
Tensor Symmetry 

1 Symmetry in Tensor Spaces 

With all the preliminary work done this will now be a short section; it serves as an 
introduction to tht first fundamental theorem of invariant theory, according to the 
terminology of H.Weyl. 

1.1 Intertwiners and Invariants 

We have seen in Chapter 1, §2.4 that, given two actions of a group G, an equivariant 
map is just an invariant under the action of G on maps. 

For linear representations the action of G preserves the space of linear maps, so 
if U, V are two linear representations, 

homcC^, V) = hom([/, Vf. 

For finite-dimensional representations, we have identified, in a G-equivariant way, 

hom(^, V) = U*(S}V = (U (S) V*)*. 

This last space is the space of bilinear functions onU x V*. 
Explicitly, a homomorphism f : U -^ V corresponds to the bilinear form 

{f\u^cp) = {(p\f(u)). 

We thus have a correspondence between intertwiners and invariants. 
We will find it particularly useful, according to the Aronhold method, to use this 

correspondence when the representations are tensor powers U = A^^; V = B'^P 
andhom(L^, V) = A*®'" 0 B^P. 

In particular when A = B; m = pwQ have 

(1.1.1) EndCA®'") = End(A)®'" = A*®'" 0 A®^ = (A*®'" 0 A®^)*. 

Thus in this case we have 
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Proposition. We can identify, at least as vector spaces, the G-endomorphisms of 
(̂8)m ^̂ Y/i ^̂ ^ multilinear invariant functions on m variables in A and m variables 

in A*. 

Let V be an m-dimensional space. On the tensor space V®^ we consider two 
group actions, one given by the linear group GL{V) by the formula 

(1.1.2) g{Vi <^V2^-"^Vn):= gVx'^gVi^'"'^ gVn, 

and the other by the symmetric group 5„ given by 

(1.1.3) Cr(Vi 0 1̂2 0 • • • 0 fn) = fa-il ^ ^a-^2 0 ' ' ' 0 fa-̂ n-

We will refer to this second action as the symmetry action on tensors. By the defini­
tion it is clear that these two actions commute. 

Before we make any further analysis of these actions, recall that in Chapter 5, 
§2.3 we studied symmetric tensors. Let us recall the main points of that analysis. 
Given a vector f € V the tensor v^ = v(S)v(SiV"'^vis symmetric. 

Fix a basis ^i, ^2, • • •, m̂ of V. The basis elements /̂, (g)̂ /̂  *' '^^in ^^ permuted 
by Sn and the orbits are classified by the multiplicities /ii, /i2, • . . , /̂ m with which the 
elements ^1, ^2, • • •, m̂ appear in the term ei^ <S> et^,.. ^ et^. 

The sum of the elements of the corresponding orbit are a basis of the symmetric 
tensors. The multiplicities hi^hj,... ,hm are nonnegative integers, subject only to 
E / hi = n. 

If h:= hi,h2,... ,hfn is such a sequence, we denote by eh_ the sum of elements 
in the corresponding orbit. The image of the symmetric tensor Ch in the symmetric 
algebra is 

( " ) e':'e''.--et-

If t) = J2k ^k^k^ we have 

hi-^h2-\--\-h„,=n 

V^= } _ xl^x'^'-'-xi-en. 

A linear function 0 on the space of symmetric tensors is defined by (0|̂ ^> = fl/^ and 
computing on the tensor v^ gives 

\ \ k / I hi+h2-\--[-hm=n 
•^2 • • * "̂ m ^!L' 

This formula shows that the dual of the space of symmetric tensors of degree n is 
identified with the space of homogeneous polynomials of degree n. 

Let us recall that a subset X c V is Zariski dense if the only polynomial vanish­
ing on Z is 0. A typical example that we will use is: when the base field is infinite, 
the set of vectors where a given polynomial is nonzero (easy to verify). 
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Lemma. (/) The elements i;®", v e V, span the space of symmetric tensors. 
(ii) More generally, given a Zariski dense set X C V, the elements u®", v e X, 

span the space of symmetric tensors. 

Proof Given a linear form on the space of symmetric tensors we restrict it to the 
tensors u®'̂ , v e X, obtaining the values of a homogeneous polynomial on X. Since 
X is Zariski dense this polynomial vanishes if and only if the form is 0, hence the 
tensors f*̂ ", v e X span the space of symmetric tensors. n 

Of course the use of the word symmetric is coherent with the general idea of 
invariant under the symmetric group. 

1.2 Schur-Weyl Duality 

We want to apply the general theory of semisimple algebras to the two group actions 
introduced in the previous section. It is convenient to introduce the two algebras of 
linear operators spanned by these actions; thus 

(1) We call A the span of the operators induced by GL{V) in End(y®"). 
(2) We call B the span of the operators induced by 5„ in End(y®"). 

Our aim is to prove: 

Proposition. If V is a finite-dimensional vector space over an infinite field of any 
characteristic, then B is the centralizer of A. 

Proof. We start by identifying 

End(y^")=End(V)®". 

The decomposable tensor Ai 0 A2 0 • • 0 A„ corresponds to the operator: 

Ai 0 A2 0 • • • 0 Aniv\ 0 f2 0 • • • 0 î n) = ^1^1 0 Mvi 0 ' ' • 0 A„i;„. 

Thus, if ^ € GL{V), the corresponding operator in V^^ is g 0 ^ 0 • • • 0 g. From 
Lemma 1.1 it follows that the algebra A coincides with the symmetric tensors in 
End(V)®'̂  since GL(V) is Zariski dense. 

It is thus sufficient to show that for an operator in End(y)®", the condition of 
commuting with Sn is equivalent to being symmetric as a tensor. 

It is sufficient to prove that the conjugation action of the symmetric group on 
End(y®") coincides with the symmetry action on End(V)*^". 

It is enough to verify the previous statement on decomposable tensors since they 
span the tensor space; thus we compute: 

aAi 0 A2 0 • • • 0 Ancr~^(vi 0 i;2 0 • • • 0 î n) 

= a Ax 0 A2 0 • • • 0 An{Va\ 0 l'a2 0 • • • 0 Van) 

= Cr(AiVal 0 A2i;a2 0 ' ' ' 0 AnVan) = A^-ii^i 0 A^-i2l^2 • • • A^-i„D„ 

= (A^-ii 0 A^-12 . . . A^-i„)(i;i 0 i;2 0 • • • 0 v^). 
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This computation shows that the conjugation action is in fact the symmetry action 
and finishes the proof. D 

We now draw a main conclusion: 

Theorem. If the characteristic off is 0, the algebras A, B are semis imple and each 
is the centralizer of the other 

Proof Since B is the span of the operators of a finite group it is semisimple by 
Maschke's theorem (Chapter 6, §1.5); therefore, by the Double Centralizer Theorem 
(Chapter 6, Theorem 2.5) all statements follow from the previous theorem which 
states that A is the centralizer of B. D 

Remark. If the characteristic of the field F is not 0, in general the algebras A, B are 
not semisimple. Nevertheless it is still true (at least if F is infinite or big enough) 
that each is the centralizer of the other (cf. Chapter 13, Theorem 7.1). 

1.3 Invariants of Vectors 

We formulate Theorem 1.2 in a different language. 
Given two vector spaces V, W we have identified hom( V, W) with IV 0 V* and 

with the space of bilinear functions onW*xV by the formulas (A e hom(V, W), 
a eW\ V € V): 

(1.3.1) {a\Av). 

In case V, W are linear representations of a group G, A is in homG(V ,̂ W) if and 
only if the bilinear function {a\Av) is G-invariant. 

In particular we see that for a linear representation V the space of G-linear endo-
morphisms of V®" is identified with the space of multilinear functions of an n covec-
tor^^ and n vector variables f{(X\,a2,..., a„, fi, fi, • . . , fn) which are G-invariant. 

Let us see the meaning of this for G = GL{V), V an m-dimensional vector 
space. In this case we know that the space of G-endomorphisms of V®^ is spanned 
by the synmietric group 5„. We want to see which invariant function fa corresponds 
to a permutation a. By the formula 1.3.1 evaluated on decomposable tensors we get 

/ a ( a i , a 2 , . . . , « « , 1̂ 1, 1^2,..-, l̂ n) = («! 0 0̂ 2 0 ' ' • 0 ^n ^(^1 0 1̂2 <S) ' ' • 0 l̂ n)) 

= (Ofl 0 ^ 2 <8) "''^Oln\Va-n 

0 Vcj-n 0 ••• 0 Va-\n) 

= Y\^Cli\'^a-^i) =Y\{0tai\Vi). 
i = \ i=\ 

We can thus deduce: 

^̂  Covector means linear form. 
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Proposition. The space ofGL{V) invariant multilinear functions ofn covector and 
n vector variables is spanned by the functions 

n 

(1.3.2) /a(«i, ^ 2 , . . . , «„, fi, f 2 , . . . , Vn) := ]~J(acT/|t'/). 

1.4 First Fundamental Theorem for the Linear Group (FFT) 

Up to now we have made no claim on the linear dependence or independence of 
the operators in 5„ or of the corresponding functions f^. This will be analyzed in 
Chapter 13, §8. 

We want to drop now the restriction that the invariants be multilinear. 
Take the space (V*)^ x V^ of p covector and q vector variables as the represen­

tation of GL(V)(dim(V) = m). A typical element is a sequence 

(Qfi,a2, ...,afp, i;i, i;2,.. . , Vg), at e V*, Vj e V. 

On this space consider the pq polynomial functions {o(i\Vj) which are clearly 
GL(V) invariant. We prove:^^ 

Theorem (FFT First fundamental theorem for the linear group). The ring of 
polynomial functions on V*^ x V^ that are GL(V)-invariant is generated by the 
functions (a,\vj). 

Before starting to prove this theorem we want to make some remarks about its mean­
ing. 

Fix a basis of V and its dual basis in V*. With these bases, V is identified with 
the set of m-dimensional column vectors and V* with the space of m-dimensional 
row vectors. 

The group GL(V) is then identified with the group G/(m, C) of m x m invertible 
matrices. Its action on column vectors is the product Av, A e Gl{m, C), v e V, 
while on the row vectors the action is by a A~^ 

The invariant function {a, | Vj) is then identified with the product of the row vector 
at with the column vector Vj. In other words identify the space (V*)^ of p-tuples of 
row vectors with the space of pxm matrices (in which the p rows are the coordinates 
of the covectors) and (V^) with the space of mxq matrices. Thus our representation 
is identified with the space of pairs: 

(X^Y)\XeMp,m, Y eMm,,. 

The action of the matrix group is by 

A(X,Y) :={XA-\AY). 

^^ At this moment we are in characteristic 0, but in Chapter 13 we will generalize our results 
to all characteristics. 
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Consider the multiplication map: 

(1.4.1) / : Mp^m X Mm,, ^ M^,„ / (X, Y) := XY. 

The entries of the matrix XF are the basic invariants (a, Ify); thus the theorem can 
also be formulated as: 

Theorem. The ring of polynomial functions on Mp^m x Mm,, that are Gl(m, C)-
invariant is given by the polynomial functions on Mp^q composed with the map / . 

Proof We will now prove the theorem in its first form by the Aronhold method. 
Let gioii, a2,..., ctp, vi, V2,..., Vq) be a polynomial invariant. Without loss of 

generality we may assume that it is homogeneous in each of its variables; then we 
polarize it with respect to each of its variables and obtain a new multilinear invariant 
of the form ^(ai, 0:2,..., QfAr, fi, ^ 2 , . . . , I'M) where Â  and M are the total degrees 
of g in the a, u respectively. 

First we show that Â  = M. In fact, among the elements of the linear group 
we have scalar matrices. Given a scalar A, by definition it transforms u to Au and a 
to X~^a and thus, by the multilinearity hypothesis, it transforms the function g in 
X^~^~g. The invariance condition implies M = N. 

We can now apply Proposition 1.3 and deduce that ^ is a linear combination of 
functions of the form ]~[/li {(^ai \Vi). 

We now apply restitution to compute g from g. It is clear that g has the desired 
form. D 

The study of the relations among invariants will be the topic of the Second Fun­
damental Theorem, SFT. Here we only remark that by elementary linear algebra, the 
multiplication map / has, as image, the subvariety Dp^q (m) of pxq matrices of rank 
< m. This is the whole space if m > min(p, q); otherwise, it is a proper subvariety, 
called a determinantal variety defined, at least set theoretically, by the vanishing of 
the determinants of the (m +1) x (m +1) minors of the matrix of coordinate functions 
Xij on Mp^q. 

The Second Fundamental Theorem will prove that these determinants generate a 
prime ideal which is thus the full ideal of relations among the invariants (of/11;̂ ). 

In fact it is even better to introduce a formal language. Suppose that V is an affine 
algebraic variety with the action of an algebraic group G. Suppose that p : V ^^ W 
is a morphism of affine varieties, inducing the comorphism p* : k[W] -^ k[V]. 

Definition. We say that p : V -> W isa quotient under G and write W := V//G if 
p* is an isomorphism from k[W] to the ring of invariants /:[ V]^. 

Thus the FFT says in this geometric language that the determinantal variety 
Dp^qim) is the quotient under GL(m, C) of (V*)®^ 0 V® .̂ 
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2 Young Symmetrizers 

2.1 Young Diagrams 

We now discuss the symmetric group. The theory of cycles (cf. Chapter 1, §2.2) 
implies that the conjugacy classes of Sn are in one-to-one correspondence with the 
isomorphism classes of Z actions on [1,2,... ,n] and these are parameterized by 
partitions of n. 

As in Chapter 1, we express that /x := /:i, /:2,...,/:« is a partition of n by /x h n. 
We shall denote by C(/JL) the conjugacy class in Sn formed by the permutations 

decomposed in cycles of length ki,k2,... ,kn, hence Sn = u î-nC'C/x). 
Consider the group algebra R := Q[Sn] of the symmetric group. We wish to work 

over Q since the theory has really this more arithmetic flavor. We will (implicitly) 
exhibit a decomposition as a direct sum of matrix algebras over Q:̂ ^ 

(2.1.1) R = Q[Sn] := 0 ^ ^ ^ M^(^)(Q). 

