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On urvatures and foal points of dynamial Lagrangiandistributions and their redutions by �rst integralsAndrej A. Agrahev � Natalia N. Chtherbakova y Igor Zelenko zAbstratPairs (Hamiltonian system, Lagrangian distribution), alled dynamial Lagrangiandistributions, appear naturally in Di�erential Geometry, Calulus of Variations andRationalMehanis. The basi di�erential invariants of a dynamial Lagrangian distri-bution w.r.t. the ation of the group of sympletomorphisms of the ambient sympletimanifold are the urvature operator and the urvature form. These invariants an beseen as generalizations of the lassial urvature tensor in Riemannian Geometry. Inpartiular, in terms of these invariants one an loalize the foal points along extremalsof the orresponding variational problems. In the present paper we study the behaviorof the urvature operator, the urvature form and the foal points of a dynamial La-grangian distribution after its redution by arbitrary �rst integrals in involution. Theinteresting phenomenon is that the urvature form of so-alled monotone inreasingLagrangian dynamial distributions, whih appear naturally in mehanial systems,does not derease after redution. It also turns out that the set of foal points to thegiven point w.r.t. the monotone inreasing dynamial Lagrangian distribution and theorresponding set of foal points w.r.t. its redution by one integral are alternatingsets on the orresponding integral urve of the Hamiltonian system of the onsidereddynamial distributions. Moreover, the �rst foal point orresponding to the reduedLagrangian distribution omes before any foal point related to the original dynamialdistribution. We illustrate our results on the lassial N -body problem.Key words: urvature operator and form, foal points, redution by �rst integrals,urves in Lagrangian Grassmannians.1 IntrodutionIn the present paper smooth objets are supposed to be C1. The results remain validfor the lass Ck with a �nite and not large k but we prefer not to speify minimal possiblek. �S.I.S.S.A., Via Beirut 2-4, 34013 Trieste Italy and Steklov Mathematial Institute, ul. Gubkina 8,117966 Mosow Russia; email: agrahev�sissa.ityS.I.S.S.A., Via Beirut 2-4, 34013 Trieste Italy; email: hth�sissa.itzS.I.S.S.A., Via Beirut 2-4, 34013 Trieste Italy; email: zelenko�sissa.it1



1.1 Dynamial Lagrangian distributions. Let W be a sympleti manifold withsympleti form �. Lagrangian distribution D on W is a smooth vetor sub-bundle ofthe tangent bundle TW suh that eah �ber D� is a Lagrangian subspae of the linearsympleti spae T�W , i.e., dimD� = 12 dimW and ��(v1; v2) = 0 for all v1; v2 2 D�. Forexample, as a sympleti manifold one an take the otangent bundle T �M of a manifoldM with standard sympleti struture and as a Lagrangian distribution one an take thedistribution �(M) of tangent spaes to the �bers of T �M , namely,�(M)� = T��T ��(�)M�; (1.1)where � : T �M !M is the anonial projetion on the base manifold M .Let H be a smooth funtion on W . Denote by ~H the Hamiltonian vetor �eld, orre-sponding to the funtion H: dH(�) = �(�; ~H), and by et ~H the Hamiltonian ow generatedby ~H. The pair ( ~H;D) de�nes the one-parametri family of Lagrangian distributionsD(t) = �et ~H��D. The pair ( ~H;D) will be alled dynamial Lagrangian distribution. Thepoint �1 = et1 ~H�0 is alled foal to �0 w.r.t. the pair ( ~H;D) along the integral urvet 7! et ~H�0 of ~H, if �et1 ~H��D�0 \ D�1 6= 0: (1.2)Dynamial Lagrangian distributions appear naturally in Di�erential Geometry, Calu-lus of Variations and Rational Mehanis. The model example an be desribed as follows:Example 1 On a manifold M for a given smooth funtion L : TM 7! R, whih is onvexon eah �ber, onsider the following standard problem of Calulus of Variation with �xedendpoints q0 and q1 and �xed time T :A�q(�)� = Z T0 L�q(t); _q(t)�dt 7! min (1.3)q(0) = q0; q(T ) = q1: (1.4)Suppose that the Legendre transform H : T �M 7! R of the funtion L,H(p; q) = maxX2TqM�p�X�� L(q;X)�; q 2M; p 2 T �qM; (1.5)is well de�ned and smooth on T �M . We will say that the dynamial Lagrangian distribu-tions � ~H;�(M)� is assoiated with the problem (1.3)-(1.4)1. The urve q : [0; T ℄ 7! M ,satisfying (1.4), is an extremal of the problem (1.3)-(1.4) if and only if there exists anintegral urve  : [0; T ℄ 7! T �M of ~H suh that q(t) = ��(t)� for all 0 � t � T . In thisase the point (T ) is foal to (0) w.r.t. the pair ( ~H;D) if and only if q1 is onjugate toq0 along the extremal q(�) in the lassial variational sense for the problem (1.3)-(1.4). 21In the model example the Lagrangian distributions are integrable. For appliation of one-parametrifamilies of non-integrable Lagrangian distributions see [10℄.2



