of the boxes in the i th row. This
will prove the formula.

Infactlet h; = ¢; +i —n be the length of the i th row. Given k > i, let us consider
the h;_1 — hj; numbers strictly between £; — £,y = h; — hy_1 +k —i — 1 and
i —ly=h;—h+k—1i.

Observe that h;_, — hy is the number of cases in the i™ row for which the hook
ends vertically on the k — 1 row. It is easily seen, since the vertical leg of each such
hook has length k —i and the horizontal arm length goes from h; —hy to h; —he—1+1,
that the lengths of these hooks vary between k —i +h; —hy—land k—i +h; —he_q,
the previously considered numbers. O

6 Characters of the Linear Group

6.1 Tensor Character

We plan to deducethe character theory of the linear group from previous computa-
tions. For this we need to perform another character computation. Given a permuta-
tion s € S, and a matrix X € GL(V) consider the product s X as an operator in V®".
We want to compute its trace.

Let w = hy, hy, ..., hy denote the cycle partition of s; introduce the obvious
notation:
(6.1.1) W, (X) = [ [e(x™).

Clearly ¥, (X) = v, (x), where by x, we denote the eigenvalues of X.
Proposition. The trace of sX as an operator in V" is W, (X).

We shall deduce this proposition as a special case of a more general formula. Given

n matrices X;, X2, ..., X, and 5 € S, we will compute the trace of
50X1® X, ®---® X, (an operator in V"),

Decompose s into cycles s = cjc; ... ¢ and, for a cycle ¢ == (ip ip—1 ... i1),
define the function of the n matrix variables X, X5, ..., X,.:
6.1.2) Dc(X) =@ (X1, Xs, ..., Xp) i =0(X; Xy, ... X;).

The previous proposition then follows from the following:

Theorem.

k
(6.13) o X1 ® X2 ® - ® X,) = [ | b, (X).
j=1
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Proof. We first remark that for fixed s, both sides of 6.1.3 are multilinear functions
of the matrix variables X;. Therefore in order to prove this formula it is enough to do
it when X; = u; ® 1, is decomposable.

Let us apply in this case the operator s o X1 ® X» ® - - - ® X, to a decomposable
tensor v; ® vy - - - @ v,,. We have

6.1.4)

n
50X1®X2® - ®X, (v Qv - Q) = H(l/filvi)urlx ® g1 ... Q Us-1y.

This formula shows that

(6.1.5)
SOXI ®X2 ® ®Xn = (us“l ®w1)®(ur12 ®1/f2)® (us‘ln ®Wn)y

so that

n

6.1.6) trso X1 ®Xo®--® X,) = H(llfiluru) = H(%(i}[ui)o

i=1 i=1
Now let us compute for a cycle ¢ := (i, ip,—1 ... ;) the function

6(X) = tr(X;, Xiy ... Xi)-

We get
tr(ui, @ Yi, oy, ® Yy 0---ou;, @ Y;,)
= tr(ui, @ (Vi luiy) (Wi, luiy) -+« (Wi, |ui, ) ¥i,)
P
(6.1.7) = (Y, Juiy) (Wi luy) - -+ (Wi, g, ) (b iy ) H(l/fca, [u,)-
Formulas 6.1.6 and 6.1.7 imply the claim. O

6.2 Character of S, (V)

According to Theorem 3.2 of Chapter 2, the formal ring of symmetric functions
in infinitely many variables has as basis all Schur functions ;. The restriction to
symmetric functions in m-variables sets to 0 all S, with height > m.

We are ready to complete our work. Let m = dim V. For a matrix X € GL(V)
and a partition A  n of height < m, let us denote by S, (X) := S,(x) the Schur
function evaluated at x = (xq, ..., X,), the eigenvalues of X.

Theorem. Denote p; (X) to be the character of the representation S; (V) of GL(V),
paired with the representation M, of Sy, in V. We have p,(X) = Si(X).
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Proof. If s € S,, X € GL(V), we have seen that the trace of s c X®" on V®" is
computed by ¥, (X) = 3, cx (1) Sx(X) (definition of the ¢;).

If m = dimV < n, only the partitions of height < m contribute to the sum. On
the other hand, V®" = @, ;) <gimv) Mr ® Sx(V); thus,

YuX) =trs o X = > tr(s [ M) r(X®" | Sy (V)
Men ht(A)y<m

= Y awa®= )Y a@s).

Men ht(M)<m Arn ht(A)<m

If m < n, the v, (X) with parts of length < m (i.e., ht(f) < m) are a basis of sym-
metric functions in m variables; hence we can invert the system of linear equations
and get S, (X) = p,(X). O

The eigenvalues of X®”" are monomials in the variables x;, and thus we obtain:
Corollary. S, (x) is a sum of monomials with positive coefficients.

We will see in Chapter 13 that one can index combinatorially the monomials which
appear by semistandard tableaux.
We can also deduce a dimension formula for the space S;(V), dimV = n. Of

course its value is S; (1, 1, ..., 1) which we want to compute from the determinantal
formulas giving S, (x) = A4, (x)/V(x).
Let as usual A := hy,hy,...,h, and [; ;= h; + n — i. Of course we cannot

substitute directly the number 1 for the x;, or we get 0/0. Thus we first substitute to
x; = x'~1 and then take the limit as x — 1. Under the previous substitution we see
that A, , becomes the Vandermonde determinant of the elements x% hence

(xt —xh)

(xn—i _ xn—j) :

SiLx % Lxh =[]

I<i<j<n

Ifa > b, we have x* —x? = x?(x — )(x* 214+ x9722 4 ... +1), hence we deduce
that

=4 l—I (hi—hj+j—i)_

dim$,(V) =8, 1,1,....h= [] T = T

1<i<j<n

I<i<j<n

6.3 Cauchy Formula as Representations

We want to now give an interpretation, in the language of representations, of the
Cauchy formula.

Suppose we are given a vector space U over which a torus T acts with a basis of
weight vectors u; with weight ;.