The numbers ddx) will be computed in several ways from the partition /x. 
Recall, from the theory of group characters, that we know at least that 

/ ^ c : = C [ 5 „ ] : = ^ M „ , . ( C ) , 
i 

where the number of summands is equal to the number of conjugacy classes, hence 
the number of partitions of n. For every partition A h n we will construct a primitive 
idempotent e^ in R so that R = ^x\-n ^^^^ ^^^ dimQ ex^Q^ = 1. In this way the 
left ideals Re^ will exhaust all irreducible representations. The description of 2.1.1 
then follows from Chapter 6, Theorem 3.1 (5). 

In fact we will construct idempotents e^, X \- n so that dimQ^xRcx = 1 and 
exRt^^ = 0 if A 7̂  /x. By the previous results we have that R contains a direct sum-
mand of the form ©^^„ M„(^)(Q), or R = 0^^„ M„(^)(Q) 0 R'. We claim that 
R^ = 0; otherwise, once we complexify, the algebra Re = 0^I-AI ^n(M)(^) ® ^c 
would contain more simple summands than the number of partitions of n, a contra­
diction. 

For a partition A. h n let ^ be the corresponding Young diagram, formed by n 
boxes which are partitioned in rows or in columns. The intersection between a row 
and a column is either empty or it reduces to a single box. 

In a more formal language consider the set N"̂  x N^ of pairs of positive integers. 
For a pair (/, j) e N x N set dj := [{h, k)\l < h < i, I < k < j] (this is a 
rectangle). 

These rectangular sets have the following simple but useful properties: 

(1) Cij C Ch,k if and only if (/, ; ) e Ch,k-
(2) If a rectangle is contained in the union of rectangles, then it is contained in one 

of them. 

68 So in this case all the division algebras coincide with ( 
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Definition. A Young diagram is a subset of N"̂  x N"̂  consisting of a finite union of 
rectangles Ctj. 

In the literature this particular way of representing a Young diagram is also called a 
Ferrer diagram. Sometimes we will use this expression when we want to stress the 
formal point of view. 

There are two conventional ways to display a Young diagram (sometimes referred 
to as the French and the English way) either as points in the first quadrant or in the 
fourth: 

Example. The partition 4311: 

French * English 

Any Young diagram can be written uniquely as a union of sets Cij so that no rect­
angle in this union can be removed. The corresponding elements (/, j) will be called 
the vertices of the diagram. 

Given a Young diagram D (in French form) the set C, := {(/, 7) € /)}, / fixed, 
will be called the i^^ column, the set Rj := {(/, 7) € Z)}, j fixed, will be called the 
7* row. 

The lengths ki.ki.k^,,... of the rows are a decreasing sequence of numbers 
which completely determine the diagrams. Thus we can identify the set of diagrams 
with n boxes with the set of partitions of n\ this partition is called the row shape of 
the diagram. 

Of course we could also have used the column lengths and the so-called dual 
partition which is the column shape of the diagram. 

The map that to a partition associates its dual is an involutory map which geo­
metrically can be visualized as flipping the Ferrer diagram around its diagonal. 

The elements {h, k) in a diagram will be called boxes and displayed more picto-
rially as (e.g., diagrams with 6 boxes, French display): 

tb 

ffl a n & 

2.2 Symmetrizers 

n u 1111111 

Definition 1. A bijective map from the set of boxes to the interval 
(1, 2, 3 , . . . , n — 1, «) is called a tableau. It can be thought as di filling of the dia­
gram with numbers. The given partition k is called the shape of the tableau. 
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Example. The partition 4311: .69 

3 7 

^'^""'^ 1 1 1 ' 3 6 8 
4 9 6 8 1 2 5 9 

The symmetric group Sn acts on the tableaux by composition: 

aT : B — ^ (1, 2, 3 , . . . , n - 1, n) —^—> (1, 2, 3 , . . . , n - 1, n). 

A tableau induces two partitions on (1, 2, 3 , . . . , n — 1, n): 
The row partition is defined by: /, j are in the same part if they appear in the 

same row of T. The column partition is defined similarly. 
To a partition n of (1, 2, 3 , . . . , n — 1, n)'̂ ^ one associates the subgroup S^ of 

the symmetric group of permutations which preserve the partition. It is isomorphic 
to the product of the synmietric groups of all the parts of the partition. To a tableau 
T one associates two subgroups R^, CT of 5„. 

(1) Rĵ  is the group preserving the row partition. 
(2) CT is the subgroup preserving the colunm partition. 

It is clear that R7 fl C^ = 1 since each box is an intersection of a row and a column. 

Notice that ifs e Sn, the row and column partitions associated to sT arc obtained 
by applying s to the corresponding partitions of T. Thus 

(2.2.1) RsT = SRTS-\ CST = SCTS-\ 

We define two elements in /? = Q[5„]: 

(2.2.2) ST — 2_] ^ ^^ symmetrizer on the rows 
aeRr 

aT = y ^ €aCT the antisymmetrizer on the columns. 
creCr 

Recall that 6̂  denotes the sign of the permutation. The two identities are clear: 

i i 

where the hi are the lengths of the rows and ki are the lengths of the columns. 
It is better to get acquainted with these two elements from which we will build 

our main object of interest. 

^̂  The reader will notice the peculiar properties of the right tableau, which we will encounter 
over and over in the future. 

^̂  There is an ambiguity in the use of the word partition. A partition of n is just a non-
increasing sequence of numbers adding to n, while a partition of a set is in fact a decompo­
sition of the set into disjoint parts. 
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(2.2.3) psj = ST = STP, Vp € R^ ; qar = ar q = ^qCiT, ^q £ CT-

Conversely psj = ST or Sp = sj implies p e Rj. Similarly qaT = e^aT or ajq = 
€qaT implies q G C j . It is then an easy exercise to check the following. 

Proposition. The left ideal Q{Sn]sT has as a basis the elements gsj as g runs over 
a set of representatives of the cosets gRj and it equals, as a representation, the 
permutation representation on such cosets. 

The left ideal Q[Sn]aT has as a basis the elements gar as g runs over a set of rep­
resentatives of the cosets gCj and it equals, as a representation, the representation 
induced to Sn by the sign representation ofCj-

Now the remarkable fact comes. Consider the product 

(2.2.4) CT\=STaT= Yl, ^^P^' 
peRr, qeCr 

We will show that: 

Theorem. There exists a positive integer p(T) such that the element ej '•= -7^ is 
a primitive idempotent. 

Definition 2. The idempotent ej := -7^ is called the Young symmetrizer relative to 
the given tableau. 

Remark. 

(2.2.5) CsT = SCTS~\ 

We thus have for a given X h n several conjugate idempotents, which we will 
show to be primitive, associated to tableaux of row shape A,. Each will generate an 
irreducible module associated to X which will be denoted by M^. 

For the moment, let us remark that from 2.2.5 it follows that the integer p(T) 
depends only on the shape XofT, and thus we will denote iiby p(T) = p(X). 

2.3 The Main Lemma 

The main property of the element CT which we will explore is the following, which 
is clear from its definition and 2.2.3: 

(2.3.1) pCT — CT, V/7 G R 7 ; CTq = ^qCT, V^ € C ^ . 

We need a fundamental combinatorial lemma. Consider the partitions of n as de­
creasing sequences of integers (including 0) and order them lexicographically.^^ 

For example, the partitions of 6 in increasing lexicographic order: 

111111,21111,2211,222,3111,321,411,42,51,6. 

71 We often drop 0 in the display. 
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Lemma. Let S and T be two tableaux of row shapes: 

X = hi > h2 > ... > hn, iJi = ki > k2 > ... > kn 

with X > fjL. Then one and only one of the two following possibilities holds: 

(i) Two numbers /, j appear in the same row in S and in the same column inT. 
(ii) k = 11 and pS — qT where p e R5, q G C7. 

Proof We consider the first row r\ of S. Since h\ >k\,hy the pigeonhole principle 
either there are two numbers in r\ which are in the same column in T or /ii =k\ and 
we can act on T with a permutation 5 in C^ so that S and sT have the first row filled 
with the same elements (possibly in a different order). 

Observe that two numbers appear in the same colunm in T if and only if they 
appear in the same column in ^T or Cr = CST-

We now remove the first row in both S and T and proceed as before. At the end 
we are either in case (i) or X = /x and we have found a permutation q eCr such that 
S and qT have each row filled with the same elements. 

In this case we can find a permutation p eRs such that pS = qT. 
In order to complete our claim we need to show that these two cases are mutually 

exclusive. Thus we have to remark that if pS = qT as before, then case (i) is not 
verified. In fact two elements are in the same row in S if and only if they are in the 
same row in pS, while they appear in the same column in T if and only if they appear 
in the same column in qT. Since pS = qT two elements in the same row of pS are 
in different columns of qT. n 

Corollary, (i) Given X > /JL partitions, S and T tableaux of row shapes A, /x respec­
tively, ands any permutation, there exists a transposition u eRs and a transposition 
V e CT such that us = sv. 

(ii)If,for a tableau T, s is a permutation not in RJCT, then there exists a trans­
position u e RT and a transposition v e CT such that us = sv. 

Proof, (i) From the previous lenmia there are two numbers / and j in the same row 
for S and in the same column for 5T. If w = (/, j) is the corresponding transposition, 
we have u e Rs, u e CST- We set v := s~^us and we have v e S~^CSTS = CT by 
2.2.1. By definition sv = uv. 

(ii) The proof is similar. We consider the tableau T, construct s~^T, and apply 
the lemma to s~^T,T. 

If there exists a /?' G RS-^T^ ^ ^ CT with p's~^T = qT, since p^ = s'^ps, 
p e RT, "we would have that s~^p = q, s = pq~^ against the hypothesis. 
Hence there is a transposition v e CT and i; € RS~^T or U = s~^us, u e RT, ^s 
required. D 
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2.4 Young Symmetrizers 2 

We now draw the conclusions relative to Young symmetrizers. 

Proposition, (i) Let S and T be two tableaux of row shapes A > /x. 
If an element a in the group algebra is such that 

pa = a, V/7 G Rs, andaq = €qa, Vq e CT, 

then a = 0. 

(ii) Given a tableau T and an element a in the group algebra such that 

pa = a, ^p e RT, andaq = e^a, Wq e CT, 

then a is a scalar multiple of the element Cj. 

Proof (i) Let us write a = Xises (^{s)s\ for any given s we can find w, i; as in the 
previous lemma. 

By hypothesis ua = a,av = —a. Then a(s) = a(us) = a{sv) = —a(s) = 0 
and thus a = 0. 

(ii) Using the same argument as above, we can say that if s ^ RrCr, then 
a(s) = 0. Instead, let s = pq, p e Rr ,^ ^ ^T- Then a{pq) = €qa{\), hence 
a = a(l)cT. • 

Before we conclude let us recall some simple facts about algebras and group 
algebras. 

If /? is a finite-dimensional algebra over a field F, we can consider any element 
r € /? as a linear operator on R (as vector space) by right or left action. Let us 
define tr(r) to be the trace of the operator x i-> xr.'^'^ Clearly tr(l) = dim/r R. For 
a group algebra F[G] of a finite group G, an element g e G, g 7̂  1, gives rise to 
a permutation x -^ jcg, JC G G of the basis elements without fixed points. Hence, 
tr(l) = | G | , t r ( ^ ) = 0 i f ^ 7 ^ 0 . 

We are now ready to conclude. For R = Q[5„] the theorems that we aim at are: 

Theorem 1. 

(/) CTRCT = CrRar = STRCT = srRar = QCT-
(ii) Cj = p(k)cT with p{X) 7̂  0 a positive integer 

(Hi) dimQ RCT = - ^ . 
(iv) IfU.V are two tableaux of shapes k > /JL, then sjjRay = ayRsu = 0. 
(v) IfU.V are tableaux of different shapes k, fx, we have cuRcy = 0 = SuRay. 

Proof (i) We cannot have CTRCT = 0 since R is semisimple. Hence it is enough to 
prove SrRar = Qcr- We apply the previous proposition and get that every element 
of SrRar satisfies (ii) of that proposition, hence srRar = Qc^. 

(ii) In particular we have c\ = p{X)cr. Now compute the trace of cr for the right 
regular representation. From the previous discussion we have tr(c7') = n!, hence 

72 One can prove in fact that the operator x -^ rx has the same trace. 
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Cj / 0. Since Cj = P(X)CT we have that p(k) / 0. Since p{X) is the coefficient of 
1 in the product c^, it is clear that it is an integer. 

(iii) er := - ^ is idempotent and -^ = ^^^ = tr(^r). The trace of an 
idempotent operator is the dimension of its image. In our case RCT = RCT, hence 
- ^ = dimQ RCT. In particular this shows that p{X) is positive. 

(iv) If A > /x we have, by part (i), suRay = 0. 
(v) If A > /x we have, by (iv), cuRcy = suauRsyUy C syRay = 0. Otherwise 

cyRcu = 0, which, since R has no nilpotent ideals, implies cyRcy = 0 (Chapter 6, 
§3.1). 

From the general discussion performed in 2.1 we finally obtain 

Theorem 2. (/) The elements ej := - ^ are primitive idempotents in R = Q[5'„]. 
(ii) The left ideals Rej give all the irreducible representations of Sn explicitly 

indexed by partitions. 
(iii) These representations are defined over Q. 

We will indicate by Mx the irreducible representation associated to a (row) par­
tition X. 

Remark. The Young symmetrizer a priori does not depend only on the partition k 
but also on the labeling of the diagram. Two different labelings give rise to conjugate 
Young synmietrizers which therefore correspond to isomorphic irreducible represen­
tations. 

We could have used, instead of the product STaj, the product ajsj in reverse 
order. We claim that also in this way we obtain a primitive idempotent ^g^, relative 
to the same irreducible representation. 

The same proof could be applied, but we can also argue by applying the anti-
automorphism a ->• ^ of the group algebra which sends a permutation or to a"^ 
Clearly, 

aj = ar, sj = ST, SJ-CIT = ajSr-

Thus -y^aTSj = ?7 is a primitive idempotent. 