The group of sympletomorphisms ofW ats naturally on Lagrangian distribution andHamiltonian vetor �elds, therefore it ats also on dynamial Lagrangian distributions.Dynamial Lagrangian distributions have riher geometry w.r.t. this ation than justLagrangian distribution. For example, all integrable Lagrangian distributions are loallyequivalent w.r.t. the ation of the group of sympletomorphisms of W , while integrabledynamial Lagrangian distributions have funtional moduli w.r.t. this ation.First note that for any two vetor �elds Y , Z tangent to the distribution D the number���[ ~H; Y ℄; Z� depends only on the vetors Y (�), Z(�).2 Therefore for a given dynamialLagrangian distribution ( ~H;D) the following bilinear form Q( ~H;D)� (�; �) is de�ned on eahD�: 8v; w 2 D� : Q( ~H;D)� (v; w) = ���[ ~H; Y ℄; Z�; Y (�) = v; Z(�) = w : (1.6)Moreover, from the fat that all D� are Lagrangian it follows that the form Q( ~H;D)� issymmetri.A dynamial Lagrangian distribution ( ~H;D) is alled regular, if the quadrati formsv 7! Q( ~H;D)� (v; v) are non-degenerated for any �. A dynamial Lagrangian distribu-tions is alled monotone (non-dereasing or non-inreasing), if the quadrati forms v 7!Q( ~H;D)� (v; v) are sign-de�nite (non-negative or non-positive de�nite) for any � . The regu-lar dynamial Lagrangian distributions is alled monotone inreasing (dereasing), if thequadrati forms v 7! Q( ~H;D)� (v; v) are positive (negative) de�nite for any � .Remark 1 IfW = T �M and D = �(M) are as in (1.1), then the form v 7! Q� ~H;�(M)�� (v; v)oinides with the seond di�erential at � of the restrition H��T ��(�)M of the HamiltonianH to the �ber T ��(�)M . Therefore in this ase the dynamial Lagrangian distribution� ~H;�(M)� is monotone inreasing if and only if the restritions of H on eah �ber of T �Mare strongly onvex. Consequently the dynamial Lagrangian distributions � ~H;�(M)� as-soiated with the problem (1.3)-(1.4) is monotone inreasing if and only if the restritionsof the funtion L : TM 7! R on eah �ber of TM are strongly onvex.2It turns out that under some non-restritive assumptions on the dynamial Lagrangiandistribution ( ~H;D) (in partiular, if this dynamial Lagrangian distribution is regular)one an assign to it a speial linear operator R( ~H;D)� on eah linear spaes D�. Thisoperator is alled the urvature operator of ( ~H;D) at � and it is the basi di�erentialinvariant of dynamial Lagrangian distribution ( ~H;D) w.r.t. the ation of the group ofsympletomorphisms of W . Moreover, the following bilinear formr( ~H;D)� (v; w) = Q( ~H;D)� �R( ~H;D)� v; w�; v; w 2 D� (1.7)is symmetri. The orresponding quadrati form is alled the urvature form of the pair( ~H;D). Besides, the trae of the urvature operator�( ~H;D)� = trR( ~H;D)� (1.8)2Here [v1; v2℄ is the Lie braket of the vetor �elds v1 and v2, [v1; v2℄ = v1 Æ v2 � v2 Æ v1.3



is alled the generalized Rii urvature of ( ~H;D) at �. All these invariants where intro-dued in [2℄ (see also [3℄ and setion 2 below) and the e�etive method for their alulationsis given in the reent work [4℄. Below we present the results of these alulations on sev-eral important examples. In all these examples W = T �M for some manifold M andD = �(M), a smooth funtion L : TM 7! R is given, the funtional A�q(�)� is as in (1.3),and H : T �M 7! R is as in (1.5).Example 2 (Natural mehanial system) M = Rn, W = Rn � Rn, � = nPi=1 dpi ^ dqi,D(p;q) = (Rn; 0), L(q;X) = 12kXk2� U(q) (in this ase the funtion A�q(�)� is the Ationfuntional of the natural mehanial system with potential energy U(q)). Then81 � i; j � n : r( ~H;D)(p;q) (�pi ; �pj) = �2U�qi�qj (q): (1.9)In other words, in this ase the urvature operator an be identi�ed with the Hessian ofthe potential U .Example 3 (Riemannian manifold) Let a Riemannian metri G is given on a manifoldM by hoosing an inner produt Gq(�; �) on eah subspaes TqM for any q 2M smoothlyw.r.t. q. Let L(q;X) = 12Gq(X;X). The inner produt Gq(�; �) de�nes the anonialisomorphism between T �qM and TqM . For any q 2M and p 2 T �qM we will denote by p"the image of