The graded character of the action of T on the symmetric and exterior algebras
are given by Molien’s formula, §4.5 and are, respectively,
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1

6.3.1) -, 1+ xiq.
[11-xiq 1—[ l
As an example consider two vector spaces U,V with bases uy,..., uy,;
V1, ..., U, respectively. We may assume m < n.
The maximal tori of diagonal matrices have eigenvalues x, ..., Xp; Y1, -, Yo

respectively. On the tensor product we have the action of the product torus, and the

basis u; ® v; has eigenvalues x; y;. Therefore the graded character on the symmetric
algebra S(U @ V) is [, [T~

j=1 1-x; y,q

By Cauchy’s formula we deduce that the character of the n™ symmetric power
S"(U @ V) equals 3 5, 1iiy<m S2(X)Si (V).

We know that the rational representations of GL(U) x GL(V) are completely
reducible and their characters can be computed by restricting to diagonal matrices.
Thus we have the description:

(6.3.2) S"URV) = @ S (U) ® S, (V).
Aben, ht(A)<m

This is also referred to as Cauchy’s formula.

Observe that if W C V is the subspace which is formed by the first k basis
vectors, then the intersection of S, (U) ® S, (V) with S(U ® W) has as basis the part
of the basis of weight vectors of S, (U) ® S, (V) corresponding to weights in which
the variables y;, j > k do not appear. Thus its character is obtained by setting to 0
these variables in S, (y1, ¥2, . .., ¥m); thus we clearly get that

6.3.3) S (U)YQ S(V)NSWU @ W) = S, (U) ® S (W).
Similarly it is clear, from Definition 3.1.3: 5, (V) := ey V®", that:
Proposition, IfU C V is a subspace, then S, (U) = S, (V)N U®",

6.4 Multilinear Elements

Consider a rational representation p : GL(n, C) — GL(W) for which the matrix
coefficients are polynomials in the coordinates x; ;, and thus do not contain the de-
terminant at the denominator.

Such a representation is called a polynomial representation, the map p extends
to a multiplicative map p : M(n, C) — End(W) on all matrices.

Polynomial representations are closed under taking direct sums, tensor products,
subrepresentations and quotients. A typical polynomial representation of GL(V) is
V®" and all its subrepresentations, for instance the S; (V).

One should stress the strict connection between the two formulas, 6.3.2 and 3.1.4.

(63.2) sUeVy= @ SW)esw,
Abn, ht(A)<m

(3.1.4) ven — @ M, ® S, (V).
ht(A)<dim(V)
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This is clearly explained when we assume that U = C" with canonical basis ¢; and
we consider the diagonal torus T acting by matrices Xe; = x;¢;.
Let us go back to formula 6.3.2, and apply it when dimV =n, W = C".
Consider the subspace T,, of S(C" ® V) formed by the elements []_, &; ® v;,
v; € V. T, is stable under the subgroup S, x GL(V) C GL(n, C)x GL(V), where S,
is the group of permutation matrices. We have a mapping i : V®* — T, defined by

(6.4.1) v ®ne -Qu [[a®u.
i=1
Proposition. (i) T,, is the weight space in S(C" ® V), of weight x(X) = [, x; for
the torus T.
(ii) The map i is an S, x GL(V) linear isomorphism between V®" and T,,.

Proof. The verification is immediate and left to the reader. O

Remark. The character x := []/_, x; is invariant under the symmetric group (and
generates the group of these characters). We call it the multilinear character.

As usual, when we have a representation W of a torus, we denote by WX the
weight space of character x.

Now for every partition A consider
6.4.2) S (CYX = [u € SuC|Xu = [[xu, VX T,
i

the weight space of S, (C") formed by the elements which are formally multilinear.

Since the character []; x; is left invariant by conjugation by permutation matrices
it follows that the symmetric group S, C GL(n, C) of permutation matrices acts on
S, (C™)*. We claim that:

Proposition. S, (C")* = 0 unless A = n and in this case S, ((C")*)X is identified
with the irreducible representation M, of S,,.

Proof. In fact assume Xu = [, x;u. Clearly u is in a polynomial representation of
degree n. On the other hand

S'C V) =D, SHEH)® SV,
hence
(6.4.3)
Ver = srCr e V)X =P, SE) e sv) =P, M ®Si(v)
and we get the required identification. m

Therefore, given a polynomial representation P of GL(n, C), if it is homoge-
neous of degree n, in order to determine its decomposition P = @, ,, my S, (C") we
can equivalently restrictto M := {p € P| X - p = []; x; p}, the multilinear weight
space (for X diagonal with entries x;) and see how it decomposes as a representation
of S, since

(6.4.4) P= @w mS(C) &= M=, mM,.
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7 Polynomial Functors

7.1 Schur Functors

Consider two vector spaces V, W, the space hom(V, W) = W ® V*, and the ring of
polynomial functions on hom(V, W) decomposed as

(7.1.1) Plhom(V, W)} = S(W*Q V) = @)‘ S (W) @ S, (V).

A way to explicitly identify the spaces S, (W*) ® S, (V) as spaces of functions is
obtained by a variation of the method of matrix coefficients.

We start by stressing the fact that the construction of the representation S; (V)
from V is in a sense natural, in the language of categories.

Recall that a map between vector spaces is called a polynomial map if in coordi-
nates it is given by polynomials.

Definition. A functor F from the category of vector spaces to itself is called a poly-
nomial functor if, given two vector spaces V, W, the map A — F(A) from the vector
space hom(V, W) to the vector space hom(F (V), F(W)) is a polynomial map.

We say that F is homogeneous of degree £ if, for all vector spaces V, W, the map

hom(V, W) o, hom(F (V), F(W)) is homogeneous of degree k.

The functor F : V — V@ is clearly a polynomial functor, homogeneous of
degree n. When A : V — W the map F(A) is A®",

We can now justify the word Schur functor in the Definition 3.1.3, S, (V) =
er V®", where er is a Young symmetrizer, associated to a partition A.

As V varies, V — S, (V) can be considered as a functor. In fact it is a subfunctor
of the tensor power, since clearly, if A : V — W is a linear map, A®" commutes
with ar. Thus A®"(e; V®) C er W®" and we define

A

(7.1.2) Si(A) 1 Si(V) yen we L 5 S (W).
Summarizing:

Proposition 1. Given any partition p - n, V +— S,(V) is a homogeneous polyno-
mial functor on vector spaces of degree n, called a Schur functor.

Remark. This functor is independent of T but depends only on the partition A. The
choice of T determines an embedding of S, (V) as subfunctor of V®",

Remark. The exterior and symmetric power /\k V and §*(V) are examples of Schur
functors.