Since clearly crarST = STajajST is nonzero (a^ is a nonzero multiple of aT 
and so (cTaTST)aT is a nonzero multiple of Cj) we get that ej and ej are primitive 
idempotents relative to the same irreducible representation, and the claim is proved. 

We will need two more remarks in the computation of the characters of the sym­
metric group. 

Consider the two left ideals Rsj, Raj. We have given a first description of their 
structure as representations in §2.2. They contain respectively arRsr, srRar which 
are both 1 dimensional. Thus we have 

Lemma. Mi appears in its isotypic component in RST (resp. Raj) \vith multiplicity 
1. IfM^ appears in RST, then /x < X, and if it appears in Raj, then fi > k.^^ 

73 We shall prove a more precise theorem later. 
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Proof. To see the multiplicity with which M^ appears in a representation V it suf­
fices to compute the dimension of CT VOX of cr V where T is a tableau of shape ix. 
Therefore the statement follows from the previous results. D 

In particular we see that the only irreducible representation which appears in both 
RST, Raj is Mx. 

The reader should apply to the idempotents that we have discussed the following 
fact: 

Exercise. Given two idempotents ^, / in a ring R we can identify 

homR{Re,Rf) = eRf. 

2.5 Duality 

There are several deeper results on the representation theory of the symmetric group 
which we will describe. 

A first remark is about an obvious duality between diagrams. Given a tableau 
T relative to a partition A, we can exchange its rows and columns obtaining a new 
tableau f relative to the partition A., which in general is different from A. It is thus 
natural to ask in which way the two representations are tied. 

Let Q(6) denote the sign representation. 

Proposition. M~^ = Mx<S> QC^). 

Proof. Consider the automorphism r of the group algebra defined on the group ele­
ments by r(cr) := e^a. 

Clearly, given a representation g, the composition ^r is equal to the tensor prod­
uct with the sign representation; thus, if we apply r to a primitive idempotent asso­
ciated to MA, we obtain a primitive idempotent for M-^. 

Let us therefore use a tableau T of shape X and construct the symmetrizer. We 
have 

r{cT)= Yl ^P^(p'i^ = yJ2 ^pPjyJly-

We remark now that since A is obtained from A by exchanging rows and columns we 
have 

Thus T(CT) = afSf = 'cf, hence riej) ='ef. • 

Remark. From the previous result it also follows that p{X) = p(X). 
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3 The Irreducible Representations of the Linear Group 1 

3.1 Representations of the Linear Groups 

We now apply the theory of symmetrizers to the linear group. 
Let M be a representation of a semisimple algebra A and B its centralizer. By 

the structure theorem (Chapter 6) M = ®Â , 0 A, Pi with Â , and P/ irreducible 
representations, respectively of A, B.lf e G B is a primitive idempotent, then the 
subspace ePt ^0 for a unique index /Q and eM = Nt^ <S)ePi = Ni is irreducible as 
a representation of A (associated to the irreducible representation of B relative to e). 

Thus, from Theorem 2 of §2.4, to get a list of the irreducible representations of 
the linear group Gl(V) appearing in V^", we may apply the Young symmetrizers ej 
to the tensor space and see when ej V"̂ " :^ 0. 

Assume we have t columns of length ni,n2,. •. ,nt, and decompose the column 
preserving group Cj- as a product HLi ^«, ^^ ̂ ^̂  symmetric groups of all columns. 

By definition we get tẑ  = ]"[ a^, the product of the antisymmetrizers relative to 
the various synmietric groups of the columns. 

Let us assume, for simplicity of notation, that the first n\ indices appear in the 
first column in increasing order, the next ^2 indices in the second column, and so on, 
so that 

y®n = V®«1 (g) y®"2 0 . . . 0 y^n,^ 

fl^y®« = an, V^""' 0 an.V^'"' 0 • • • 0 a„, V®'̂ ' = / \ " V 0 / \ " 'V 0 • • • 0 / \ " ' V. 

Therefore we have that if there is a column of length > dim(y), then aj V^^ = 0. 
Otherwise, we have n, < dim(V), V/, and we prove the equivalent statement that 

GTST V^^ ^ 0. Let €1,62,... ,em bed. basis of V and use the corresponding basis of 
decomposable tensors for V®"; let us consider the tensor 

(3.L1) 
f/ = (̂ 1 0 2̂ 0 • • • <8) en,) 0 (̂ 1 0 2̂ 0 • • • 0 Âiz) 0 • • • 0 (̂ 1 0 2̂ 0 • • • 0 en,). 

This is the decomposable tensor having ei in the positions corresponding to the in­
dices of the i^^ row. By construction it is symmetric with respect to the group Rj of 
row preserving permutations, hence sjU = pU, p = \RT\ # 0. 

Finally, 

(3.L2) aTU = 

(^1 A ^2 A • • • A en,) 0 (^1 A ^2 A • • • A ^^2) 0 ' • ' 0 (^1 A ^2 A • • • A en,) 7^ 0. 

Recall that the length of the first column of a partition A (equal to the number of 
its rows) is called the height of k and indicated by ht(X). We have thus proved: 

Proposition. If T is a tableau of shape A, then erV^^ = 0 if and only ifht(X) > 
dim(y). 
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For a tableau T of shape A, define 

(3.1.3) Sx{V) := ^r V®", the Schur functor associated to A. 

We are implicitly using the fact that for two different tableaux T and T' of the same 
shape we have a unique permutation a with G{T) = T'. Hence we have a canonical 
ismorphism between the two spaces ej V®", CT' V®^. 

Remark. We shall justify the word functor in 7.1. 
As a consequence, we thus have a description of V*̂ " as a representation of 

Sn X GL(V). 

Theorem. 

(3.1.4) ^^" = e , , x „ a M V ) ^ ^ ® ^ ^ ( ^ > -

Proo/ We know that the two algebras A and B, spanned by the linear and the sym­
metric group, are semisimple and each the centralizer of the other. By the structure 
theorem we thus have V^^ = 0 - Mi 0 St where the M, are the irreducible repre­
sentations of Sn which appear. We have proved that the ones which appear are the 
MA, ht(X) < dim(y) and that Sx(V) is the corresponding irreducible representation 
of the linear group. 

4 Characters of the Symmetric Group 

As one can easily imagine, the character theory of the symmetric and general linear 
group are intimately tied together. There are basically two approaches: a combinato­
rial approach due to Frobenius, which first computes the characters of the symmetric 
group and then deduces those of the linear group, and an analytic approach based 
on Weyl's character formula, which proceeds in the reverse order. It is instructive to 
see both. There is in fact also a more recent algebraic approach to Weyl's character 
formula which we will not discuss (cf. [Hul]). 

4.1 Character Table 

Up to now we have been able to explicitly parameterize both the conjugacy classes 
and the irreducible representations of Sn by partitions ofn.A way to present a parti­
tion is to give the number of times that each number / appears. 

If / appears ki times in a partition /x, the partition is indicated by 

(4.1.1) /x:= 1^^2^^3^^../^'... . 

Let us write 

(4.1.2) a(fi) := kx\k2\h\... it/!..., b{^i) := \^'2^'?>^'... /̂ ' . . . 

(4.1.3) n{^i) = a{fi)b(fM) := ki\l^'k2\2^'k3\3^'. ..ki\& . . . 

We need to interpret the number n(/x) in terms of the conjugacy class C(/x): 
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Proposition. If s e C(/x), then n{ii) is the order of the centralizer Gs of s and 
\C(ii)\n(fi) =nl 

Proof Let us write the permutation 5 as a product of a list of cycles c/. If g central­
izes 5*, we have that the cycles gCig~^ are a permutation of the given list of cycles. 

It is clear that in this way we get all possible permutations of the cycles of equal 
length. Thus we have a surjective homomorphism of Gs to a product of symmetric 
groups n Ski' t̂s kernel H is formed by permutations which fix each cycle. 

A permutation of this type is just a product of permutations, each on the set 
of indices appearing in the corresponding cycle, and fixing it. For a full cycle the 
centralizer is the cyclic group generated by the cycle, so / / is a product of cyclic 
groups of order the length of each cycle. The formula follows. n 

The computation of the character table of S„ consists, given two partitions A, /x, 
of computing the value of the character of an element of the conjugacy class C(/x) 
on the irreducible representation M^. Let us denote this value by XX(M)-

The final result of this analysis is expressed in compact form through symmet­
ric functions. Recall that we denote il/kM = Yll=\ -̂ f • ̂ ^^ ^ partition ^i \- n \= 
^1, / :2 , . . . , kn, set 

ff^{x) := \lrk,(x)i/k2(x)... ifknix). 

Using the fact that the Schur functions are an integral basis of the symmetric 
functions there exist (unique) integers c;̂ (/x) for which 

(4.1.4) ^lr^ix) = J2^,{fi)S,ix). 

We interpret these numbers as class functions C), on the symmetric group 

CA(C(/X)) := CA(/X) 

and we have 

Theorem (Frobenius). For all partitions k, /xh nwe have 

(4.1.5) XA(/X) = CX(/X). 

The proof of this theorem is quite elaborate, and we divide it into five steps. 

Step 1 First we transform the Cauchy formula into a new identity. 
Step 2 Next we prove that the class functions cx are orthonormal. 
Step 3 To each partition we associate a permutation character fix-
Step 4 We prove that the matrix expressing the functions Px in terms of the c^ is 

triangular with 1 on the diagonal. 
Step 5 We formulate the Theorem of Frobenius in a more precise way and prove it. 
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Step 1 In order to follow the Frobenius approach we go back to symmetric func­
tions in n variables jci, JC2,..., JC„. We shall freely use the Schur functions and the 
Cauchy formula for symmetric functions: 

i,j=\,n ^ ^^yj k 

proved in Chapter 2, §4.1. We change its right-hand side as follows. Compute 

V,7 = l •^•'/ i,j = \ h=\ h=\ i,j = \ 

(4.1.6) ^j^i^Hix)My) 

Taking the exponential we get the following expression: 

k 

(4.1.7) 
ĝ  / y fhix)rlrh(y)\ _ y ^ (y fh(x)fh{y) 

V^ h / ^ *! \ ^ h 

(4.1.8) V^3(̂ )*'V^3(y)*' 

Then from 4.1.3 we deduce 

(4.1.9) y\ -l—Mx)ir^{y) = T Sxix)Sx{y). 

Step 2 Consider two class functions a and b as functions on partitions. Their 
Hermitian product is 

Let us now substitute in the identity 4.1.9 the expression x/r^ = J2^ cx{ix)Sx, and get 

(4.1.10) y ] J_c,^(;x)c, ,( /x)=: 
[O if Xi#X2 

^^,n{^i)-'—^-' [1 if Xi=A2. 

We thus have that the class functions cx are an orthonormal basis, completing Step 2. 

Step 3 We consider now some permutation characters. 
Take a partition X := h\,h2,... ,hk of n. Consider the subgroup Sx := Sh^ x 

5/i2 X • • • X 5/î  and the permutation representation on: 
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(4.1.11) Sn/Sh, xSh,x--'XSh,. 

We will indicate the corresponding character by Px-
A permutation character is given by the formula x(^) = Yli }§^\ (§1-4.3 of 

Chapter 8). Let us apply it to the case G/H = Sn/Sh^ x SHJ x - • - x Sh,,, and for a 
permutation g relative to a partition /x := F ' 2̂ 3̂̂ 3 / A ^p^ 

A conjugacy class in Sh^ x Sh2 x -- • x 5/,̂  is given by k partitions /x/ h hi of 
the numbers hi, hi,..., hk. The conjugacy class of type /x, intersected with Sh^ x 
Sh2 X ' • • X Shk, gives all possible k tuples of partitions Mî  M2» • • •. Mfc of type 

and 

k 

^Pih = Pi-
h=l 

In a more formal way we may define the direct sum of two partitions X = 
1^12^23/̂ 3,,, iPi ,,,^^ = 1̂ 12̂ 23̂ 3 (qi as the partition 

;̂  0 ^ ._ J Pi+̂ 12̂ 2+̂ 2 3̂ 3+̂ 3 ̂  ^ _ iPi+qi 

and remark that, with the notations of 4.1.2, b(X 0 /x) = b(X)b(fi). 
When we decompose /x = 0 f^ i /x,, we have bi/i) = Y[ bifxt). 
The cardinality m ĵ,̂ 2,...,/x;t of the class /xi, /X2,..., /x̂ t in 5/̂  x 5';i2 ^ • • • x 5'/î  is 

y^i «(M;) ;f̂ i (̂My) ^(/^) 

Now 

k k I n \ 

j=\ h=i \i=\ / 

So we get 

«(/^) U ^i-\\PnPi2-"Pik)' 
»)lll,M2,-,Mit 

Finally for the number Pxiii) we have 

n(/x) 
/Xi,/X2,...,M;t 

ii/=i^'>=0f^^;.„^,h/i, 

M=0/=iM.' Ai.t-̂ , 
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This sum is manifestly the coefficient of x^^X2^ - -H'' ^̂  ^̂ ^ symmetric function 
V^̂ (jc). In fact when we expand 

for each factor V̂ jt(jc) = Yll=\ ^i^ ^^^ selects the index of the variable chosen and 
constructs a corresponding product monomial. 

For each such monomial, denote by pij the number of choices of the term Xj in 

the Pi factors i/i(x). We have f]/ { . ^' ) such choices and they contribute to the 

monomial xf ^̂ 2^ -- -^t ^^ ^^^ ^̂ ^Y ̂ ^ Jli ^Pij = ^j-

Step 4 If mx denotes the sum of all monomials in the orbit of x^ ^x^ . . . A:^\ we 
get the formula 

(4.1.12) iA (̂jc) = ^y6,(/x)m,(x). 

We wish now to expand the basis mx{x) in terms of the basis Sx{x) and conversely: 

(4.1.13) mx(x) = J2P)^,t^S^(x), Sx(x) = ^kx,^,m^(x). 

In order to make explicit some information about the matrices: 

(Pk,fi). (h,n) 

recall that the partitions are totally ordered by lexicographic ordering. We also or­
der the monomials by the lexicographic ordering of the sequence of exponents 
/ii, / i2 , . . . , /?« of the variables X 1,^2,..., JC„. 