p under this isomorphism, namely, the vetor p" 2 TqM , satisfyingp(�) = Gq(p"; �) (1.10)(the operation " orresponds to the operation of raising of indexes in the orrespondingoordinates of o-vetors and vetors). Sine the �bers of T �M are linear spaes, one anidentify D� (= T�T ��(�)M) with T ��(�)M , i.e., the operation " is de�ned also on eah D�with values in T�(�)M . It turns out (see [2℄) that8v 2 D� : �R(~H;D)� v�" = Rr��"; v"��" (1.11)where Rr is the Riemannian urvature tensor of the metri G. The right-hand side of(1.11) appears in the lassial Jaobi equation for Jaobi vetor �elds along the Riemanniangeodesis. Also, 1n�1 trR( ~H;D)� is exatly the Rii urvature alulated at �". Besides, using(1.11), the Riemannian urvature tensor Rr an be reovered uniquely from the urvatureoperator R( ~H;D)� . Therefore studying di�erential invariants of the appropriate integrabledynamial Lagrangian distributions, one an obtain the lassial Riemannian tensor.Example 4 (Mehanial system on a Riemannian manifold) Let G be the metri of theprevious example and L(q;X) = 12Gq(X;X)�U(q) (in this ase the funtion A�q(�)� is theAtion funtional of the mehanial system on the Riemannian manifold with potentialU(q)). Let the operation " be as in (1.10). Then the urvature operator satis�es8v 2 D� : �R( ~H;D)� v�" = Rr��"; v"��" +rv"(gradGU)��(�)�; (1.12)4



where gradGU is the gradient of the funtion U w.r.t. the metri G, i.e., gradGU = dU",and r is the Riemannian ovariant derivative. 2Remark 2 Aording to Remark 1, the dynamial Lagrangian distributions from Exam-ples 2-4 are monotone inreasing.2The generalization of di�erent kinds of Riemannian urvatures, using the notion of theurvature operator of dynamial Lagrangian distributions, leads to the generalization ofseveral lassial results of Riemannian geometry. In [2℄ for the given monotone inreasingdynamial Lagrangian distribution ( ~H;D) the estimates of intervals between two onse-utive foal points w.r.t. the pair ( ~H;D) along the integral urve (t) = et ~H�0 of ~H wereobtained in terms of the urvature form of the pair ( ~H;D). This result is the general-ization of the lassial Rauh Comparison Theorem in Riemannian geometry, whih givesthe lower and upper bounds of the interval between onseutive onjugate points alongthe Riemannian geodesis in terms of upper bound for the setional urvatures and lowerbound for the Rii urvature respetively. In reent work [1℄ it was shown that the Hamil-tonian ow, generated by a vetor �eld ~H on the ompat level set of H, is hyperboli, ifthere exists a Lagrangian distribution D suh that the dynamial Lagrangian distribution( ~H;D) is monotone (inreasing or dereasing) and the urvature form of so-alled redu-tion of this dynamial distribution by Hamiltonian H on this level set is negative de�nite.This is an analog of the lassial theorem about hyperboliity of geodesi ows of negativesetional urvature on a ompat Riemannian manifold.1.2 The redution by the �rst integrals. The subjet of the present paper is thebehavior of the urvature form and the foal points after the redution of the dynamialLagrangian distribution ( ~H;D) by the arbitrary s �rst integral g1; : : : ; gs in involution ofthe Hamiltonian H, i.e., s funtions on W suh thatfH; gig = 0; fgi; gjg = 0; 81 � i; j � s (1.13)(here fh; gg is the Poisson braket of the funtions h and g, fh; gg = dg(~h)). This problemappears naturally in the framework of mehanial systems and variational problems withsymmetries. Let G = (g1; : : : ; gs) andDG� = � s\i=1ker d�gi� \ D� + span�~g1(�); : : : ; ~gs(�)�: (1.14)Obviously, DG is a Lagrangian distribution. The pair ( ~H;D~G) is alled the redution by thetuple G of s �rst integrals of H in involution or shortly the G-redution of the dynamialLagrangian distribution ( ~H;D). The following example justi�es the word "redution" inthe previous de�nition:Example 5 Assume that we have one �rst integral g of H suh that the Hamiltonianvetor �eld ~g, orresponding to the �rst integral g, preserves the distribution D�, namely,(et~g)�D = D: (1.15)5