Since the map S, : hom(V,W) — hom(S,(V), S.(W)) defined by S, :
X — S,(X) is a homogeneous polynomial map of degree n, the dual map S, :
hom(S,(V), S, (W))* — Plhom(V, W)] defined by

S, @NX) = ($]S.(X)), ¢ € hom(S,(V), S.(W))*, X € hom(V, W)
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is a GL(V) x GL(W)-equivariant map into the homogeneous polynomials of
degree n.

By the irreducibility of hom(S, (V), S,(W))* = S,(V) ® S,(W)*, S must be
a linear isomorphism to an irreducible submodule of P[hom(V, W)] uniquely deter-
mined by Cauchy’s formula. By comparing the isotypic component of type S, (V)
we deduce:

Proposition 2. P[hom(V, W)] = @ﬂ hom(S, (V), S,.(W))* and we have the iso-
morphism S, (W*) = S, (W)*.

Let us apply the previous discussion to hom(A' V, A' W).

Choose bases e¢;, i = 1,...,h, f;, j =1,...,k for V, W respectively, and
identify the space hom(V, W) with the space of k x h matrices. Thus the ring
Pthom(V, W)] is the polynomial ring C[x;;],i = 1,...,h, j = 1,..., k where
x;; are the matrix entries.

Given a matrix X the entries of /' X are the determinants of all the minors of
order i extracted from X, and:

Corollary. \' V(' W)* can be identified with the space of polynomials spanned
by the determinants of all the minors of order i extracted from X, which is thus
irreducible as a representation of GL(V) x GL(W).

7.2 Homogeneous Functors

We want to prove that any polynomial functor is equivalent to a direct sum of Schur
functors. We start with:

Proposition 1. A polynomial functor is a direct sum of homogeneous functors.

Proof. The scalar multiplications by « € C* on a space V induce, by functoriality,
a polynomial representation of C* on F(V) which then decomposes as F(V) =
@D, Fe(V), with Fi(V) the subspace of weight o*. Clearly Fi(V) is a subfunctor
and F = @, Fr(V). Moreover F;(V) is a homogeneous functor of degree k.

We can polarize a homogeneous functor of degree k as follows. Consider, for a
k-tuple Vi, ..., Vi of vector spaces, their direct sum &p; V; together with the action
of a k-dimensional torus T with the scalar multiplication x; on each summand V;. T
acts in a polynomial way on F (B, V;) and we can decompose by weights

FEP, V=P, F(Vi,.... Vi), A=x{"x>...x* Y hi=k

One easily verifies that the inclusion V; — @V; induces an isomorphism be-
tween F(V;) and ink(Vl, L Vi) ]

Let us now consider a polynomial functor V +— F(V), homogeneous of degree
k. We start by performing the following constructions.
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(1) First consider the functor
T : V> Sk(hom(C*, V)) ® F(CY)
And the natural transformation:
my : $¥(hom(CY, V)) ® F(C*) — F(V)
defined by the formula
ay(f* ®u) == F(f)(w), f € hom(Ck, V), u € F(C)

This formula makes sense, since F(f) is a homogeneous polynomial map of degree
k in f by hypothesis.

The fact that 7y is natural depends on the fact that, if A : V — W we have that
T(h)(f* @ u) = (hf)* ® u so that
Fymy (f* @ u) = F(hf)(u) = mw((hf)* @ u = nw (T (W)(f* @ w).

(2) The linear group G L(k, C) acts by natural isomorphisms on the functor T (V)
by the formula

(fog ) ® Fou,
Lemma 1. The natural transformation wy is G L(k, C) invariant.

Proof. We have F(f o g™") = F(f)o F(g)™" and my((f o g™ ® F(g)u) =
F(fog )F(g)u) = F(f)u. o

These invariance properties mean that if we decompose T (V), as a representation
of GL(n, C) into the invariant space T (V)“""*© and the other isotypic components,
the sum of the nontrivial irreducible representations T(V)gr.c), we have 1y = 0
on T'(V)gLn.c)-

Our goal is to prove

Theorem. The map ny restricted to the G L(n, C) invariants:
my : [S¥(hom(C¥, V)) ® F(CHI®L*O — F(V), myv(f ®@u) = F(f)(w),
is a functorial isomorphism.
In order to prove this theorem we need a simple general criterion:
Proposition 2. Let n : F — G be a natural transformation of polynomial functors,

each of degree k. Then 1 is an isomorphism if and only if nex : F(C*) — G(C*) is
an isomorphism.
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Proof. Since any vector space is isomorphic to C™ for some m we have to prove an
isomorphism for these spaces.

The diagonal torus acts on C™, which by functoriality acts also on F(C™) and
G(C™). By naturality nen : F(C™) — G(C™) must preserve weight spaces with
respect to the diagonal matrices. Now each weight involves at most k indices and
so it can be deduced from the corresponding weight space for C*. For these weight
spaces the isomorphism is guaranteed by the hypotheses. O

In order to apply this criterion to 7y we have to understand the map:

wer - [S¥(hom(CK, C*)) @ F(CHPH*O . F(Ch).

The invariants are taken with respect to the diagonal action on S*(hom(C¥, C¥)) by
acting on the source of the homomorphisms and on F(C¥).

Lemma 2. w¢x is an isomorphism.

Proof. The definition of this map depends just on the fact that F (C*) is a polynomial
representation of G L(k, C) which is homogeneous of degree k. It is clear that, if this
map is an isomorphism for two different representations F;(C*), F,(C*) it is also an
isomorphism for their direct sum. Thus we are reduced to study the case in which
F(C*) = S, (C¥) for some partition A - k.

Identifying

$*(hom(C*, C) @ $L(CH = P, Su(CH ® 5.(CH* ® $,(C")

the invariants are by definition

D, Su(CH) ® [5,(CH ® HTCH]HHO = 5,(C) @ Cl -

By the irreducibility of the representations Sy (C¥).
Since clearly mex (4 ® 1, (cx)) = u we have proved the claim. a

By the classification of polynomial representations, we have that
F(C) =P, msi(CH
for some nonnegative integers m;. We deduce:
Corollary. A polynomial functor F of degree k is of the form
F(V) = @H my Su(V).
Proof.