We remark that the ordering of monomials has the following immediate property: 
If Ml, M2, N are 3 monomials and Mi < M2, then Mi TV < M2N. For any poly­

nomial p(x), we can thus select the leading monomial l(p) and for two polynomials 
p(x),q(x) we have 

lipq) = l(p)liq). 

For a partition /i \- n := hi > h2 >...> hn the leading monomial of m^ is 

Similarly, the leading monomial of the alternating function A^^Q(X) is 

hi+n-\ h2+n-2 h„ _ II+Q 

We now compute the leading monomial of the Schur function 5"̂ : 

x^+^ = l(A^^,(x)) = l(S^(x)V(x)) = l{S^ix))x^. 

We deduce that 

l(S^(x))=x^. 

This computation has the following immediate consequence: 
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Corollary. The matrices P := (PA,/X). Q •== (^A,^) ^^^ upper triangular with 1 on 
the diagonal. 

Proof. A symmetric polynomial with leading coefficient jc^ is clearly equal to m^ 
plus a linear combination of the mx, X < jx. This proves the claim for the matrix Q. 
The matrix P is the inverse of Q and the claim follows. D 

Step 5 We can now conclude a refinement of the computation of Frobenius: 

Theorem 2. (/) Px = cx + Yl<t><). h^^cP^ ^^P^ eKcx = X]^>x Pnxb^^. 
(ii) The functions Cx(/x) are a list of the irreducible characters of the symmetric 

group. 
(Hi) Xk = cx-

Proof. From the various definitions we get 

(4.1.14) cx = ^pcf>,xb<f>, Px = ^ k ^ , x c ^ . 

Therefore the functions cx are virtual characters. Since they are orthonormal they are 
± the irreducible characters. 

From the recursive formulas it follows that fix = cx + J^cfxx ^^,^^0' ^^ ,̂0 ̂  ^• 
Since Px is a character it is a positive linear combination of the irreducible char­

acters. It follows that each cx is an irreducible character and that the coefficients 
k(f,^x ^ N represent the multiplicities of the decomposition of the permutation repre­
sentation into irreducible components.^^ 

(iii) Now we prove the equality Xk = cx by decreasing induction. If X = n is 
one row, then the module Mx is the trivial representation as well as the permutation 
representation on Sn/Sn-

Assume X/x = c^ for all /x > A. We may use Lemma 2.4 and we know that Mx 
appears in its isotypic component in RST with multiplicity 1 and does not appear in 
Rsu for any tableau of shape /x > A. 

We have remarked that RST is the permutation representation of character fix in 
which, by assumption, the representation Mx appears for the first time (with respect 
to the ordering of the k). Thus the contribution of Mx to its character must be given 
by the term Cx. • 

Remark. The basic formula \lr^(x) = Yl^cx{iJi)Sx{x) can be multiplied by the 
Vandermonde determinant, obtaining 

(4.1.15) ylr^{x)V{x) = ^c , ( /x)Ax+,(x) . 
k 

Now we may apply the leading monomial theory and deduce that cx (/x) is the coef­
ficient in \lf^(x)Vix) belonging to the leading monomial jc'̂ "̂ ^ of AX+Q. 

This furnishes a possible algorithm; we will discuss later some features of this 
formula. 

"̂̂  The numbers A;<̂  j^ are called Kostka numbers. As we shall see they count some combinato­
rial objects called semistandard tableaux. 
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4.2 Frobenius Character 

There is a nice interpretation of the theorem of Frobenius. 

Definition. The Unear isomorphism between characters of Sn and symmetric func­
tions of degree n which assigns to xx the Schur function Sx is called the Frobenius 
character. It is denoted by x •-> ^(x)-

Lemma. The Frobenius character can be computed by the formula 

(4.2.1) Fix) = -,Y. X{o)ir^(a){x) = Y. ^ M ^ l 

Proof. By linearity it is enough to prove it for x = Xx- From 4.1.4 and 4.1.10 we 
have 

Recall that n(/x) is the order of the centralizer of a permutation with cycle struc­
ture fji. This shows the following important multiplicative behavior of the Frobenius 
character. 

Theorem. Given two representations V^WofSm.Sn, respectively, we have 

(4.2.2) F(lndf;;'sJV 0 W)) = F(V)F(W). 

c 

Proof. Let us denote by x the character of Ind/^"^ (V (S) W). Recall the discus­
sion of induced characters in Chapter 8. There we proved (formula 1.4.2) xig) = 
Xlj |^ff)|Xv(g/)- Where \G(g)\ is the order of the centralizer of g in G, the ele­
ments gi run over representatives of the conjugacy classes 0/ in H, decomposing 
the intersection of the conjugacy class of ̂  in G with H. 

In our case we deduce that x(o') = 0 unless a is conjugate to an element (a, b) 
of Sn X Sm- In terms of partitions, the partitions v \- n -\- m which contribute to 
the characters are the ones of type A 0 /x. In the language of partitions the previous 
formula 1.4.2 becomes 

y-^ n(X-{-fi) 
X(i^)= > —r-—-XvMXw(l^y, 

since V^̂ ê  = fki^n we obtain for F(x): 

E XvWXwdJ-) , , c/iMT,- ^ 
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4.3 Molien's Formula 

We discuss a complement to the representation theory of 5„. 
It will be necessary to work formally with symmetric functions in infinitely many 

variables, a formalism which has been justified in Chapter 2, §1.1. With this in mind 
we think of the identities of §4 as identities in infinitely many variables. 

First, a convention. If we are given a representation of a group on a graded vector 
space U := {Ui]^Q (i.e., a representation on each Ui) its character is usually written 
as a power series with coefficients in the character ring in a variable q:^^ 

(4.3.1) X ^ ( 0 : = ^ X / ^ ' , 

where xt is the character of the representation Ui. 

Definition. The expression 4.3.1 is called a graded character. 

Graded characters have some formal similarities with characters. Given two graded 
representations U = {Ui}i,V = {V,}, we have their direct sum, and their tensor 
product 

(U e V)i := Ui e Vi, (U 0 V)i := ^[^^ Uh 0 Vi-h^ 

For the graded characters we clearly have 

(4.3.2) Xu®viq) = Xuiq) + Xviq). Xu^viq) = Xu(q)Xv(q)' 

Let us consider a simple example.^^ 

Lemma (Molien's formula). Given a linear operator A on a vector space U its 
action on the symmetric algebra S{U) has as graded character: 

(4.3.3) J^iviS\AW = —7: 77-
^ det(l - qA) 

Its action on the exterior algebra / \ U has as graded character: 

dimU 

(4.3.4) ^ tr(A'(A))^' = det(l + qA). 
i=0 

^̂  It is now quite customary to use ^ as a variable since it often appears to come from com­
putations on finite fields where ̂  = p'̂  or as a quantum deformation parameter. 

^̂  Strictly speaking we are not treating a group now, but the set of all matrices under multi­
plication, which is only a semigroup, for this set tensor product of representations makes 
sense, but not duality. 
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Proof. For every symmetric power S^{U) the character of the operator induced by 
A is a polynomial in A. Thus it is enough to prove the formula by continuity and 
invariance when A is diagonal. 

Take a basis of eigenvectors M/ , / = 1 , . . . , n with eigenvalue A,. Then 

00 

S{U) = S(ui) 0 S(U2) (8) • • • (8) S(un) and S(ui) = ^ Fwf. 
h=0 

The graded character of 5(w/) is YlT=o ^^^^ — r=X~' hence 

Similarly, /\U = A[MI] (g) A[M2] 0 • • • 0 A[W„] and A[M/] = F 0 Fw/, hence 

w n 

We apply the previous discussion to Sn acting on the space C" permuting the co­
ordinates and the representation that it induces on the polynomial ring 
C[Xi,X2,...,Xnl 

We denote by Xl/^o X/^' the corresponding graded character. 
If a is a permutation with cycle decomposition of lengths /x((7) = /x:=mi,m2, 

. . . , rrik, the standard basis of C^ decomposes into /:-cycles each of length m/. On 
the subspace relative to a cycle of length m, cr acts with eigenvalues the m-roots of 1 
and 

k nii k 

detd - ^^)=n n (i - ^''"^^"'^)=n^i - '̂̂ '>-
Thus the graded character of a acting on the polynomial ring is 

. oo 

det(l - qa) i j=0 

= if^ih q.q\...,q',...) = J2 Xx(^)Sx(h q, q\ ..., q', ... ). 
k\-n 

To summarize 

Theorem 1. The graded character of Sn acting on the polynomial ring is 

(4.3.5) J ] X A 5 A ( 1 , ^ , ^ ' , . . . , ^ ' , . . . ) . 

Exercise. Prove this formula direcdy. 
{Hint.) C[x i , . . . , jc„] = £[x]®- = 0 ^ M, 0 5,(C[x]). 
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We have a corollary of this formula. If A. = hi > hi... > hn, the term of 
lowest degree in ^ in 5';t(l, ^, ^^ , . . . , ^^ , . . . ) is clearly given by the leading term 
Jcf̂ jC2' ...xli" computed in 1, q,q^,,.., q\ and this gives qhi+2h2+3h,+...+nhn ̂  ^ e 
deduce that the representation Mx of 5„ appears for the first time in degree hi + 
2/z2 + 3/z3 H \-nhn and in this degree it appears with multiplicity 1. This particular 
submodule of C[JCI , JC2, . . . , JC„] is called the Specht module and it plays an important 
role^^ 

Now we want to discuss another related representation. 
Recall first that C[JCI, ^ 2 , . . . , JC„] is a free module over the ring of symmetric 

functions C[(7i, a 2 , . . . , a„] of rank n!. It follows that for every choice of the num­
bers a := ai,... ,an, the ring Rg_ := C[JCI, JC2,...,x„]/{a/ — at) constructed from 
C[xi,X2,... ,Xn], modulo the ideal generated by the elements a, —«/, is of dimension 
n\ and a representation of Sn. 

We claim that it is always the regular representation. 

Proof. First, we prove it in the case in which the polynomial /" — ait^~^ + a2t^~^ 
— • • • -h (—l)"a„ has distinct roots « ! , . . . , « „ . This means that the ring 
C[xi, JC2,..., Jc„]/(a/ — at) is the coordinate ring of the set of the n\ distinct points 
aa( i ) , . . . , o((j(n), (T ^ Sn. This is clearly the regular representation. 

We know that the condition for a polynomial to have distinct roots is given by 
the condition that the discriminant is not zero (Chapter 1). This condition defines a 
dense open set. 

It is easily seen that the character of Rg_ is continuous in a and, since the charac­
ters of a finite group are a discrete set, this implies that the character is constant, a 

It is of particular interest (combinatorial and geometric) to analyze the special 
case a = 0 and the ring R := C[JCI, JC2,..., Jc„]/(or/) which is a graded algebra af­
fording the regular representation. Thus the graded character XR(^) of /? is a graded 
form of the regular representation. To compute it, notice that, as a graded represen­
tation, we have an isomorphism 

C[xi,X2, ...,Xn] = /?(8)C[cri,a2,...,or„], 

and thus an identity of graded characters. 
The ring C[ai, (72,..., cr„] has the trivial representation, by definition, and gen­

erators in degree 1, 2 , . . . , n; so its graded character is just OLi^l "" ^^)~^- ^^ 
deduce: 

Theorem 2. 
n 

X\-n i = \ 

Notice then that the series ^^(l, q,q^,... ,q^,...) Wl^i {\ — q^) represent the mul­
tiplicities of xx in the various degrees of R and thus are polynomials with positive 
coefficients with the sum being the dimension of xx-

11 It appears in the Springer representation, for instance, cf. [DP2]. 
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Exercise. Prove that the Specht module has nonzero image in the quotient ring 
R :=C[xuX2,...,Xn]/{cri). 

The ring R := Z[jci, JC2,..., Jc„]/(or/) has an interesting geometric interpreta­
tion as the cohomology algebra of the flag variety. This variety can be understood 
as the space of all decompositions C = Vi i . V2 J- * • -L K into orthogonal 
1-dimensional subspaces. The action of the symmetric group is induced by the topo­
logical action permuting the summands of the decomposition (Chapter 10, §6.5). 

5 The Hook Formula 

5.1 Dimension of Mx 

We want to now deduce a formula, due to Frobenius, for the dimension d(X) of the 
irreducible representation Mx of the symmetric group. 

From 4.1.15 appHed to the partition 1", corresponding to the conjugacy class of 
the identity, we obtain 

(5.1.1) (E^O" ̂ ^̂ ^ = J^d(X)Ax^,(x). 
i = \ A. 

Write the expansion of the Vandermonde determinant as 

Ê n̂<*""'"' h i ) - i 

aeSn i=\ 

Letting k-\-p = ii > £2 > • • • > ^n, the number d(X) is the coefficient of ]"[/ xf' 

[-kn=n \ ^ ^ " / 1 = 1 creSn i = \ 

Thus a term €^ (̂ ^ ^̂" .̂  ) ]J!=i jcf ̂ ""'+^^~^+ '̂ contributes to Y\i -̂ f if and only if kt = 
ii - o{n - i + 1) + i. We deduce 

n\ 
'^'^~ . £ '"UUii.-in-i + D + lV.-

ii-ain-i+\)-\-\>0 

We change the term 

a(«-/+l)-2 

and remark that this formula makes sense, and it is 0 if a does not satisfy the restric­
tion ii - a(n - / + 1) + 1 > 0. 
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Thus 

1 U — l ' Kj j = \ J 

d(k) is the value of the determinant of a matrix with Wo<k<j-2^^i ~ ^) i^ the 
n — i -\- I, j position; 

^n ^n\yn t j 

ti 

1 

,̂(̂ ,- - 1 ) 

U{ix-\) 

no</t<n-2(^n ^ ) 

no<it<n-2(^' ^) 

n 0</t<n-2 ( ^ 1 - ^ ) 

This determinant, by elementary operations on the columns, reduces to the Vander-
monde determinant in the £, with value Y\i<j^^i ~ ^j)- Thus we obtain the formula 
of Frobenius: 

(5.1.2) m = ^ ^ Y\ii, - .,) = n- fl O i l > | i ^ . 