Fixing some value  of g, one an de�ne (at least loally) the following quotient manifold:Wg; = g�1()=C ;where C is the line foliation of the integral urves of the vetor �eld ~g. The sympletiform � of W indues the sympleti form on a manifold Wg;, making it sympleti too.Besides, if we denote by � : g�1() 7! Wg; the anonial projetion on the quotient set,the vetor �eld ��( ~H) is well de�ned Hamiltonian vetor �eld on Wg;, beause by ourassumptions the vetor �elds ~H and ~g ommute. Atually we have desribed the standardredution of the Hamiltonian systems on the level set of the �rst integral, ommonlyused in Mehanis. In addition, by (1.15), ��(Dg) is well de�ned Lagrangian distributionon Wg;. So, to any dynamial Lagrangian distribution ( ~H;D) on W one an assoiatethe dynamial Lagrangian distribution (�� ~H;��Dg) on the sympleti manifold Wg; ofsmaller dimension. It turns out (see subsetion 2.2 below) that the urvature form of theg-redution ( ~H;Dg) at � 2 g�1() is equal to the pull-bak by � of the urvature formof the dynamial Lagrangian distribution (�� ~H;��Dg). So, instead of ( ~H;Dg) one anwork with (�� ~H;��Dg) on the redued sympleti spae Wg;. This is the essene of theredution on the level set of the �rst integral.2Remark 3 Suppose now that W = T �M for some manifold M and D = �(M). In thisase if g is a �rst integral of H, whih is "linear w.r.t. the impulses", i.e., there exists avetor �eld V on M suh thatg(p; q) = p�V (q)�; q 2M; p 2 T �qM; (1.16)then it satis�es (1.15). If we denote by V the line foliation of integral urves of V , thenthe redued sympleti spae Wg; an be identi�ed with T �(M=V) and the distribution�(M)g an be identi�ed with �(M=V). So, after redution we work with the dynamialLagrangian distribution ��� ~H;�(M=V)� on the redued phase spae T �(M=V) instead of� ~H;�(M)�. 2In view of the previous example the following analog of the notion of the foal pointsalong the extremal w.r.t. the G-redution of the pair ( ~H;D) is natural: The point �1 =et1 ~H�0 is alled foal to �0 w.r.t. the G-redution of the pair ( ~H;D) along the integralurve t 7! et ~H�0 of ~H, if��et1 ~H��DG�0 \ DG�1�=span�~g1(�); : : : ; ~gs(�)� 6= 0: (1.17)In the situation, desribed in Example 5, the point �1 = et1 ~H�0 is foal to �0 w.r.t. theg-redution of the pair ( ~H;D) along the urve t 7! et ~H�0 if and only if �(�1) is foalto �(�0) w.r.t. the pair �(�)� ~H; (�)�Dg� along the urve t 7! �(et ~H�0) in Wg;. Weillustrate the meaning of the foal points of the redution from the variational point ofview on the following two examples. In both examples W = T �M for some manifoldM and D = �(M), a �ber-wise onvex and smooth funtion L : TM 7! R is given andH : T �M 7! R is as in (1.5). 6



Example 6 Assume that the Hamiltonian H admits a �rst integral g, satisfying (1.16).It is well known that g, satisfying (1.16), is the �rst integral of H if and only if the ow etVindues the one-parametri family of �ber-wise di�eomorphisms on TM , whih preservethe funtion L, i.e., L Æ (etV )� = L.Let V1 : R 7!M be an integral urve of V and a(�) be a funtion on V1 suh thata(V1(s)) = s; s 2 R:Fix some real . Then for the given point q0, and the time T onsider the followingvariational problem Z T0 L�q(t); _q(t)�dt�  a�q(T )�! min; (1.18)q(0) = q0; q(T ) = V1: (1.19)The urve q : [0; T ℄ 7!M , satisfying (1.19), is an extremal of the problem (1.18)-(1.19) ifand only if there exists an integral urve  : [0; T ℄ 7! g�1() of ~H , suh that q(t) = ��(t)�for all 0 � t � T . In this ase the point (0) is foal to (T ) w.r.t. the g-redution of thepair ( ~H;D) if and only if the point q0 is foal to the point q(T ) along the extremal q(�) inthe lassial variational sense for the problem (1.18)-(1.19). 2Example 7 Suppose that g = H. For given real  and points q0, q1 onsider the followingvariational problem with free terminal timeZ T0 L�q(t); _q(t)� dt� T ! min; T is free; (1.20)q(0) = q0; q(T ) = q1: (1.21)The urve q : [0; T ℄ 7!M , satisfying (1.21), is an extremal of the problem (1.20)-(1.21) ifand only if there exists an integral urve  : [0; T ℄ 7! H�1() of ~H , suh that q(t) = ��(t)�for all 0 � t � T . In this ase the point (0) is foal to (T ) w.r.t. the H-redution of thepair ( ~H;D) if and only if the point q0 is foal to the point q1 along the extremal q(�) inthe lassial variational sense for the problem (1.20)-(1.21). Atually the onsidered asean be seen as a partiular ase of the previous example. For this one an pass to theextended (on�guration) spae M =M �R instead of M and take the following funtionL : TM 7! R instead of L: L(�q;X) def= L(q; Xy )y;where �q 2 M suh that �q = (q; t), q 2 M , t 2 R and X 2 T�qM suh that X = (X; y),X = (X; y), X 2 TqM , y 2 TtR�= R (it is well known that (t; H) is the pair of onjugatevariables for funtion L, so as the �eld V one takes ��t). 21.3 Desription of main results. For the redued dynamial Lagrangian distribu-tion ( ~H;DG) one an also de�ne the urvature operator R( ~H;DG)� and the urvature formr( ~H;DG)� on eah linear spaes DG� . The natural problem is to �nd the relation between7