[8*(hom(C*, V) @ S(CHITHEO = ) | 5,(V) ® [5,(CH)" ® §(CH]H4O
=SA(V)®C18)‘(C")- O
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Polynomial functors can be summed (direct sum) multiplied (tensor product) and
composed. All these operations can be extended to a ring whose elements are purely
formal differences of functors (a Grothendieck type of ring). In analogy with the
theory of characters an element of this ring is called a virtual functor.

Proposition 3. The ring of virtual functors is canonically isomorphic to the ring of
infinite symmetric functions.

Proof. We identify the functor S, with the symmetric function S; (x). O

Exercise. Given two polynomial functors F, G of degree k prove that we have an
isomorphism between the space Nat(F, G) of natural transformations between the
two functors, and the space homg . c)(F (CH), G(CHY).

Discuss the case F = G the tensor power V&,

7.3 Plethysm

The composition of functors becomes the Plethysm operation on symmetric func-
tions. In general it is quite difficult to compute such compositions, even such simple
ones as A\' (A" V)). There are formulas for S*(52(V)), S*(A*(V)) and some dual
ones.

In general the computation F o G should be done according to the following:

Algorithm. Apply a polynomial functor G to the space C™ with its standard basis.

For the corresponding linear group and diagonal torus 7, G(C™) is a polyno-
mial representation of some dimension N. It then has a basis of T-weight vectors
with characters a list of monomials M;. The character of T on G(C™) is ZIN M;, a
symmetric function Sg(x1, ..., Xn).

If G is homogeneous of degree k, this symmetric function is determined as soon
asm > k.

When we apply F to G(C™) we use the basis of weight vectors to see that the
symmetric function

SFOG(xlv-"axm)=SF(M17"'aMN)' D

Some simple remarks are in order. First, given a fixed functor G the map F +—
F o G is clearly a ring homomorphism. Therefore it is determined by the value on a
set of generators. One can choose as generators the exterior powers. In this case the
operation A\’ oF as transformations in F are called A-operations and written A’.

These operations satisfy the basic law:  A'(a +b) =Y, ., A" (@A*(b).

It is also convenient to use as generators the Newton functions ¥ = Y, xf

; since
then

V(SO - X)) = SO, o X)y W(Wh) = Ve
Al] of this can be formalized, giving rise to the theory of A-rings (cf. [Knu]).
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8 Representations of the Linear and Special Linear Groups

8.1 Representations of SL(V), GL(V)

Given an n-dimensional vector space V we want to give the complete list of
irreducible representations for the general and special linear groups GL(n) =
GL(V),SL(n) = SL(V).

From Chapter 7, Theorem 1.4 we know that all the irreducible representations of
SL(V) appear in the tensor powers V®™ and all the irreducible representations of
GL(V) appear in the tensor powers V®™ tensored with integer powers of the deter-
minant A\"(V). For simplicity we will denote by D := A"(V) and by convention
D! := A"™(V)*. From what we have already seen the irreducible representations
of GL(V) which appear in the tensor powers are the modules S, (V), ht(A) < n.
They are all distinct since they have distinct characters. Given S(V) C V&,
A m, consider S, (V) ® \"(V) C V®*" Since A\"(V) is 1-dimensional, clearly
Sy (V) ® N\"(V) is also irreducible. Its character is Sy 1+ (x) = (x;x2 ... %x,) S (x),
hence (ct. Chapter 2, 6.2.1):

@.1.1) SV \'(V) = S (V).

We now need a simple lemma. Let P, | := {k; > k; > ... > k,_; = 0} be the
set of all partitions (of any integer) of height < n — 1. Consider the polynomial ring
ZIx1, ..., Xy, (X1, X2...x,)" '] obtained by inverting e, = x,x3 . . . X,.

Lemma. (i) The ring of symmetric elements in Z[x, . .., X, (X1X3 .. cxn) Vis gen-
erated by ey, e, ..., e, 1, enil and it has as basis the elements
Ske,’l", AeEP,1, me Z.

(ii) The ring Zle1, ey, . .., €n—1, €,1/ (e, — 1) has as basis the classes of the ele-
ments Sy, A € P,_;.

Proof. (i) Since e, is symmetric it is clear that a fraction f/ef is symmetric if and
only if f is symmetric, hence the first statement. Any element of Z[ey, €, ..., €51,
e£!] can be written in a unique way in the form Y, _ axe~ with ax € Zley, ey, .. .,
e,_t]. We know that the Schur functions Sy, A € P,_; are a basis of
Zley, ez, ...,en—1,e,]/(e,) and the claim follows.

(ii) follows from (i). O

Theorem. (i) The list of irreducible representations of SL(V) is
8.1.2) S(V), ht(A) <n—1.
(ii) The list of irreducible representations of GL(V) is

(8.1.3) S (VY® D, ht(h) <n—1, k e Z



8 Representations of the Linear and Special Linear Groups 279

Proof. (1) The group GL(V) is generated by SL(V) and the scalar matrices which
commute with every element. Therefore in any irreducible representation of GL(V)
the scalars in GL (V') also act as scalars in the representation. It follows immediately
that the representation remains irreducible when restricted to SL(V).

Thus we have to understand when two irreducible representations S, (V), S, (V),
with At (L) < n, ht(u) < n, are isomorphic once restricted to SL(V).

Any A can be uniquely written in the form (m,m,m,...,m) + (ky, k2, ...,
kn_1, 0)ord =p+ml1", ht(n) <n—1,and so Sy (V) = S, (V) @ D™. Clearly
$:(V) = §5,(V) as representations of SL(V'). Thus to finish we have to show that
if A # w are two partitions of height < n — 1, the two SL(V) representations
S (V), §,.(V) are not isomorphic. This follows from the fact that the characters of
the representations S (V), A € P, _, are a basis of the invariant functions on SL{V),
by the previous lemma.

(ii) We have seen at the beginning of this section that all irreducible represen-
tations of GL(V) appear in 8.1.3 above. Now if two different elements of this list
in 8.1.3 were isomorphic, by multiplying by a high enough power of D we would
obtain two isomorphic polynomial representations belonging to two different parti-
tions, a contradiction. O

Remark. /\i V corresponds to the partition 1/, made of a single column of length i.
Its associated Schur function Sy is the i elementary function e;. Instead the sym-
metric power $(V) corresponds to the partition made of a single row of length 7,
it corresponds to a symmetric function S; which is often denoted by 4; and it is the
sum of all the monomials of degree i.