5.2 Hook Formula 

We want to give a combinatorial interpretation of 5.1.2. Notice that, fixing j , in 

'̂ ^̂  J—- the 7 — 1 factors of the numerator cancel the corresponding factors in the 

denominator, leaving Ij — j -{- I factors. In all J2j ^; ~ Y1%\(J — 1) = « factors 
are left. These factors can be interpreted as the hook lengths of the boxes of the 
corresponding diagram. 

More precisely, given a box jc of a French diagram its hook is the set of elements 
of the diagram which are either on top or to the right of JC, including x. For example, 
we mark the hooks of 1,2; 2,1; 2, 2 in 4,3,1,1: 

D 

D D D 

D 

D 

n a n D D 

The total number of boxes in the hook of JC is the hook length of Ji:, denoted by hx. 
The Frobenius formula for the dimension d{X) can be reformulated in the settings 

of the hook formula. 

Theorem. Denote by B{X) the set of boxes of a diagram of shape X. Then 

n\ 
(5.2.1) d(X) = n xeB{X) hx 

hook formula. 
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Proof. It is enough to show that the factors in the factorial €,!, which are not canceled 
by the factors of the numerator, are the hook lengths of the boxes in the /* row. This 
will prove the formula. 

In fact let hi = li-\-i—n be the length of the i^^ row. Given k > i, let us consider 
the hk-\ — hk numbers strictly between £/ — ik-i = hi — hk-\ -\- k — i — \ and 
li — Ij^ = hi — hk -\- k — i. 

Observe that hk-\ — hk is the number of cases in the i^^ row for which the hook 
ends vertically on the /: — 1 row. It is easily seen, since the vertical leg of each such 
hook has length k — i and the horizontal arm length goes from hi —hk to hi— hk-1 + 1 , 
that the lengths of these hooks vary between k — i-\-hi—hk — \ and k — i+hi— hk-i, 
the previously considered numbers. D 

6 Characters of the Linear Group 

6.1 Tensor Character 

We plan to deducethe character theory of the linear group from previous computa­
tions. For this we need to perform another character computation. Given a permuta­
tion s e Sn and a matrix X G GL(V) consider the product 5 X as an operator in V^". 
We want to compute its trace. 

Let /x = hi,h2,... ,hk denote the cycle partition of s; introduce the obvious 
notation: 

(6.1.1) ^^(X) = Y[ir(X'^). 

i 

Clearly ^^i{X) = T/r̂ (jc), where by jc, we denote the eigenvalues of X. 

Proposition. The trace ofsX as an operator in V^^ is ^fx(X). 
We shall deduce this proposition as a special case of a more general formula. Given 
n matrices Xi, Xi, . . . , X„ and 5 G 5^ we will compute the trace of 
5 o Xi (8) X2 (8) • • • 0 X„ (an operator in V*^"). 

Decompose s into cycles s = c\C2 . . . Q and, for a cycle c := (ip ip-\ ... /i), 
define the function of the n matrix variables Xi, X2 , . . . , X„: 

(6.1.2) (t>c(X) = MXu X2 , . . . , Xn) := ir{Xi,Xi,... X,-̂ ). 

The previous proposition then follows from the following: 

Theorem. 

k 

(6.1.3) tr(^ o Xi 0 X2 0 • • • 0 X J = n ^ o W -
7 = 1 
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Proof. We first remark that for fixed s, both sides of 6.1.3 are multilinear functions 
of the matrix variables X,. Therefore in order to prove this formula it is enough to do 
it when Xi = ut ® V̂, is decomposable. 

Let us apply in this case the operator 5 o Xi (g) ^2 (8) • • • 0 X„ to a decomposable 
tensor ui (8) 1̂2 • • • <8) fn- We have 

(6.1.4) 
n 

^ o Z i 0 X 2 0 ••• (8) XniVi 0 f 2 - " 0 fn) = ]^(V^/|l^/)W5-il 0 "5-12 • • • 0 W -̂̂ n-

/=1 

This formula shows that 

(6.1.5) 
5 o Xi 0 X2 0 • • • 0 X„ = (M^-11 0 xfri) 0 (w -̂12 0 1/̂ 2) • • • 0 (w -̂in 0 ^n). 

so that 

n n 

(6.1.6) tr(^ o Xi 0 X2 0 • • • 0 X J = n^^'l"^-' ' '^ = n<^^(')l"'>-
i = l i=\ 

Now let us compute for a cycle c := (ip ip-i . . . ii) the function 

0,(X)=tr(X,-X,-,... X,^). 

We get 

tr(M/j 0 T/T/, O Ui^ 0 Vr/2 o • • • o Ui^ 0 lA/̂ ) 

= tr(w/, 0 (xl/i^\ui,){\lfi^\ui^) • • • (iA/,_J«/,)V^/,) 

(6.1.7) = (V^MIW/2)(V /̂2IW/3) ••• (V^/,-il«v)(V^/J«/i) = n<^^('V)l"'v)-
7 = 1 

Formulas 6.1.6 and 6.1.7 imply the claim. • 

6.2 Character of Sx(y) 

According to Theorem 3.2 of Chapter 2, the formal ring of symmetric functions 
in infinitely many variables has as basis all Schur functions Sx, The restriction to 
symmetric functions in m-variables sets to 0 all S^ with height > m. 

We are ready to complete our work. Let m = dim V. For a matrix X € GL(V) 
and a partition X \- n of height < m, let us denote by ^^(X) := Sx(x) the Schur 
function evaluated at jc = (x i , . . . , JC^), the eigenvalues of X. 

Theorem. Denote px(X) to be the character of the representation Sx(V) ofGL(V), 
paired with the representation Mx of Sn in V®^, We have px(X) = Sx(X). 
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Proof, lis e Sn^X e GL{V), we have seen that the trace of 5 o X®"" on V®" is 
computed by TA^(X) = ^^ cx(fi)Sx{X) (definition of the C),). 

If m = dim V < n, only the partitions of height < m contribute to the sum. On 
the other hand, V^^ = ®htiX)<6im(V) ^ A 0 5,(V); thus, 

if^iX) = iT(s o X^') = Yl tr(5 I M,) iT(X^' I S,(V)) 
X\-n,htiX)<m 

= Yl cx(M)px(x)= Yl ĉ (/f̂ )'5AW. 
k\-n,ht(X)<m X.\-n,ht(X)<m 

If m < n, the f^iX) with parts of length < m (i.e., /ir(/x) < m) are a basis of sym­
metric functions in m variables; hence we can invert the system of linear equations 
andget5A(X) = p,(Z). D 

The eigenvalues of X*̂ " are monomials in the variables x/, and thus we obtain: 

Corollary. Sx(x) is a sum of monomials with positive coefficients. 

We will see in Chapter 13 that one can index combinatorially the monomials which 
appear by semistandard tableaux. 

We can also deduce a dimension formula for the space 5A(V), dim V = n. Of 
course its value is 5^(1, 1 , . . . , 1) which we want to compute from the determinantal 
formulas giving Sx(x) = Ax+g(x)/V(x). 

Let as usual A := hi.hi,... ,hn and // := hi -\- n — i. Of course we cannot 
substitute directly the number 1 for the jc,, or we get 0/0. Thus we first substitute to 
Xi -> jc'~^ and then take the Hmit as jc -^ 1. Under the previous substitution we see 
that Axj^Q becomes the Vandermonde determinant of the elements x '̂, hence 

5,(l,x,x^...,x«-l)= n J f i n ^ ^ . 
A 1 (jrn-i _ v«-7) 

\<i<j<n ^^ ^ 

If a > Z?, wehavex^—jc^ = x (̂jc — l)(x^~^~^+JC^~^"^H hi), hence we deduce 
that 

(// - ij) _ r r ^̂ ' - ^lAAzR dim5,(V) = 5,(1, 1,1,...,!)= n V - ^ = n 
l<i<j<n ^^ ^ \<i<j<n ^-^ ^ 

6.3 Cauchy Formula as Representations 

We want to now give an interpretation, in the language of representations, of the 
Cauchy formula. 

Suppose we are given a vector space U over which a torus T acts with a basis of 
weight vectors M, with weight x/-

The graded character of the action of T on the synmietric and exterior algebras 
are given by Molien's formula, §4.5 and are, respectively. 
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(6.3.1) -—^—, ni+ '̂̂ -

As an example consider two vector spaces U,V with bases M I , . . . , M ^ ; 

f i , . . . , u„, respectively. We may assume m <n. 
The maximal tori of diagonal matrices have eigenvalues x i , . . . , x^; y i , . . . , jn 

respectively. On the tensor product we have the action of the product torus, and the 
basis Ui (g) Vj has eigenvalues JC/JJ. Therefore the graded character on the symmetric 
algebra S{U ® V) is WU UU T ^ -

By Cauchy's formula we deduce that the character of the n^^ symmetric power 
S"iU 0 V) equals Exh„, h,w<n, S,{x)S,(y). 

We know that the rational representations of GL(U) x GL(V) are completely 
reducible and their characters can be computed by restricting to diagonal matrices. 
Thus we have the description: 

(6.3.2) S''(U^V)= 0 5 , ( ^ ) 0 5;,(V). 
X.\-n,ht(k)<m 

This is also referred to as Cauchy's formula. 
Observe that if VK C V is the subspace which is formed by the first k basis 

vectors, then the intersection of Sx(U) (g) Sx(V) with S(U 0 W) has as basis the part 
of the basis of weight vectors of Sx(U) <S> S),iV) corresponding to weights in which 
the variables yj, j > k do not appear. Thus its character is obtained by setting to 0 
these variables in Sx(y\,y2, • • • ,ym)\ thus we clearly get that 

(6.3.3) S),iU) 0 S^(V) n S(U ̂ W) = S^(U) 0 5x(W). 

Similarly it is clear, from Definition 3.1.3: SxiV) := ^7 V®", that: 

Proposition. IfU C V is a subspace, then SxiU) = Sx(V) H [/®". 

6.4 Multilinear Elements 

Consider a rational representation p : GL(n,C) -^ GL(W) for which the matrix 
coefficients are polynomials in the coordinates xij, and thus do not contain the de­
terminant at the denominator. 

Such a representation is called a polynomial representation, the map p extends 
to a multiplicative map p : M(n, C) -> End(W) on all matrices. 

Polynomial representations are closed under taking direct sums, tensor products, 
subrepresentations and quotients. A typical polynomial representation of GL(V) is 
V^^ and all its subrepresentations, for instance the ^^(V). 

One should stress the strict connection between the two formulas, 6.3.2 and 3.1.4. 

(6.3.2) SHU^V)= 0 5 , ( ^ ) 0 5,(y), 
X\-n,ht{k)<m 

(3.1.4) V®"= 0 M,®5x(y) . 
ht(X)<dim(V) 
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This is clearly explained when we assume that U = C^ with canonical basis et and 
we consider the diagonal torus T acting by matrices Xei = xiei. 

Let us go back to formula 6.3.2, and apply it when dim V = n, W — C^. 
Consider the subspace r„ of ^(C" (g) V) formed by the elements HLi ^i ^ ^" 

Vi e V. r„ is stable under the subgroup 5nxGL(V) C GL(n, C)x GL(V), where ^^ 
is the group of permutation matrices. We have a mapping / : V^^ -> Tn defined by 

n 

(6.4.1) i : vi ^ V2 <S}' " <^ Vn ^-^ Yi^i '^ '̂•• 

Proposition, (i) Tn is the weight space in 5(C" 0 V), of weight / (X) = ]"[/ ^t f^^ 
the torus T. 

(ii) The map i is an Sn x GL(V) linear isomorphism between V^^ and Tn. 

Proof. The verification is immediate and left to the reader. D 

Remark. The character x •= YYi=i ^t î  invariant under the symmetric group (and 
generates the group of these characters). We call it the multilinear character. 

As usual, when we have a representation W of a torus, we denote by W^ the 
weight space of character x • 

Now for every partition A consider 

(6.4.2) SxiC'V :=\u£ Sx(C'')\Xu = ]^JC/M, VX G T 

the weight space of ^^(C") formed by the elements which are formally multilinear. 
Since the character ]~[ • jc/ is left invariant by conjugation by permutation matrices 

it follows that the synmietric group Sn C GL{n,C) of permutation matrices acts on 
^^(C")^. We claim that: 

Proposition. 5x(C")^ = 0 unless k \- n and in this case SMC^yy is identified 
with the irreducible representation Mx of Sn-

Proof In fact assume Xu = ]"[/ -̂ /w. Clearly M is in a polynomial representation of 
degree n. On the other hand 

s^ic^ 0 v) = 0^^^ 5,((e)*) 0 Sx(v), 
hence 

(6.4.3) 
y^n _ ^n^(^n ^ yy ^ Q ^ ^ ^ 5 , ( ( e ) * ) ^ 0 5 , ( V ) = 0 ^ ^ ^ M , 0 Sx(V) 

and we get the required identification. • 

Therefore, given a polynomial representation P of GL(n, C), if it is homoge­
neous of degree n, in order to determine its decomposition P = 0;̂ _̂„ m^SxiC^) we 
can equivalently restrict to M := {p e P | X • /? = ]"[/ -^/Pl' the multilinear weight 
space (for X diagonal with entries jc/) and see how it decomposes as a representation 
of Sn since 

(6.4.4) P = 0^^^ mxSxiC') ^=^ M = 0^^^ mxMx. 
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7 Polynomial Functors 

7.1 Schur Functors 

Consider two vector spaces V, W, the space hom( V, W) = W ^ V*, and the ring of 
polynomial functions on hom( V, W) decomposed as 

(7.1.1) P[hom(y, W)] = S{W' 0 V) = 0 ^ 5x(W*) 0 S^iV). 

A way to explicitly identify the spaces SxiW*) 0 SxiV) as spaces of functions is 
obtained by a variation of the method of matrix coefficients. 

We start by stressing the fact that the construction of the representation Sx(V) 
from V is in a sense natural, in the language of categories. 

Recall that a map between vector spaces is called a polynomial map if in coordi­
nates it is given by polynomials. 

Definition. A functor F from the category of vector spaces to itself is called a poly­
nomial functor if, given two vector spaces V, W, the map A -> F(A) from the vector 
space hom(V, W) to the vector space hom{F(V), F(W)) is a polynomial map. 