R( ~H;D)� (or r( ~H;D)� ) and their redued analogs R( ~H;DG)� (or r( ~H;DG)� ) on the linear spae� s\i=1 ker d�gi�\D� (whih is the intersetion of the orresponding spaes of de�nition D�and DG� ). We solve this problem in setion 2 for regular dynamial distributions. It givesan e�etive and exible method to ompute and evaluate the urvature of Hamiltoniansystems arising in Rational Mehanis and geometri variational problems. The interestingphenomenon is that the urvature form of a monotone inreasing Lagrangian dynamialdistribution does not derease after redution. More preisely, for suh distribution thequadrati form v 7! r( ~H;DG)� (v; v)� r( ~H;D)� (v; v); v 2 � s\i=1 ker d�gi� \ D�is always non-negative de�nite of rank not greater than s, where s is the number of the�rst integrals in the tuple G.Further, in setion 3 we show that the set of foal points to the given point alongan integral urve w.r.t. the monotone inreasing (or dereasing) dynamial Lagrangiandistribution and the orresponding set of foal points w.r.t. its redution by one integralare alternating sets on the urve and the �rst foal point w.r.t. the redution omes beforeany foal point w.r.t. the original dynamial Lagrangian distribution. In view of Examples6 and 7 this result looks natural: The redution enlarge the set of admissible urves inthe orresponding variational problems (instead of the problem with �xed endpoints antterminal time one obtains the problem with variable endpoints or free terminal time).This justi�es the fat that the �rst foal point of the redution omes sooner. Besides,for the mentioned examples the last fat and the alternation of foal points are also aonsequene of the lassial Courant Minimax Priniple, applied to the seond variationalong the referene extremal in the orresponding variational problems.In addition, we demonstrate our results on the lassial N - body problem.2 Curvature and redution2.1 Curvature operator and urvature form. For the onstrution of the urva-ture operator of the dynamial Lagrangian distribution we use the theory of urves in theLagrange Grassmannian, developed in [2℄ and [5℄. The urvet 7! J�(t) def= e�t ~H� �Det ~H��: (2.1)is alled the Jaobi urve of the urve t 7! et ~H� attahed at the point � (w.r.t. thedynamial distribution ( ~H;D)). It is the urve in the Lagrange Grassmannian L(T�W )of the linear sympleti spae T�W . Atually, the Jaobi urve is a generalization of thespae of \Jaobi �elds" along the extremal of variational problem of type (1.3)-(1.4). Note8



that if �� = e�t ~H� then by (2.1) we haveJ��(t) = e�t ~H� J�(t� �t):In other words, the Jaobi urves of the same integral urve of ~H attahed at two di�erentpoints of this urve are the same, up to sympleti transformation between the orrespond-ing ambient linear sympleti spaes and the orresponding shift of the parameterizations.Therefore, any di�erential invariants of the Jaobi urve w.r.t. the ation of the linearSympleti group (in other words, any sympleti invariant of the urve) produes theinvariant of the orresponding dynamial Lagrangian distributions w.r.t. the ation of thegroup of sympletomorphisms of the ambient spae W .Now, following [2℄ and [5℄, we desribe the onstrution of the urvature operator ofthe urve in the Lagrange Grassmannian. Let � be 2n-dimensional linear spae, endowedwith sympleti form �. The Lagrange Grassmannian L(�) is real analyti manifold. Notethat the tangent spae T�L(�) to the Lagrangian Grassmannian at the point � an benaturally identi�ed with the spae of quadrati forms Quad(�) on the linear spae � � �.Namely, take a urve �(t) 2 L(�) with �(0) = �. Given some vetor l 2 �, take a urvel(�) in W suh that l(t) 2 �(t) for all t and l(0) = l. De�ne the quadrati forml 7! �( ddtl(0); l): (2.2)Using the fat that the spaes �(t) are Lagrangian, it is easy to see that this form dependsonly on ddt�(0). So, we have the map from T�L(�) to the spae Quad(�). A simpleounting of dimension shows that this mapping is a bijetion.Remark 4 In the sequel, depending on the ontext, we will look on the elements ofT�L(�) not only