8.2 The Coordinate Ring of the Linear Group

We can interpret the previous theory in terms of the coordinate ring C[GL(V)] of
the general linear group.

Since GL(V) is the open set of End(V) = V ® V* where the determinant
d # 0, its coordinate ring is the localization at d of the ring S(V* ® V) which,
under the two actions of GL(V), decomposes as EB,”(A)S” S(VH) ® Si(V) =

Drroy<n1. k0 d*$,(V*) ® Sy (V). It follows immediately then that
. k *
8.2.1) CIGL(V)] = @h,msn-l,kezd S(VH ® Sy (V).

This of course is, for the linear group, the explicit form of formula 3.1.1 of Chapter 7.
From it we deduce that

(8.2.2) Sy (V*) = S (V)*, VA, it(M) <n—1, @ =dH.
Similarly,

(8.2.3) CISL(V)] = @hthn_l S (V) ® Si (V).
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8.3 Determinantal Expressions for Schur Functions

In this section we want to discuss a determinant development for Schur functions
which is often used.
Recall that V, = er(V®") is a quotient of

av®™ = N've N"v-e A"V

where the k; are the columns of a tableau T, and is contained in
st(VE) = S" (V)@ (V) --- @ §M(V)

where the h; are the rows of 7. Here one has to interpret both antisymmetrization
and symmetrization as occurring respectively in the columns and row indices.” The
1

composition ey = S STar can be viewed as the result of a map

A VONTV- e NV = sr(ven = sh V)@ sy @ S (V),

As representations A\ V@ A2 V... ®@ A" V and " (V) @ S"2(V) ... ® §"(V)
decompose in the direct sum of a copy of V; and other irreducible representations.
The character of the exterior power /\i(V) is the elementary symmetric function
e;(x). The one of S*(V) is the function A; (x) sum of all monomials of degree i.
In the formal ring of symmetric functions there is a formal duality between the
elements ¢; and the #;. From the definition of the ¢; and from Molien’s formula:

;hi(X)q T ;(—1)ei(x)q _H(l xq),

1= (Z(—l)'e.-(x)q')(Z hi<x>q').
i=0 i=0
Hence form > Owe have ), jem(— 1) e; (x)h;(x) = 0. These identities tell us that

Z[el,ez,...,ei,...]=Z[h1,h2,...,h,~,...]

and also that we can present the ring of infinite symmetric functions with generators
e;, h; and the previous relations:

(8.3.1) Zlei, e, ... e, ... ;hl,h2,...,h,~,...]/< > (—1)"e,-h,-).

i+j=m

The mapping t : €;(x) — h;(x), h;{(x) — e;(x) preserves these relations
and gives an involutory automorphism in the ring of symmetric functions. Take the
Cauchy identity

78 It is awkward to denote symmetrization on non-consecutive indices as we did. More cor-
rectly, one should compose with the appropriate permutation which places the indices in
the correct positions.
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(83.2) 2 swsm =15 _Ix.y. =[] metx)yf
trj j k=0

iJj

and multiply it by the Vandermonde determinant V (y), getting

D 5@ A =[] By v,

j k=0
For a given A = ay, ..., a, we see that S;(x) is the coefficient of the monomial
yPErr Tyt | yan and we easily see that this is
n
(8.3.3) Z & | | howr-itars
ogeS, i=1
thus

Proposition. The Schur function S, is the determinant of the n X n matrix, which in
the position i, J, has the element hj_;,, with the convention that hy =0, Yk < 0.

8.4 Skew Cauchy Formula

We want to complete this discussion with an interesting variation of the Cauchy
formula (which is used in the computation of the cohomology of the linear group, cf.
[AD]).

Given two vector spaces V, W we want to describe /A (V ®W) as a representation
of GL(V) x GL(W).

Theorem.

(8.4.1) /\(v QW) = Z Si(V) ® S;(W).
A

Proof. A denotes, as in Chapter 1, §1.1, the dual partition.

We argue in the following way. For very &, /\k(V ® W) is a polynomial repre-
sentation of degree k of both groups; hence by the general theory /\k(V ® W) =
B, Si (V) @ P, (W) for some representations P, (W) to be determined. To do it
in the stable case, where dim W = k, we use Proposition 6.4 and formula 6.4.4, and
we compute the multilinear elements of P, (W) as representations of S,.

For this, as in 6.4, identify W = C* with basis ¢; and

Nevew =A@ _ vee=c, AVeed.

When we restrict to the multilinear elements we have V ® e; A -+ A V & ¢, which,
as a representation of GL(V), can be identified with V®" except that the natural
representation of the symmetric group S, C GL(n, C) is the canonical action on
V@ tensored by the sign representation.
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Thus we deduce that if x is the multilinear weight,

k X
@,\H{S*(V)@’Mi = (/\ Vel ) :
This implies P, (W) = Mj, hence P, (W) = S;(W) from which the claim follows. O

Remark. In terms of characters, formula 8.4.1 is equivalent to the Cauchy formula
Chapter 2, §4.1:

n,m

(8.4.2) [T d+xp =) S®850.
A

i=1, j=1

There is a simple determinantal formula corollary of this identity, as in §8.3.

Here we remark that [T/_, (1 + x;y) = X7, €;(x) y/ where the e; are the ele-
mentary symmetric functions.

The same reasoning as in §8.3 then gives the formula

(84.3) $:06) = & [ [eoir-itk
=1

oeS, i
where k; are the columns of i, 1.e., the rows of A.

Proposition. The Schur function S, is the determinant of the n X n matrix which in
the position i, j has the element ej_; ;.. The k; are the rows of ), with the convention
that e, =0, Yk < 0.

From the two determinantal formulas found we deduce:
Corollary. Under the involutive map t : ¢; — h; we have T : S — S;.

Proof. In fact when we apply T to the first determinantal formula for S;, we find the
second determinantal formula for S;. a

9 Branching Rules for S,, Standard Diagrams
9.1 Mumaghan’s Rule

We wish to describe now a fairly simple recursive algorithm, due to Mumaghan, to
compute the numbers c; (). It is based on the knowledge of the multiplication of
Y Sy in the ring of symmetric functions.

We assume the number r of variables to be more than k& + [A], i.e., to be in a
stable range for the formula.