We say that F is homogeneous of degree k if, for all vector spaces V, W, the map 
F(-) 

hom(V, W) > hom(F(V), F(W)) is homogeneous of degree k. 

The functor F : V -^ V^^ is clearly a polynomial functor, homogeneous of 
degree n. When A : V -> W the map F(A) is A®". 

We can now justify the word Schur functor in the Definition 3.1.3, S),(V) := 
CTV^^, where ej is a Young symmetrizer, associated to a partition X. 

As V varies, V \-^ Sx{V) can be considered as a functor. In fact it is a subfunctor 
of the tensor power, since clearly, if A : V -> W is a linear map, A'^^ commutes 
with ar. Thus A^^C^^V®") c CTW®'' and we define 

(7.1.2) Sx(A) : Sx{V) > V®" ^^" > W^"" "' > 5x(W). 

Summarizing: 

Proposition 1. Given any partition ii \- n, V \-^ S^{V) is a homogeneous polyno­
mial functor on vector spaces of degree n, called a Schur functor. 

Remark. This functor is independent of T but depends only on the partition X. The 
choice of T determines an embedding of 5x(V) as subfunctor of V*̂ ". 

Remark. The exterior and symmetric power /\^ V and S^{V) are examples of Schur 
functors. 

Since the map S^ : hom(V, W) -> hom{S^iV), S^iW)) defined by S^ : 
X -^ S,j^(X) is a homogeneous polynomial map of degree n, the dual map 5* : 
hom(S^(V), S^(W)y -^ V[homiV, W)] defined by 

5*(0)(X) := (0|5^(X)), 0 6 hom(S^(V), S^(W))\ X e hom(V, W) 
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is a GL(V) X GL(\y)-equivariant map into the homogeneous polynomials of 
degree n. 

By the irreducibility of hom(S;,(y), S^(W)T = S^(V) 0 S^iW)\ 5* must be 
a linear isomorphism to an irreducible submodule of P[hom(V, W)] uniquely deter­
mined by Cauchy's formula. By comparing the isotypic component of type S,^(V) 
we deduce: 

Proposition 2. 7^[hom(y, W)] = 0 ^ hom(S^(V), S^(W)T and we have the iso­
morphism 5^(W*) = S^iWy. 

Let us apply the previous discussion to hom(/\' V, / \ ' W). 
Choose bases ei, i = 1 , . . . , /z, /y, j = I,... ,k for V,W respectively, and 

identify the space hom(V, W) with the space of k x h matrices. Thus the ring 
P[hom(V, W)] is the polynomial ring C[JC/J], / = 1 , . . . , /z, j = I,... ,k where 
Xij are the matrix entries. 

Given a matrix X the entries of / \ ' X are the determinants of all the minors of 
order / extracted from X, and: 

Corollary. / \ ' V0(A^ ^ ) * <̂ «̂ ^^ identified with the space of polynomials spanned 
by the determinants of all the minors of order i extracted from X, which is thus 
irreducible as a representation ofGL(V) x GL(W). 

7.2 Homogeneous Functors 

We want to prove that any polynomial functor is equivalent to a direct sum of Schur 
functors. We start with: 

Proposition 1. A polynomial functor is a direct sum of homogeneous functors. 

Proof The scalar multiplications by a G C* on a space V induce, by functoriality, 
a polynomial representation of C* on F{V) which then decomposes as F(V) = 
©fc FkiV), with Fk(V) the subspace of weight a^. Clearly Fk{V) is a subfunctor 
and F = 0 ^ Fk(V). Moreover Fk(V) is a homogeneous functor of degree k. 

We can polarize a homogeneous functor of degree k as follows. Consider, for a 
k-iuplQ Vi , . . . , Vjt of vector spaces, their direct sum 0 • V, together with the action 
of a ^-dimensional torus T with the scalar multiplication xt on each summand Vi. T 
acts in a polynomial way on ^ ( 0 ^ V,) and we can decompose by weights 

^(0,- Vi) = 0 , F,(V,, ...,V,), X = x\^x\'. ..xl\ Y.^i = k. 

One easily verifies that the inclusion V, -^ 0V/ induces an isomorphism be­
tween F{Vi) and F^k{Vu . • •, V^). n 

Let us now consider a polynomial functor V h-> F{V), homogeneous of degree 
k. We start by performing the following constructions. 
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(1) First consider the functor 

T \V ^ S\hom(C\ V)) 0 F(0) 

And the natural transformation: 

TZy : S\hom{C\ V)) 0 F(0) -^ F{V) 

defined by the formula 

7ty{f 0 u) := Fif)(u), f € hom(C^ V), u e F(C^) 

This formula makes sense, since F(f) is a homogeneous polynomial map of degree 
/: in / by hypothesis. 

The fact that ny is natural depends on the fact that, if h : V -^ W WQ have that 
T(h)(f 0 M) = (hf)^ 0 w so that 

F{h)7tv(f 0 M) = F{hf)(u) = TTwiihff 0 M = 7Tw(T(h)(f 0 M). 

(2) The linear group GL(k, C) acts by natural isomorphisms on the functor T(V) 
by the formula 

(fog-')'^Fig)u^ 

Lemma 1. The natural transformation ny is GL{k,C) invariant. 

Proof. We have F ( / o g-^) = F{f) o F(g)-^ and Ttviif o g'^)^ 0 Fig)u) = 
F( /o^- i ) (F te)M) = F(/)M. D 

These invariance properties mean that if we decompose r ( V), as a representation 
of GL(n, C) into the invariant space 7( V)G^(«'C) ^J^^ ^^le other isotypic components, 
the sum of the nontrivial irreducible representations r(V)GL(«,C). we have jty = 0 

on T(V)GL(n,C)' 

Our goal is to prove 

Theorem. The map ity restricted to the GL(n,C) invariants: 

jTy : [5^(hom(C^ V)) 0 F(C^)]^^^^'^^ -> F{V), ny(f 0 w) := F ( / ) ( M ) , 

/̂  afunctorial isomorphism. 
In order to prove this theorem we need a simple general criterion: 

Proposition 2. L r̂ r] : F -^ G be a natural transformation of polynomial functors, 
each of degree k. Then rj is an isomorphism if and only ifri£k : F(C^) —> G(C ) is 
an isomorphism. 
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Proof. Since any vector space is isomorphic to C" for some m we have to prove an 
isomorphism for these spaces. 

The diagonal torus acts on C", which by functoriaUty acts also on F(C^) and 
G{C^). By naturality rye- : /^(C") -^ G{C^) must preserve weight spaces with 
respect to the diagonal matrices. Now each weight involves at most k indices and 
so it can be deduced from the corresponding weight space for C^. For these weight 
spaces the isomorphism is guaranteed by the hypotheses. D 

In order to apply this criterion to ny we have to understand the map: 

The invariants are taken with respect to the diagonal action on ^^(homCC^, C^)) by 
acting on the source of the homomorphisms and on F(C^). 

Lemma 2. TTC* is an isomorphism. 

Proof. The definition of this map depends just on the fact that F(C^) is a polynomial 
representation of GL(/:, C) which is homogeneous of degree A:. It is clear that, if this 
map is an isomorphism for two different representations F\ (C^), FiiC^) it is also an 
isomorphism for their direct sum. Thus we are reduced to study the case in which 
F(C^) = 5A(C^) for some partition X^k. 

Identifying 

the invariants are by definition 

0 / . h ^ ^M(C') 0 [S^{C'r 0 5,(C^)]^^(^'^> = S^{0) 0 Cl5,(c^). 

By the irreducibility of the representations 5A(C^). 
Since clearly n£k{u 0 ^SxiO)) = w we have proved the claim. D 

By the classification of polynomial representations, we have that 

for some nonnegative integers m,. We deduce: 

Corollary. A polynomial functor F of degree k is of the form 

Proof. 

[5*^(hom(C^ V)) ® 5x(C*)]«^''^-^' = 0 ^ ^ ^ S^{V) ® [5^(C'=)* ® 5x(C*)]'̂ ^<*'̂ ' 
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Polynomial functors can be summed (direct sum) multiplied (tensor product) and 
composed. All these operations can be extended to a ring whose elements are purely 
formal differences of functors (a Grothendieck type of ring). In analogy with the 
theory of characters an element of this ring is called a virtual functor. 

Proposition 3. The ring of virtual functors is canonically isomorphic to the ring of 
infinite symmetric functions. 

Proof. We identify the functor Sx. with the symmetric function Sx{x). D 

Exercise. Given two polynomial functors F, G of degree k prove that we have an 
isomorphism between the space Nat(F, G) of natural transformations between the 
two functors, and the space homGL(it,C)(^(C^). G(C^)). 

Discuss the case F = G the tensor power V^^. 

7.3 Plethysm 

The composition of functors becomes the Plethysm operation on symmetric func­
tions. In general it is quite difficult to compute such compositions, even such simple 
ones as A'(A' ' ^))- There are formulas for S^S^iV)), S''{/\^(V)) and some dual 
ones. 

In general the computation F o G should be done according to the following: 

Algorithm. Apply a polynomial functor G to the space C^ with its standard basis. 
For the corresponding linear group and diagonal torus 7, G{C^) is a polyno­

mial representation of some dimension N. It then has a basis of T-weight vectors 
with characters a list of monomials M/. The character of T on G(C^) is ̂ - Mi, a 
symmetric function SG(X\, ... ,Xm). 

If G is homogeneous of degree k, this symmetric function is determined as soon 
asm > k. 

When we apply F to G(C^) we use the basis of weight vectors to see that the 
symmetric function 

SFOG(XU ...,Xm) = Sf(Mu ...,MN)- • 

Some simple remarks are in order. First, given a fixed functor G the map F \-^ 
F o G is clearly a ring homomorphism. Therefore it is determined by the value on a 
set of generators. One can choose as generators the exterior powers. In this case the 
operation /\^ oF as transformations in F are called A-operations and written X'. 

These operations satisfy the basic law: A' (a -{-b) = J2h+k=i "^^ {CL)X^{b). 
It is also convenient to use as generators the Newton functions yl/k = X!, -̂ f since 

then 
\lrk{S{xx,...,Xm)) = 5(A:p.. . ,x^), ifkifh) = i^kh-

All of this can be formalized, giving rise to the theory of A-rings (cf. [Knu]). 
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8 Representations of the Linear and Special Linear Groups 

8.1 Representations of SL(V), GLiV) 

Given an «-dimensional vector space V we want to give the complete list of 
irreducible representations for the general and special linear groups GL{n) = 
GL{V),SL{n) = SL{V). 

From Chapter 7, Theorem 1.4 we know that all the irreducible representations of 
SL{V) appear in the tensor powers V^^ and all the irreducible representations of 
GL{V) appear in the tensor powers V^^ tensored with integer powers of the deter­
minant A"(^)- Fô * simplicity we will denote by D := /\^{V) and by convention 
D~^ := /\^(VT. From what we have already seen the irreducible representations 
of GL(V) which appear in the tensor powers are the modules Sx(V), ht(X) < n. 
They are all distinct since they have distinct characters. Given Sx(V) C V^^, 
A h m, consider Sx(V) 0 A"(^) C V< '̂"+^ Since A"(^) is 1-dimensional, clearly 
Sx(V) (8) /\^(V) is also irreducible. Its character is S),^in(x) = ixiX2 .. .Xn)Sxix), 
hence (cf. Chapter 2, 6.2.1): 

(8.1.1) Sx(V)^/\\V) = Sx^in(V). 

We now need a simple lemma. Let Vn-i -= {k\ ^ ^2 > .. ̂  > kn-i > 0} be the 
set of all partitions (of any integer) of height < n — I. Consider the polynomial ring 
Z[A:I, . . . , X„, (^1, JC2 . . . Xn)'^] obtained by inverting en = A:IX2 . . . X„. 

Lemma, (i) The ring of symmetric elements inZ[x\,..., x„, (xiX2 ... Xn)~^] is gen­
erated by ei,e2,... ,en-i,e^^ and it has as basis the elements 

5 A C , XeVn-u meZ. 

(ii) The ring l\e\, e2,..., en-i, en]/(en — 1) has as basis the classes of the ele­
ments Sx, k e Vn-i. 

Proof (i) Since en is symmetric it is clear that a fraction f/e^ is symmetric if and 
only if / is synmietric, hence the first statement. Any element of Z[^i ,e2 , . . . , Cn-i, 
e^^] can be written in a unique way in the form J2k£Z ^^^n ^^^^ ak G Z[ei, ^2, . . . , 
Cn-i]. We know that the Schur functions 5'̂ , A, e Vn-\ ^^ ^ basis of 
Z[^i, e2,..., Cn-x, en]/(en) and the claim follows. 

(ii) follows from (i). • 

Theorem, (i) The list of irreducible representations ofSL(V)is 

(8.1.2) Sx(V), ht{X) <n-\. 

(ii) The list of irreducible representations ofGL(V)is 

(8.1.3) Sx(V) 0 D^ ht{X) <n-l, keZ. 
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Proof, (i) The group GL{V) is generated by SL{V) and the scalar matrices which 
commute with every element. Therefore in any irreducible representation of GL(V) 
the scalars in GL{V) also act as scalars in the representation. It follows immediately 
that the representation remains irreducible when restricted to SLiV). 

Thus we have to understand when two irreducible representations S),{V),S^{V), 
with htik) < n, htiii) < n, are isomorphic once restricted to SL(V). 

Any X can be uniquely written in the form (m, m,m,... ,m) + (k\,k2,..., 
kn-u 0) or A. = /x + m r , /zr(/x) < n - 1, and so 5A(V) = S^(V) 0 Z)^. Clearly 
Sx(V) = S^(V) as representations of SL{V). Thus to finish we have to show that 
if A ^ /x are two partitions of height < n — 1, the two SL{V) representations 
5A(V), S^(V) are not isomorphic. This follows from the fact that the characters of 
the representations 5^ (V), X 6 P„_ i, are a basis of the invariant functions on ^L (V), 
by the previous lemma. 