as on the quadrati forms on �(t), but also as on the orrespondingsymmetri bilinear forms on �(t) or on the orresponding self-adjoint operator from �(t)to �(t)� 2The urve �(�) in L(�) is alled regular, monotone, monotone inreasing (dereasing),if its veloity _�(t) at any point t is respetively a non-degenerated, sign-de�nite, positive(negative) de�nite quadrati form on the spae �(t).Proposition 1 A dynamial distribution ( ~H;D) is regular, monotone, monotone inreas-ing (dereasing) if and only if all Jaobi urves w.r.t. this distribution are respetively reg-ular, monotone, monotone inreasing (dereasing) urves in the orresponding LagrangeGrassmannians.Proof. Reall that for any two vetor �elds ~H and ` in M one hasddt�(e�t ~H)�`� = (e�t ~H)�[ ~H; `℄: (2.3)Let Q( ~H;D)� be as in (1.6). Applying this fat to the Jaobi urve J�(t) and using (1.6),(2.1), and (2.2) one obtains easily thatQ( ~H;D)� = _J�(0); (2.4)9



whih implies the statement of the proposition. 2Fix some � 2 L(�). De�ne the linear mapping B� : � 7! �� in the following way: forgiven w 2 � one has B�(w)(v) = �(w; v); 8v 2 �: (2.5)Denote by �t the set of all Lagrangian subspaes of � transversal to �, i.e. �t = f� 2Gm(W ) : � \ � = 0g. Then for any subspae � 2 �t the restrition B���� : � 7! �� is anisomorphism.Remark 5 In other words, any � 2 �t an be anonially identi�ed with the dual spae��. Let I� = �B������1. Note that by onstrution I� is linear mapping from �� to � andI�l � I�l 2 �: (2.6)The ruial observation is that the set �t an be onsidered as an aÆne spae over thelinear spae Quad(��) of all quadrati forms on the spae ��. Indeed, one an de�ne theoperation of subtration on �t with values in Quad(��) in the following way:(���)(l) = �(I�l; I�l): (2.7)It is not diÆult to show that �t endowed with this operation of subtration satis�es theaxioms of aÆne spae. For example, let us prove that(���)+ (�� �) = (�� �) (2.8)Indeed, using skew-symmetry of � and relation (2.6), one has the following series of iden-tities for any l 2 ���(I�l; I�l) + �(I�l; I�l) = �(I�l � I�l; I�l) = �(I�l � I�l; I�l� I�L)+�(I�l� I�l; I�l) = �(I�l� I�l; I�l) = �(I�l; I�l);whih implies (2.8).3Consider now some urve �(�) in L(�). Fix some parameter � . Assume that �(t) 2�(�)t for all t from a puntured neighborhood of � . Then we obtain the urve t 7!�(t) 2 �(�)t in the aÆne spae �(�)t. Denote by �� (t) the idential embedding of �(t)in the aÆne spae �(�)t. Fixing an \origin" � in �(�)t we obtain a vetor funtiont 7! �� (t)�� with values in Quad (��). The urve �(�) is alled ample at the point � ifthe funtion �� (t)� � has the pole at t = � (obviously, this de�nition does not dependon the hoie of the "origin" � in �(�)t). In partiular, if �(�) is a regular urve in L(�),then one an show without diÆulties that the funtion t 7! ��(t)�� has a simple poleat t = � for any � 2 �(�)t. Therefore any regular urve in L(�) is ample at any point.3For slightly di�erent desription of the aÆne struture on �t see [2℄,[5℄, and also [4℄, where a similaronstrution is given for the Grassmannian Gn(R2n) of half-dimensional subspaes of R2n.10



Suppose that the urve �(�) is ample at some point � . Using only the axioms of aÆnespae, one an prove easily that there exist a unique subspae �Æ(�) 2 �t suh that thefree term in the expansion of the funtion t 7! ��(t)� �Æ(�) to the Laurent series at � isequal to zero. The subspae �Æ(�) is alled the derivative subspae of the urve �(�) atthe point � . If the urve �(�) is ample at any point, one an onsider the urve � 7! �Æ(�)of the derivative subspaes. This urve is alled derivative urve of the urve �(�).Now assume that the derivative urve �Æ(t) is smooth at a point � . In partiular, thederivative urve of a regular urve in the Lagrange Grassmannian is smooth at any point(see, for example, [2℄ and the oordinate representation below). In general, the derivativeurve of the ample urve is smooth at generi points (the points of so-alled onstantweight, see [5℄). As was mentioned already in Remark 4, one an look on _�(�) and _�Æ(�)as on the orresponding self-adjoint linear mappings:_�(�) : �(�) 7! �(�)�; _�Æ(�) : �Æ(�) 7! ��Æ(�)�� (2.9)Besides, by onstrution �Æ(�) 2 �(�)t. Therefore by Remark 5 the following spaes anbe anonially identi�ed: �(�)� �= �Æ(�); ��Æ(�)�� �= �(�) (2.10)After these identi�ations, the omposition _�Æ(�) Æ _�(�) is well-de�ned linear operator