Let h; denote the rows of A. We may as well compute ¥ (x)S,(x)V(x) =
Y00 Anpo(x):
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9.1.1) Yi(x) Apgo(x) = (fo) (Z esxfl‘+"_1xf21+"_2...x§';) :
i=1

s€S,

Write k; = h; +n—i. We inspect the monomials appearing in the alternating function
which is at the right of 9.1.1. Each term is a monomial with exponents obtained from
the sequence k; by adding to one of them, say k;, the number k. If the resulting
sequence has two equal numbers it cannot contribute a term to an alternating sum,
and so it must be dropped. Otherwise, reorder it, getting a sequence:

ky >k2>...ki>kj+k>k,'+1 >...ij1 >kj+1 > ... > k.

Then we see that the partition A" : 7, ..., h}, ..., h associated to this sequence is

hy = h, if t<i or t>j,
Wo=h_oy+1 if i+2<t<j b, =h+k—j+i+l

The coefficient of Sy in ¥ (x) S, (x) is (—1)/~!~ by reordering the rows.

To understand the A" which appear let us define the rim or boundary of a diagram
A as the set of points (i, j) € A for which there is no point (h, k) € A withi < A,
Jj <k.

There is a simple way of visualizing the various partitions A’ which arise in this
way.

Notice that we have modified j — i consecutive rows, adding a total of k new
boxes. Each row of this set, except for the bottom row, has been replaced by the row
immediately below it plus one extra box. We add the remaining boxes to the bottom
TOW.

This property appears to be saying that the new diagram A’ is any diagram which
contains the diagram A and such that their difference is connected, made of k boxes
of the rim of A’. Intuitively it is like a slinky.” So one has to think of a slinky made
of k boxes, sliding in all possible ways down the diagram.

The sign to attribute to such a configuration is +1 if the number of rows occupied
is odd, —1 otherwise. More formally we have:

Mumaghan’s rule. ¥ (x)S,(x) = > +£S,,, where )’ runs over all diagrams, such
that by removing a connected set of k boxes of the rim of A’ we have A.

The sign to attribute to )’ is +1 if the number of rows modified from X is odd, —1
otherwise.

For instance we can visualize ¥35321 = S321¢ — S35 — S33 — Sg21 + Se21 as

o]
]
o] o O
+. _. o _.OO
o]

79 This was explained to me by A. Garsia and refers to a spring toy sold in novelty shops.
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- . . o o + .
(o] o o] o]
Formally one can define a k-slinky as a walk in the plane N> made of k-steps, and
each step is either one step down or one step to the right. The sign of the slinky is
—1 if it occupies an even number of rows, and +1 otherwise.
Next, one defines a striped tableau of type u = ki, k3, ..., k; to be a tableau
filled, for each i = 1, ..., t, with exactly k; entries of the number i subject to fill a

k;-slinky. Moreover, we assume that the set of boxes filled with the numbers up to i,
for each i is still a diagram. For example, a 3,4,2,5,6, 3,4, 1 striped diagram:

—_— = W A~ B
—_— N W
NN R R
[ SRRV, B, R}
wn L

~1

~J

~J

~

To such a striped tableau we associate a sign: the product of the signs of all its
slinkies. In our case it is the sign pattern — — + + — + 44 for a total — sign.
Mumaghan’s rule can be formulated as:

Proposition. ¢, (1) equals the number of striped tableaux of type |1 and shape A
each counted with its sign.

Notice that when 1 = 1" the slinky is one box. The condition is that the diagram
is filled with all the distinct numbers 1, ..., n. The filling is increasing from left to
right and from the bottom to the top. Let us formalize:

Definition. A standard tableau of shape A + n is a filling of a Young diagram with
n-boxes of shape A, with all the distinct numbers 1, ..., n. The filling is strictly
increasing from left to right on each row and from the bottom to the top on each
column.

From the previous discussion we have:

Theorem. d()) equals the number of standard tableaux of shape A.
Example. Standard tableaux of shape 3, 2 (compute d(1) = 5):
2 4 2 5 4 5 3 4 3
13 1 3 1 23 1 2 5 1

N W
n

5 3 4 L]
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9.2 Branching Rule for S,

We want to draw another important consequence of the previous multiplication for-
mula between Newton functions and Schur functions.

For a given partition 4 - n, consider the module M, for S, and the subgroup
Sp—1 C S, permuting the first n — 1 numbers. We want to analyze M, as a represen-
tation of the subgroup S,_;. For this we perform a character computation.

We first introduce a simple notation. Given two partitions 4 = m and A - n we
say that 4 C X if we have an inclusion of the corresponding Ferrer diagrams, or
equivalently, if each row of u is less than or equal to the corresponding row of A.

Ifu C Aandn = m + 1 we will also say that u, A are adjacent,® in this case
clearly A is obtained from u by removing a box lying in a corner.

With these remarks we notice a special case of Theorem 9.1:

9.2.1) ViSy= Y, S
Ap|+1Lucx

Now consider an element of S,_; to which is associated a partition v. The same ele-
ment, considered as a permutation in S, has associated the partition v1. Computing
characters we have

Y atbSi=vu=vh= Y WS

Abn H(n—1)
(9.2.2) = Y @ Y. S
tH(n-1) ubn, tCu

In other words

9.2.3) aowl) = Z ¢, (v),

urHn—1), uCca
This identity between characters becomes in module notation:

Theorem (Branching rule for the symmetric group). When restricting from S, to
S,_1 we have

9.2.4) My = @ul—(n—l),uC/\ My

A remarkable feature of this decomposition is that each irreducible S,_;-module ap-
pearing in M, has multiplicity 1, which implies in particular that the decomposition
in 9.2.4 is unique.

A convenient way to record a partition & + n — 1 obtained from A F n by
removing a box is given by marking this box with n. We can repeat the branching to
Sp—2 and get

80 Adjacency is a general notion in a poset; here the order is inclusion.
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9.2.5) M= D M.

pabn—2,
wrkn—1,
H2Cur CA

Again, we mark a pair 3 - (n — 2), u; F (n — 1), u2 C p; C A by marking the
first box removed to get 1 with n and the second box with n — 1.

Example. From 4,2, 1, 1, branching once:

8
+ 8 +.
8
and twice:
7
toy * T
7 8 8 8 7
7 8 8 8
+ 8 +. . + 7 +
7

In general we give the following definitions: Given . C A two diagrams, the
complement of  in A is called a skew diagram indicated by A/u. A standard skew
tableau of shape A /u consists of filling the boxes of A/u with distinct numbers such
that each row and each column is strictly increasing.