(ii) We have seen at the beginning of this section that all irreducible represen­
tations of GL(V) appear in 8.L3 above. Now if two different elements of this list 
in 8.L3 were isomorphic, by multiplying by a high enough power of D we would 
obtain two isomorphic polynomial representations belonging to two different parti­
tions, a contradiction. D 

Remark. / \ ' V corresponds to the partition T, made of a single column of length /. 
Its associated Schur function Sit is the i^^ elementary function et. Instead the sym­
metric power S^(V) corresponds to the partition made of a single row of length /, 
it corresponds to a symmetric function 5, which is often denoted by hi and it is the 
sum of all the monomials of degree /. 

8.2 The Coordinate Ring of the Linear Group 

We can interpret the previous theory in terms of the coordinate ring C[GL(V)] of 
the general linear group. 

Since GL{V) is the open set of End(V) = V 0 V* where the determinant 
J 7̂  0, its coordinate ring is the localization at d of the ring S{V* 0 V) which, 
under the two actions of GL{V), decomposes as ®hti).)<n^^(^*'^ ^ ^ A ( ^ ) = 
©/if(A)<n-i,it>o^^'^^(^*) ^ '^A(V). It follows immediately then that 

(8.2.1) C[GL(V)] = 0 , ,^ ,^^^_, , , ,d 'S , (V^) 0 S,(V). 

This of course is, for the linear group, the explicit form of formula 3.1.1 of Chapter 7. 
From it we deduce that 

(8.2.2) 5A(V*) = Sx(V)\ VA, ht(X) <n-l, (d* = d'^). 

Similarly, 

(8.2.3) C[SL{V)] = 0 ,^( , ) ,„_i S,(V*) 0 S,(V). 
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8.3 Determinantal Expressions for Schur Functions 

In this section we want to discuss a determinant development for Schur functions 
which is often used. 

Recall that V^ = ^r(V^") is a quotient of 

aHV^") = / \ ' ' V 0 / \ ' > . . . 0 / \ ' " V, 

where the ki are the columns of a tableau 7, and is contained in 

STiV^"") = S^'(V) (8) S^'(V) • •. 0 5^"(V) 

where the hi are the rows of T. Here one has to interpret both antisymmetrization 
and symmetrization as occurring respectively in the columns and row indices^^ The 
composition ej = -^srar can be viewed as the result of a map 

/ \ ^ ' V 0 / \ ^ ' V • • • (̂  /y^" V ̂  5r(V®") = S^'(V) (8) S^'(V) • • • 0 S^"(V). 

As representations /\^'V (S> /\^'V --- (S) A^" ^ and S^' (V) <S} S^'(V) ---<S^ S^'^ (V) 
decompose in the direct sum of a copy of V̂  and other irreducible representations. 

The character of the exterior power / \ ' (V) is the elementary symmetric function 
et (x). The one of 5' (V) is the function hi(x) sum of all monomials of degree /. 

In the formal ring of symmetric functions there is a formal duality between the 
elements et and the hj. From the definition of the et and from Molien's formula: 

CO A OO 

J^hiMq' = :pr—; r, J^^-lYet(x)q^ = Y[(l - Xtq), 

1 = (f^(-iyei(x)q^)(j^hi(x)q\ 

Hence for m > 0 we have J2i+j=m^~^y^iMhj{x) = 0. These identities tell us that 

Z[^i, ^ 2 , . . . , ^ / , . . . ] = Z[huh2,..., /z/, . . . ] 

and also that we can present the ring of infinite symmetric functions with generators 
€(, hj and the previous relations: 

(8.3.1) Z[eu ^2, . . . , ^/,... ; /ii, /^2,..., /^/,.. • ] / ( X] (-lyethX 

The mapping r : 6/(jc) i-> hi(x), hi(x) i-> ei(x) preserves these relations 
and gives an involutory automorphism in the ring of symmetric functions. Take the 
Cauchy identity 

^̂  It is awkward to denote symmetrization on non-consecutive indices as we did. More cor­
rectly, one should compose with the appropriate permutation which places the indices in 
the correct positions. 
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(8.3.2) ^^AW^XW - n n — = U12^^^^^yj 
ij ^ ^^yj j k=o 

and multiply it by the Vandermonde determinant V(y), getting 

^_^ oo 

j k=0 

For a given A = ai, . . . ,«„ we see that Sx{x) is the coefficient of the monomial 
^a,+n-l^a2+n-2 ^ ^ ^ ^a^ ^ ̂ ^^ ^^ ^ ^ ^ - j ^ ^^^ ^^^^ ^ j^ .^ -^ 

n 

(8.3.3) ^e<,p|;i,,o_,+.,; 
oeSn i = \ 

thus 

Proposition. The Schur function Sx is the determinant of the n xn matrix, which in 
the position i, j , has the element hj-i^ai ^^^^ ^^^ convention that hk = 0 , V/: < 0. 

8.4 Skew Cauchy Formula 

We want to complete this discussion with an interesting variation of the Cauchy 
formula (which is used in the computation of the cohomology of the linear group, cf. 
[AD]). 

Given two vector spaces V, Ŵ  we want to describe /\(V 0 W) as a representation 
ofGL(V)xGL(W). 

Theorem. 

(8.4.1) /\(V 0 W) = ^ Sx{V) 0 SiiW). 

Proof X denotes, as in Chapter 1, § LI, the dual partition. 
We argue in the following way. For very k, /\ (V 0 W) is a polynomial repre­

sentation of degree k of both groups; hence by the general theory /\^(V 0 W) = 
®x^k '^A(^) 0 P^iV^) for some representations P^i{W) to be determined. To do it 
in the stable case, where dim W = /:, we use Proposition 6.4 and formula 6.4.4, and 
we compute the multilinear elements of P^(W) as representations of 5„. 

For this, as in 6.4, identify W = C^ with basis ei and 

/ \ ' ( V 0 W) = / \ ( 0 ' ^ ^ V 0 Ci) = 0 t i / \ ( V 0 Ci). 

When we restrict to the multilinear elements we have V <^e\ A- - - AV <^ek which, 
as a representation of GL(y), can be identified with V®^ except that the natural 
representation of the symmetric group Sn C GL(n, C) is the canonical action on 
V®" tensored by the sign representation. 
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Thus we deduce that if x is the multihnear weight, 

This impHes Px(W) = M^, hence Pi(W) = S)^(W) from which the claim follows. D 

Remark. In terms of characters, formula 8.4.1 is equivalent to the Cauchy formula 
Chapter 2, §4.1: 

n, m 

(8.4.2) Y[ i^+Xiyj)^J2^^^^^^>^^y^-
i = l, j = \ A 

There is a simple determinantal formula corollary of this identity, as in §8.3. 
Here we remark that OLi^l + -̂ ^̂ v) = X!J=o ̂ jMy^ where the ej are the ele­

mentary symmetric functions. 
The same reasoning as in §8.3 then gives the formula 

n 

(8.4.3) Sxix) = J2^-Y[ 
aeS„ i = l 

where ki are the columns of A, i.e., the rows of X. 

Proposition. The Schur function Sx is the determinant of the n x n matrix which in 
the position /, j has the element ej-i^ki- The ki are the rows ofX, with the convention 
that Ck = 0, VA: < 0. 

From the two determinantal formulas found we deduce: 

Corollary. Under the involutive map z : et \-^ hi we have r : Sx ̂ -^ S^. 

Proof In fact when we apply r to the first determinantal formula for 5^, we find the 
second determinantal formula for S^. • 

9 Branching Rules for S^, Standard Diagrams 

9.1 Mumaghan's Rule 

We wish to describe now a fairly simple recursive algorithm, due to Mumaghan, to 
compute the numbers c^C/x). It is based on the knowledge of the multiplication of 
i^kSx in the ring of symmetric functions. 

We assume the number n of variables to be more than k + |A|, i.e., to be in a 
stable range for the formula. 

Let hi denote the rows of A.. We may as well compute \l/k(x)S),(x)V(x) = 
i/k(x)Ax+Q(x): 
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(9.1.1) Mx)A,+,{x) = (^24) (X^€,x^+"-'"'"+"-^ S i -^sl ...X^ 
<i=l / \seSn 

Write ki = hi-\-n~i. We inspect the monomials appearing in the alternating function 
which is at the right of 9.1.1. Each term is a monomial with exponents obtained from 
the sequence ki by adding to one of them, say kj, the number k. If the resulting 
sequence has two equal numbers it cannot contribute a term to an alternating sum, 
and so it must be dropped. Otherwise, reorder it, getting a sequence: 

ki > k2 > .. .ki > kj -{-k > kij^i > . . .k j - \ > kj^i > ... > kn. 

Then we see that the partition k' \h\,... ,h'-,... ,h'^ associated to this sequence is 

h\ = ht, if t <i or t > j , 

h\=ht-i + \ if i+2<t <j, h'.^^^hj^-k- j + i ^ \ . 

The coefficient of Sx' in T/̂ ^(X)5'A(JC) is (—1)^~^~' by reordering the rows. 
To understand the X' which appear let us define the rim or boundary of a diagram 

X as the set of points (/, y) G X for which there is no point {h,k) G X with i < h, 
j<k. 

There is a simple way of visualizing the various partitions X' which arise in this 
way. 

Notice that we have modified j — i consecutive rows, adding a total of k new 
boxes. Each row of this set, except for the bottom row, has been replaced by the row 
immediately below it plus one extra box. We add the remaining boxes to the bottom 
row. 

This property appears to be saying that the new diagram X' is any diagram which 
contains the diagram X and such that their difference is connected, made of k boxes 
of the rim of X'. Intuitively it is like a slinky?^ So one has to think of a slinky made 
of k boxes, sliding in all possible ways down the diagram. 

The sign to attribute to such a configuration is +1 if the number of rows occupied 
is odd, —1 otherwise. More formally we have: 

Mumaghan's rule. yl;k{x)Sx{x) = Y^ i^S^s where X' runs over all diagrams, such 
that by removing a connected set ofk boxes of the rim ofX' we have X. 

The sign to attribute to X' is +1 if the number of rows modified from X is odd, —1 
otherwise. 

For instance we can visualize 1/̂ 35321 = 3̂214 — 3̂23 — 3̂3 — 4̂21 + 5521 as 

o 

o 

o 0 0 

+ - -
o . 0 0 

o 

79 This was explained to me by A. Garsia and refers to a spring toy sold in novelty shops. 
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— . . o o + . . 
o . . . o o o 

Formally one can define a /:-slinky as a walk in the plane N^ made of /:-steps, and 
each step is either one step down or one step to the right. The sign of the slinky is 
— 1 if it occupies an even number of rows, and +1 otherwise. 

Next, one defines a striped tableau of type /x := /:i, /:2, • • •. r̂ to be a tableau 
filled, for each / = 1 , . . . , r, with exactly ki entries of the number / subject to fill a 
/:/-slinky. Moreover, we assume that the set of boxes filled with the numbers up to /, 
for each / is still a diagram. For example, a 3,4,2,5,6,3,4,1 striped diagram: 

4 

3 

1 

1 

4 

3 

2 

1 

4 

4 

2 

2 

5 

5 

5 

2 

5 

5 

7 

5 

7 

6 

7 

6 

7 

6 

To such a striped tableau we associate a sign: the product of the signs of all its 
slinkies. In our case it is the sign pattern \- -\ h + + for a total — sign. 

Mumaghan's rule can be formulated as: 

Proposition. CA(/X) equals the number of striped tableaux of type fi and shape A 
each counted with its sign. 

Notice that when /x = 1" the slinky is one box. The condition is that the diagram 
is filled with all the distinct numbers 1 , . . . , /i. The filling is increasing from left to 
right and from the bottom to the top. Let us formalize: 

Definition. A standard tableau of shape A h « is a filling of a Young diagram with 
n-boxes of shape A, with all the distinct numbers ! , . . . , « . The filling is strictly 
increasing from left to right on each row and from the bottom to the top on each 
column. 

From the previous discussion we have: 

Theorem. d(k) equals the number of standard tableaux of shape X. 

Example. Standard tableaux of shape 3, 2 (compute d(X) = 5): 

2 4 2 5 4 5 3 4 3 5 
1 3 5 ' 1 3 4 ' 1 2 3 ' 1 2 5 ' 1 2 4 * 
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9.2 Branching Rule for S„ 

We want to draw another important consequence of the previous multiplication for­
mula between Newton functions and Schur functions. 

For a given partition /x h n, consider the module M^ for Sn and the subgroup 
Sn-i C Sn permuting the first n — I numbers. We want to analyze M^ as a represen­
tation of the subgroup 5„_i. For this we perform a character computation. 

We first introduce a simple notation. Given two partitions fx \- m and A h n we 
say that /i C A, if we have an inclusion of the corresponding Ferrer diagrams, or 
equivalently, if each row of /j. is less than or equal to the corresponding row of X. 

If fji C X and n = m + 1 we will also say that /x, A are adjacent,^^ in this case 
clearly A is obtained from /x by removing a box lying in a comer. 

With these remarks we notice a special case of Theorem 9.1: 

(9.2.1) t,S^= Y. ^^' 
AI-|M|+1,MCA 

Now consider an element of ^^-i to which is associated a partition v. The same ele­
ment, considered as a permutation in Sn, has associated the partition vl. Computing 
characters we have 

Ihn Tl-(n-l) 

(9.2.2) = Y. ^̂ (̂ ) E ^^' 
T(-(«-1) ijL\-n,rCfi 

In other words 

(9.2.3) cx(yl)= Yl ^/^^^)' 

This identity between characters becomes in module notation: 

Theorem (Branching rule for the symmetric group). When restricting from Sn to 

Sn-\ we have 

A remarkable feature of this decomposition is that each irreducible 5„_i-module ap­
pearing in Mx has multiplicity 1, which implies in particular that the decomposition 
in 9.2.4 is unique. 

A convenient way to record a partition /x f- n — 1 obtained from X h n by 
removing a box is given by marking this box with n. We can repeat the branching to 
Sn-2 and get 

80 Adjacency is a general notion in a poset; here the order is inclusion. 
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(9.2.5) Mx= 0 M, M2-

li2hn—2, 

^l2C^llCk 

Again, we mark a pair 112 ^ (n — 2), /xi h (« — 1), /X2 C Mi C A by marking the 
first box removed to get ii\ with n and the second box with n — I. 