An example of a skew tableau of shape 6, 5, 2, 2/3, 2, 1:

6 7

2
2 3 4
2

1 4

Notice that we have placed some dots in the position of the partition 3, 2, 1 which
has been removed.

If u = O we speak of a standard tableau. We can easily convince ourselves that
ifAln, wkn—k,and u C A, there is a 1-1 correspondence between:

(1) sequences y = g C fhp—1 C MRik-2... C g CAwithpy; Fn—1;
(2) standard skew diagrams of shape A/ filled with the numbers

n—-k+1l,n—k+2,....n—1,n.
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The correspondence is established by associating to a standard skew tableau T
the sequence of diagrams u; where u; is obtained from A by removing the boxes
occupied by the numbersn,n — 1,...,n ~i + 1.

When we apply the branching rule several times, passing from S, to S,x we
obtain a decomposition of M, into a sum of modules indexed by all possible skew
standard tableaux of shape A/u filled with the numbersn —k +1,n —k +2,...,
n—1,n.

In particular, for a given shape u - n — k, the multiplicity of M,, in M, equals
the number of such tableaux.

Finally we may go all the way down to S and obtain a canonical decomposition
of M, into 1-dimensional spaces indexed by all the standard tableaux of shape A. We
recover in a more precise way what we discussed in the previous section.

Proposition. The dimension of M, equals the number of standard tableaux of
shape X.

It is of some interest to discuss the previous decomposition in the following way.

For every k, let S; be the symmetric group on k elements contained in S, so that
QLSe] € Q[S,] as a subalgebra.

Let Z; be the center of Q[S;]. The algebras Z; C Q[S,] generate a commutative
subalgebra C. In fact, for every k, we have that the center of (Q[Si] has a basis of
idempotents u, indexed by the partitions of k. On any irreducible representation, this
subalgebra, by the analysis made above, has a basis of common eigenvectors given
by the decomposition into 1-dimensional spaces previously described.

Exercise. Prove that the common eigenvalues of the u; are distinct and so this de-
composition is again unique.

Remark. The decomposition just obtained is almost equivalent to selecting a basis
of M, indexed by standard diagrams. Fixing an invariant scalar product in M,, we
immediately see by induction that the decomposition is orthogonal (because non-
isomorphic representations are necessarily orthogonal). If we work over R, we can
thus select a vector of norm 1 in each summand. This still leaves some sign ambiguity
which can be resolved by suitable conventions. The selection of a standard basis is
in fact a rather fascinating topic. It can be done in several quite inequivalent ways
suggested by very different considerations; we will see some in the next chapters.

A possible goal is to exhibit not only an explicit basis but also explicit matrices
for the permutations of S, or at least for a set of generating permutations (usually
one chooses the Coxeter generators ({ i +1), i = 1, ..., n—1). We will discuss this
question when we deal in a more systematic way with standard tableaux in Chap-
ter 13.
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10 Branching Rules for the Linear Group, Semistandard
Diagrams

10.1 Branching Rule

When we deal with representations of the linear group we can use the character
theory which identifies the Schur functions S, (xy, ..., x,) as the irreducible char-
acters of GL(n,C) = GL(V). In general, the strategy is to interpret the various
constructions on representations by corresponding operations on characters. There
are two main ones: branching and tensor product. When we branch from GL(n, C)

to GL(n — 1, C) embedded as block )g (l)l matrices, we can operate on characters
by just setting x,, = 1 so the character of the restriction of S;(V)to GL(n —1,C)is
(10.1.1) S50 X, 1) = Y CuSu(xn, - X)

Similarly, when we take two irreducible representations S5 (V), S,(V) and form
their tensor product S, (V) ® S, (V), its character is given by the symmetric function

(10.1.2) Se(ts e X)) S, ) = ) el Sy ).

The coefficients in both formulas can be made explicit but, while in 10.1.1 the answer
is fairly simple, 10.1.2 has a rather complicated answer given by the Littlewood—
Richardson rule (discussed in Chapter 12, §5).

The reason why 10.1.1 is rather simple is that all the ;2 which appear actually
appear with coefficient ¢, = 1, so it is only necessary to explain which partitions
appear. It is best to describe them geometrically by the diagrams.

WARNING For the linear group we will use English notation, for reasons that
will be clearer in Chapter 13. Also assume that if A = kg, h,, ..., h,, these numbers
represent the lengths of the columns,®! and hence r must be at most n (we assume
h, > 0). In 10.3 we will show that the conditions for u to appear are the following.

1. u=ky,..., ks is adiagram contained in A, i.e.,s <r, k; < h;, Vi <s.
2.s<n-—1.
3. u is obtained from A by removing at most one box from each row.

The last condition means that we can remove only boxes at the end of each row,
which form the rim of the diagram. It is convenient to mark the removed boxes by n.

For instance take A = 4,2,2, n = 5 (we mark the rim). The possible 9 branch-
ings are:

81 Unfortunately the notation for Young diagrams is not coherent because in the literature they
have arisen in different contexts, each having its notational needs.
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If we repeat these branchings and markings, we see that a sequence of branchings
produces a semistandard tableau (cf. Chapter 12 §1.1 for a formal definition) like:

2 3
3 5

wn th = =

As in the case of the symmetric group we can deduce a basis of the representation
indexed by semistandard tableaux. Conversely, we shall see that one can start from
such a basis and deduce a stronger branching theorem which is valid over the integers
(Chapter 13, 5.4).

10.2 Pieri’s Formula

Although we shall discuss the general Littlewood—Richardson rule in Chapter 12,
we start with an example, the study of S5(V) ® A'(V). By previous analysis this
can be computed by computing the product S (x)e; (x), where e;(x) = Sy:(x) is the
character of A\'(V). For this set A = h(, hy, ..., h, and {A}; :={ | DA, |ul =
[A] + i and each column k; of u satisfies h; < k; < h; + 1}.

Theorem (Pieri’s formula).

102.1)  Si@ex) = Y S, S*(V)‘X’/\i("):@

uefr);

nefdk SuV)-

Proof. Let . = hy, hy, ..., h, where we take n sufficiently large and allow some
h; to be 0, and multiply S, (x)e; (x)V (x) = A,4,(x)e;(x). We must decompose the

alternating function A, ,(x)e;(x) in terms of functions A, ,(x). Let [; = h; +

n — i. The only way to obtain in A;;,(x)e;(x) a monomial x}"'x7” ... x" with

n
m; > my > --- > m, is possibly by multiplying xi‘xéz oo xhxjx;, ... xj. This
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monomial has strictly decreasing exponents for the variables xi, . .., x, if and only
if the following condition is satisfied. Set k, = A, if a does not appear in the indices
J1» J2s -+ Ji» and k; = h, + 1 otherwise. We must have that k; > ky--- > k,, in
other words w := k; > kp--- > k, is a diagram in {A};. The coefficient of such a
monomial is 1, hence we deduce the claim

Arpp(®)ei(x) = Y Ausp(x). D

nefrl;
We may now deduce also by duality, using the involutory map 7 : ¢; — h; (cf. 8.3)
and the fact that k; (x) = S;(x) is the character of $?(V), the formula

(1022)  S@h@ = ) 5@, KM SV =P, S

Ael;

In other words, when we perform S, (V) ® /\i(V) we get a sum of S, (V) where y
runs over all diagrams obtained from A by adding i boxes and at most one box in
each column, while when we perform S, (V) ® $'(V) we get a sum of S, (V') where
i runs over all diagrams obtained from A by adding i boxes and at most one box in
each row.%?

Recall that, for the linear group, we have exchanged rows and columns in our
conventions.

10.3 Proof of the Rule

We can now discuss the branching rule from GL(n, C) to GL(n — 1, C). From the
point of view of characters it is clear that if f(xy, ..., x,) is the character of a rep-
resentation of GL(n, C), f(x1, ..., X,—1, 1) is the character of the restriction of the
representation to GL(n — 1, C). We thus want to compute Sy (x, ..., X,—1, 1). For
this we use Cauchy’s formula, getting

Y SiGn s Xt DS a1 V)
A

o0
= ZS;L(XI» s XS (V15 oo+ s Yum1s V) Zhj(yl, ooy Ynols Yn)-
u =0
Use 10.2.2 to get
D S Xt DS O s Va1 W)
A

=ZS[L('X19" ) X I)Z Z Si Vs -5 Yn—1s Yn)-
L

J=0 Xefi

82 These two rules are sometimes referred to as Pieri’s rule.
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Comparing the coefficients of S;(y1, ..., Yu_1, ¥u)» We obtain

S,\(xl,...,x,,‘l,l): Z S,L(xl,...,xn_l).

Apiny

In other words, let {1}/ be the set of diagrams which are obtained from A by re-
moving j boxes and at most one box in each row. Then the branching of S, (C")
toGL(n—-1)is P wetny) Su (C"=1y. In particular we have the property that the irre-
ducible representations which appear come with multiplicity 1.

Since Sy (x1, ..., X,_1, X,) is homogeneous of degree |A| while & € {A}/ is ho-
mogeneous of degree |A| — j, we must have

12
Sy Xt Xn) = )X Y Sk, K1) o
=0 pe{d}

We may iterate the branching. At each step the branching to GL(n — i) is a
direct sum of representations S, (C"~!) with indexing a sequence of diagrams y =
i C i1 C --- C po = A where each p; is obtained from u;_| by removing u;
boxes and at most one box in each row. Furthermore we must have ht(;) <n — j.
Correspondingly,

. up U2 L
Sa(X1, oy Xno1s Xn) = E X xS X))
H=pi Cpi-1 C-Clo=4

If we continue the branching all the way to 1, we decompose the space S, (V) into
1-dimensional subspaces which are weight vectors for the diagonal matrices. Each
such weight vector is indexed by a complete flag of subdiagrams

A=, C1 C... i C--Cup=~A
and weight []/_, x;"~*".

A convenient way to encode such flags of subdiagrams is by filling the dia-
gram A as a semistandard tableau, placing n — i in all the boxes of u; not in
ti—1. The restriction we have placed implies that all the rows are strictly increas-
ing, since we remove at most one box from each row, while the columns are weakly
increasing, since we may remove more than one box at each step but we fill the
columns with a strictly decreasing sequence of numbers. Thus we get a semistan-
dard tableau T of (column-) shape A filled with the numbers 1, 2, ..., n. Conversely,
such a semistandard tableau corresponds to an allowed sequence of subdiagrams
@ =ftn Cp1 C...pti C -++ C po = A. Then the monomial []}_, x;"~*' is de-
duced directly from T, since u,_; 1 is the number of appearances of i in the tableau.

We set xT = []'_, x;""*' and call it the weight of the tableau T. Finally we
have:
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Theorem.
(10.3.1) S\, ey X, Xg) = > xT.
T semistandard of shape A
Of course the set of semistandard tableaux depends on the set of numbers 1, ..., n.

Since the rows have to be filled by strictly increasing numbers we must have a re-
striction on height. The rows have at most r-elements.

Example. S3,2(x;, X3, x3) is obtained from the tableaux:

123 123 123 1 2 3 1 23 1 23
2 3 1 3 1 2 1 3 1 2 1 2
2 3 2 3 2 3 1 3 1 3 I 2

3.3, 223, 232 3.2.2 .33

3.3
83,2,2(x1, X2, X3) = X1x3 X3 + X7x5X3 + X{X3X7 + X]X2X3 + X[ X3 X3 + X{X5X3.

Of course if we increase the number of variables, then also the number and types of
monomials will increase.

We may apply at the same time the branching rule for the symmetric and the
linear group. We take an n-dimensional vector space V and consider

Vo= @), M8 S0

When we branch on both sides we decompose V®™ into a direct sum of 1-dimen-
sional weight spaces indexed by pairs T; | 7> where T} is a standard diagram of shape
A m and T, is a semistandard diagram of shape A filled with 1,2, ..., n. We will
see, in Chapter 12, §1, that this construction of a basis has a purely combinatorial
counterpart, the Robinson—Schensted correspondence.

Note that from Theorem 10.3.1 it is not evident that the function S;(x, ...,
Xn_1, Xn) is even symmetric. Nevertheless there is a purely combinatorial approach
to Schur functions which takes Theorem 10.3.1 as definition. In this approach the
proof of the symmetry of the formula is done by a simple marriage argument.