Example. From 4, 2, 1, 1, branching once: 

and twice: 

+ . + 

+ ^ + + 

7 
+ . + + ^ + 

In general we give the following definitions: Given /x C A two diagrams, the 
complement of /x in A is called a skew diagram indicated by A//x. A standard skew 
tableau of shape X/JJL consists of filling the boxes of k/jx with distinct numbers such 
that each row and each column is strictly increasing. 

An example of a skew tableau of shape 6, 5, 2, 2/3, 2, 1: 

6 7 
. 2 
. . 2 3 4 
. . . 1 2 4 

Notice that we have placed some dots in the position of the partition 3, 2, 1 which 
has been removed. 

If /x = 0 we speak of a standard tableau. We can easily convince ourselves that 
ifAhw, ii\- n — k, and /x c A, there is a 1-1 correspondence between: 

(1) sequences fi = fxj^ c /x^-i C /x^-2 . . . C Mi C A with /x/ !-« — /; 
(2) standard skew diagrams of shape A//x filled with the numbers 

n—k-hl,n—k + 2, ...,n — l,n. 
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The correspondence is established by associating to a standard skew tableau T 
the sequence of diagrams /x/ where /x/ is obtained from A by removing the boxes 
occupied by the numbers n,« — l , . . . , n — / + 1. 

When we apply the branching rule several times, passing from 5„ to Sn-k we 
obtain a decomposition of Mx into a sum of modules indexed by all possible skew 
standard tableaux of shape X//x filled with the numbers n — k -\- \,n — k -\-l,..., 
n — \,n. 

In particular, for a given shape /x h n — /:, the multiplicity of M^ in M^ equals 
the number of such tableaux. 

Finally we may go all the way down to S\ and obtain a canonical decomposition 
of Mx into 1-dimensional spaces indexed by all the standard tableaux of shape X. We 
recover in a more precise way what we discussed in the previous section. 

Proposition. The dimension of Mx equals the number of standard tableaux of 
shape X. 

It is of some interest to discuss the previous decomposition in the following way. 
For every k, let Sk be the symmetric group on k elements contained in 5„, so that 

Q[Sk] C Q[Sn] as a subalgebra. 
Let Zk be the center of Q[5jt]. The algebras Z^ c Q[5„] generate a commutative 

subalgebra C. In fact, for every k, we have that the center of Q[iS'A:] has a basis of 
idempotents ux indexed by the partitions of/:. On any irreducible representation, this 
subalgebra, by the analysis made above, has a basis of common eigenvectors given 
by the decomposition into 1-dimensional spaces previously described. 

Exercise. Prove that the common eigenvalues of the ux are distinct and so this de­
composition is again unique. 

Remark. The decomposition just obtained is almost equivalent to selecting a basis 
of Mx indexed by standard diagrams. Fixing an invariant scalar product in Mx, we 
immediately see by induction that the decomposition is orthogonal (because non-
isomorphic representations are necessarily orthogonal). If we work over R, we can 
thus select a vector of norm 1 in each summand. This still leaves some sign ambiguity 
which can be resolved by suitable conventions. The selection of a standard basis is 
in fact a rather fascinating topic. It can be done in several quite inequivalent ways 
suggested by very different considerations; we will see some in the next chapters. 

A possible goal is to exhibit not only an explicit basis but also explicit matrices 
for the permutations of Sn, or at least for a set of generating permutations (usually 
one chooses the Coxeter generators (i i + I), i = I,..., n — I). We will discuss this 
question when we deal in a more systematic way with standard tableaux in Chap­
ter 13. 



288 9 Tensor Symmetry 

10 Branching Rules for the Linear Group, Semistandard 
Diagrams 

10.1 Branching Rule 

When we deal with representations of the linear group we can use the character 
theory which identifies the Schur functions 5A(JCI, . . . , JC„) as the irreducible char­
acters of GL(n, C) = GL{V). In general, the strategy is to interpret the various 
constructions on representations by corresponding operations on characters. There 
are two main ones: branching and tensor product. When we branch from GL(«, C) 

\A Oi 
0 1 

to GL{n — I, C) embedded as block matrices, we can operate on characters 

by just setting jc„ = 1 so the character of the restriction of S),(V) to GL(n — 1, C) is 

(10.1.1) Si(Xu...,Xn-U 1) = ^ C ^ 5 ^ ( X i , . . . , X „ _ l ) . 

Similarly, when we take two irreducible representations SxiV), S^(V) and form 
their tensor product S),{V)(S) S^(V),its character is given by the symmetric function 

(10.1.2) Sx(Xu . . . , Xn)S^iXu ...,Xn) = Y^C^^SyiXu • • • , -^M)-
y 

The coefficients in both formulas can be made explicit but, while in 10.1.1 the answer 
is fairly simple, 10.1.2 has a rather complicated answer given by the Littlewood-
Richardson rule (discussed in Chapter 12, §5). 

The reason why 10.1.1 is rather simple is that all the /x which appear actually 
appear with coefficient c^ — 1, so it is only necessary to explain which partitions 
appear. It is best to describe them geometrically by the diagrams. 

WARNING For the linear group we will use English notation, for reasons that 
will be clearer in Chapter 13. Also assume that if A = /zi, /z2,. • •, /̂ r, these numbers 
represent the lengths of the columns,^^ and hence r must be at most n (we assume 
hr > 0). In 10.3 we will show that the conditions for /x to appear are the following. 

1. IJL = ki,.. .,ks is 2i diagram contained in A,, i.e., ^ < r, kt < hi, V/ < 5-. 
2. s <n-l. 
3. /x is obtained from X by removing at most one box from each row. 

The last condition means that we can remove only boxes at the end of each row, 
which form the rim of the diagram. It is convenient to mark the removed boxes by n. 

For instance take A = 4, 2, 2, « = 5 (we mark the rim). The possible 9 branch­
ings are: 

^̂  Unfortunately the notation for Young diagrams is not coherent because in the literature they 
have arisen in different contexts, each having its notational needs. 
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5 . . 5 
5 5 . 5 5 

. . 5 . . 5 . . 5 

. . 5 . . 5 . . 5 
5 

5 5 

If we repeat these branchings and markings, we see that a sequence of branchings 
produces a semistandard tableau (cf. Chapter 12 §1.1 for a formal definition) like: 

1 2 3 
1 3 5 
5 
5 

As in the case of the symmetric group we can deduce a basis of the representation 
indexed by semistandard tableaux. Conversely, we shall see that one can start from 
such a basis and deduce a stronger branching theorem which is valid over the integers 
(Chapter 13, 5.4). 

10.2 Pieri's Formula 

Although we shall discuss the general Littlewood-Richardson rule in Chapter 12, 
we start with an example, the study of Sx{V) 0 A ' (^) - ^Y previous analysis this 
can be computed by computing the product Sx{x)ei{x), where ei{x) = Sit (x) is the 
character of A ' (^) - F^^ ̂ îs set A = /zi, /12, • • •, hr and {A}, := {/x | /x D X, |/x| = 
|A.| + / and each column ki of /x satisfies hi < ki < hi -\- I}. 

Theorem (Pieri's formula). 

(10.2.1) S,{x)ei(x) = J2 ^M(^)' S,(V) 0 /\(V) = 0^^^^^ S^(V). 

Proof. Let X = h\,h2,... ,hn where we take n sufficiently large and allow some 
hi to be 0, and multiply Sx{x)ei{x)V{x) — Ax+p{x)ei{x). We must decompose the 
alternating function Ax+p{x)ei{x) in terms of functions A^+p(jc). Let // = hi + 
n — i. The only way to obtain in Ax+p{x)ei{x) a monomial x^^x^^.. .x^" with 
m\ > m2 > • • • > rttfi is possibly by multiplying x^X2 .. -x^Xj^Xj^... Xi.. This 
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monomial has strictly decreasing exponents for the variables x i , . . . , x„ if and only 
if the following condition is satisfied. Set ka = ha if a does not appear in the indices 
7i, J2, • •., ji, and ka = ha -\- I otherwise. We must have that ki > k2" • > K, in 
other words JJL := k\ > k2' "> kn is a. diagram in {A}/. The coefficient of such a 
monomial is 1, hence we deduce the claim 

Ax+p(x)ei(x) = Y] A^+pix). D 

We may now deduce also by duality, using the involutory map r : /̂ -> hi (cf. 8.3) 
and the fact that hi{x) — Si {x) is the character of 5"' (V), the formula 

(10.2.2) S^{x)hi{x) = Y^ ^M(^) ' ^A(V) 0 S'(V) = 0^,^^j^ S^iV). 

In other words, when we perform ^̂ C V) 0 / \ ' (V) we get a sum of 5'̂ ( V) where /x 
runs over all diagrams obtained from A, by adding / boxes and at most one box in 
each colunm, while when we perform SxiV) 0 S' {V) we get a sum of S^{V) where 
/x runs over all diagrams obtained from A by adding / boxes and at most one box in 
each row.̂ ^ 

Recall that, for the linear group, we have exchanged rows and columns in our 
conventions. 

10.3 Proof of the Rule 

We can now discuss the branching rule from GL(n, C) to GL(n — 1, C). From the 
point of view of characters it is clear that if / ( j c i , . . . , JC„) is the character of a rep­
resentation of GL(«, C), / ( j c i , . . . , jc„_i, 1) is the character of the restriction of the 
representation to GL(n — 1, C). We thus want to compute 5'x(xi,..., x„_i, 1). For 
this we use Cauchy's formula, getting 

Y '^AC^I, . • •, -^n-i, ^)Sx(y\,..., yn-\,yn) 

n—1, n -t n 1 

oo 

= Y ^ M ( - ^ 1 ' • • • ' Xn-\)S^(y\, . . . , yn-U yn)Y^J^y^' • • • ' yn-^^yn)' 
fi j=0 

Use 10.2.2 to get 

^ 5 x ( ^ l , . . . , X „ _ i , \)S),(yu . . . , J n - l , Jn) 

X 

oo 

= ^ 5 ^ ( x i , . . . , x „ _ i ) ^ J2 Sxiy\,--^,yn-uyn)' 

^̂  These two rules are sometimes referred to as Fieri's rule. 
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Comparing the coefficients of ^^Cyi,..., j ^ - i , y„), we obtain 

5x(Xi, . . . ,X„_i, 1) = 2_^ S^(X\, . . . ,Xn-l). 

In other words, let {X}^ be the set of diagrams which are obtained from A by re­
moving j boxes and at most one box in each row. Then the branching of 5;̂ (C") 
to GL(n — 1) is 0^e{A}^ S^(C^~^). In particular we have the property that the irre­
ducible representations which appear come with multiplicity 1. 

Since Sxixi,..., x„_i, x„) is homogeneous of degree \X\ while /x e {k}^ is ho­
mogeneous of degree |A| — 7, we must have 

Sx(X\, . . . ,Xn-\,Xn) = 2_^^n /^ 'S'^Ul. • • • . ^n- l ) - Q 

We may iterate the branching. At each step the branching to GL(n — i) is a 
direct sum of representations 5^(C"~^) with indexing a sequence of diagrams /x = 
M/ C /Xj_i C • • • C /xo = A. where each /xy is obtained from /xy_i by removing Uj 
boxes and at most one box in each row. Furthermore we must have ht (fij) < n — j . 
Correspondingly, 

At=/x,- C/x,_i C"-C/xo=A 

If we continue the branching all the way to 1, we decompose the space Sx(V) into 
1-dimensional subspaces which are weight vectors for the diagonal matrices. Each 
such weight vector is indexed by a complete ̂ ag of subdiagrams 

0 = /Xn C /Xi C . . . /X/ C • • • C /XO = ^ 

and weight n^^i^f'''^^ 
A convenient way to encode such flags of subdiagrams is by filling the dia­

gram A as a semistandard tableau, placing n — i in all the boxes of /x/ not in 
/x/_i. The restriction we have placed implies that all the rows are strictly increas­
ing, since we remove at most one box from each row, while the columns are weakly 
increasing, since we may remove more than one box at each step but we fill the 
columns with a strictly decreasing sequence of numbers. Thus we get a semistan­
dard tableau T of (colunm-) shape X filled with the numbers 1, 2 , . . . , n. Conversely, 
such a semistandard tableau corresponds to an allowed sequence of subdiagrams 
0 = /x„ C /xi C . . . /Xj C • • • C /xo = X. Then the monomial YYi=\ ^^"'^^ is de­
duced directly from T, since Mn-i+i is the number of appearances of / in the tableau. 

We set x^ := YYi=i -̂ ""'̂ ^ and call it the weight of the tableau T. Finally we 
have: 
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Theorem. 

(10.3.1) Sx(Xu...,Xn-\,Xn) = ^ X^. 

T semistandard of shape X 

Of course the set of semistandard tableaux depends on the set of numbers 1 , . . . , «. 
Since the rows have to be filled by strictly increasing numbers we must have a re­
striction on height. The rows have at most n-elements. 

Example. 53,2,2(-̂ i. -̂ 2, ̂ 3) is obtained from the tableaux: 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 
2 3 1 3 1 2 1 3 1 2 1 2 
2 3 2 3 2 3 1 3 1 3 1 2 

3̂,2,2(-̂ l» ̂ 2, ̂ 3) = X\xlxl + X^xjxl + x\x\xl + xlxixl + X^xjxj + X^xlxs. 

Of course if we increase the number of variables, then also the number and types of 
monomials will increase. 

We may apply at the same time the branching rule for the symmetric and the 
linear group. We take an n-dimensional vector space V and consider 

e,,„M,®5.(V). 

When we branch on both sides we decompose V^^ into a direct sum of 1-dimen­
sional weight spaces indexed by pairs Ti \ T2 where Ti is a standard diagram of shape 
X \- m and T2 is a semistandard diagram of shape X filled with 1, 2 , . . . , AZ. We will 
see, in Chapter 12, §1, that this construction of a basis has a purely combinatorial 
counterpart, the Robinson-Schensted correspondence. 

Note that from Theorem 10.3.1 it is not evident that the function Sx(xi,..., 
Xn-i,Xn) is even symmetric. Nevertheless there is a purely combinatorial approach 
to Schur functions which takes Theorem 10.3.1 as definition. In this approach the 
proof of the symmetry of the formula is done by a simple marriage argument. 