on�(t).De�nition 1 The linear operatorR�(�) = � _�Æ(�) Æ _�(�) : (2.11)on �(�) is alled the urvature operator of the urve �(�) at a point � . The quadrati formr�(�) on �(�), de�ned byr�(�)(v) = � _�(�) ÆR�(�)v�(v); v 2 �(�) (2.12)is alled the urvature form of the urve �(�) at a point � .Suppose that for all Jaobi urves w.r.t. the dynamial Lagrangian distribution ( ~H;D)the urvature operator is de�ned. The urvature operator R( ~H;D)� of the dynamial La-grangian distribution ( ~H;D) at a point � is by de�nition the urvature operator of theJaobi urve J�(t) at t = 0, namely,R( ~H;D)� = RJ�(0): (2.13)By onstrution, it is the linear operator on D�. The urvature form r( ~H;D)� of the dynam-ial Lagrangian distribution ( ~H;D) at a point � is by de�nition the urvature form of theJaobi urve J�(t) at t = 0 (see also (1.7)). 11



Now for a regular urve �(�) in the Lagrange Grassmannian L(�) let us give a oordi-nate representation of the derivative urve and the urvature operator. One an hoose abasis in � suh that � �= Rn�Rn = f(x; y) : x; y 2 Rng; (2.14)�((x1; y1); (x2; y2)) = hx1; y2i � hx2; y1i; (2.15)where h�; �i is the standard inner produt in Rn (suh basis is alled sympleti or Darbouxbasis). Denote by ei the ith vetor of the standard basis of Rn.Assume also that �(�) \ f(0; y) : y 2 Rng = 0. Then for any t suÆiently losed to� there exits the symmetri n � n matrix St suh that �(t) = f(x; Stx) : x 2 Rng. Thematrix urve t 7! St is the oordinate representation of the urve �(�) (w.r.t. the hosensympleti basis in �).Remark 6 Note that from (2.15) and the fat that the subspaes �(t) are Lagrangian itfollows that the matries St are symmetri.The urve �(�) is regular if and only if the matries _St are non-degenerated. Theexpression of the derivative urve and the urvature operator of the regular urve �(�) interms of St is given by the followingProposition 2 The derivative urve �Æ(�) of the regular urve �(�) in L(�) satis�es�Æ(�) = f(�12 _S�1� �S� _S�1� y; y � 12S� _S�1� �S� _S�1� y); y 2 Rng: (2.16)In the basis f(ei; S�ei)gni=1 of �(�) the urvature operator R�(�) is represented by thefollowing matrix S(St) = 12 _S�1� S(3)� � 34( _S�1� �S�)2: (2.17)The urvature form r�(�) has the following matrix w.r.t. the same basis� _S�S(St) = �12 _S(3)� + 34 �S� _S�1� �S� : (2.18)For the proof of (2.16) and of the matrix representation (2.17) for the urvature operatorsee, for example, [4℄. The matrix representation (2.18) of the urvature form followsdiretly from (2.17) and (2.12).Remark 7 If St is a salar funtion (i.e., n = 1), thenS(St) is just the lassial Shwarzianderivative or Shwarzian of St. It is well known that for salar funtions the Shwarziansatis�es the following remarkable identity:S�a'(t) + b'(t) + d� = S�'(t)� (2.19)for any onstant a, b, , and d, ad � b 6= 0. Note that by hoosing another sympletibasis in �, we obtain a new oordinate representation t 7! eSt of the urve �(�) whih is amatrix M�obious transformation of St,eSt = (C +DSt)(A+BSt)�1 (2.20)12



for some n � n matrix A, B, C, and D. It turns out that the matrix Shwarzian (2.17)is invariant w.r.t. matrix M�obious transformations (2.20) by analogy with identity (2.19)(the only di�erene is that instead of identity we obtain similarity of orresponding ma-tries). This is another explanation for invariant meaning of the expression (2.17), givenby Proposition 2.The oordinate representations (2.17) and (2.18) are ruial in the proof of the maintheorem of this setion (see Theorem 1 below).2.2 Curvature operator and urvature form of redution. Now �x some svetors l1; : : :ls in � suh that81 � i; j � s : �(li; lj) = 0: (2.21)Denote by ` = (l1; : : :ls) and span ` = span(l1; : : : ls) For any � 2 L(�) let�` = � \ (span `)\ + span `; �` = �`=span `; (2.22)where (span `)\ def= fv 2 � : 81 � i � s �(v; li) = 0g is the skew-orthogonal omplementof the isotropi subspae span `. Atually, �` is a Lagrangian subspae of the sympletispae (span `)\=span ` (with sympleti form indued by �).Let, as before, �(�) be an ample urve in L(�). The urve �(�)` is alled the redutionby the s-tuple `, satisfying (2.21), or shortly the `-redution of the urve �(�). Notethat by (2.22) span ` � �(t)` for any t. Therefore the urve �(�)` is not ample and theonstrutions of the previous subsetion annot be applied to it diretly. Instead, supposethat the urve �(�)` is ample urve in the Lagrange Grassmannian L((span `)\=span `).Then the urvature operator R�`(t) of this urve is well-de�ned linear operator on thespae �(t)` (at least for a generi point t). Let � : � 7! �=span ` be the anonialprojetion on the fator-spae.De�nition 2 The urvature operator R�`(�) of the `-redution �(�)` at a point � is thelinear operator on �(�)`, satisfyingR�`(�)(v) = �����(�)\(span`)\��1 ÆR�`(�) Æ �(v); v 2 �(�)`: (2.23)The urvature form r�`(�) of the `-redution �(�)` at a point � is the quadrati form on�(�)`, satisfying r�`(�)(v) = dd� ��(�)`��R�`(�)v; v�: (2.24)All these onstrutions are diretly related to the redution of dynamial distributionsby a tuple G = (g1; : : : ; gs) of s involutive �rst integrals, de�ned in Introdution. Indeed,the Jaobi urves attahed at some point � w.r.t. the G-redution ( ~H;DG) of a dynami-al Lagrangian distribution ( ~H;D) are exatly �~g1(�); : : : ; ~gs(�)�-redutions of the Jaobiurves attahed at � w.r.t. ( ~H;D) itself. The urvature operator R( ~H;DG)� and the urva-ture form r( ~H;DG)� at � of the G-redution ( ~H;DG) are by de�nition the urvature operatorand the urvature form of the Jaobi urves attahed at � w.r.t. ( ~H;DG).13



To justify these de�nitions suppose that we are in situation of Example 5, i.e. H admitsone �rst integral g, satisfying (1.15). Let a sympleti manifold Wg; and a mapping� : g�1() 7!Wg; be as in this example. Then diretly from the de�nition it follows that8v 2 Dg : r(~h;Dg)� (v) = r(��~h;��Dg)�(�) (��v): (2.25)In other words, the urvature form of the g-redution ( ~H;Dg) at � 2 g�1() is equalto the pull-bak by � of the urvature form of the dynamial Lagrangian distribution(�� ~H;��Dg), assoiated to the original dynamial Lagrangian distribution (~h;D) on theredued sympleti spae Wg;.The natural question is what is the relation between the urvature forms and operatorsof the dynamial Lagrangian distribution and its redution on the ommon spae of theirde�nition. Before answering this question in the general situation, let us onsider thefollowing simple example:Example 8 (Kepler's problem) Consider a natural mehanial system on M = R2 withthe potential energy U = �r�1, where r is the distane between a moving point in a planeand some �xed point. This system desribes the motion of the enter of masses of twogravitationally interating bodies in the plane of their motion (see [7℄). Let q = (r; ')be the polar oordinates in R2. Then the Hamiltonian funtion of the problem takes theform h = p2r2 + p2'2r2 � 1r ; (2.26)where pr and p' are the anonial impulses onjugated to r and '. If � = (p; q), whereq 2 M , p 2 T �qM , then pr(�) = p��r(q)� = dqr, p'(�) = r2p��'(q)� = r2dq'. Observethat g = p' is nothing but the angular momentum and from (2.26) we immediately seethat it is a �rst integral of the system. Let us ompare the urvature forms r(~h;�(M))� andr(~h;�(M)g)� on the ommon spae �(M)\ kerd�g = R�pr of their de�nition.First, aording to (1.9) of Example 2, the urvature form of (~h;�(M)) is equal theHessian of U at q. In partiular, it implies thatr�~h;�(M)�� (�pr) = �2�r2U(q) = � 2r3 : (2.27)Further, let  = g(�). Note that g satis�es the ondition (1.16) of Remark 3 with V =r2�'. Let Wg; and � be as in Example 5. Then, following Remark 3, Wg; �= T �R+ andthe dynamial Lagrangian distribution (��~h;��R�pr) is equivalent (sympletomorphi)to the dynamial Lagrangian distribution assoiated with the natural mehanial systemwith on�guration spae R+ and the potential energyUa = 22r2 � 1r(Ua is the so - alled amended potential energy; it omes from the following identity:h��g�1() = p2r2 + Ua(r)). Hene by (2.25)r�~h;�(M)g�� (�pr) = d2dr2Ua(r) = 32r4 � 2r3 = r�~h;�(M)�� (�pr) + 32r4 : (2.28)14



Note that from (2.28) it follows that on the ommon spae of the de�nition the reduedurvature form is not less than the urvature form itself. We will show later (Corollary 2)that this is a general fat.22.3 The hange of the urvature after the redution. Now we give the relationbetween the urvature forms of the regular urve �(�) and its `-redution �(�)`, where ,asbefore, ` = (l1; : : : ; ls) is the tuple of s vetors, satisfying (2.21). First, let us introduesome notations. Let B�(t) : � 7! �� be as in (2.5). Looking at _�(t) as at a linear mappingfrom �(t) to �(t)�, denote by ai(t), 1 � i � s the following vetors in �(t):ai(t) = � _�(t)��1 ÆB�(t)(li): (2.29)Using de�nition of _�(t) and B�(t) one an show that t 7! ai(t), ai(t) 2 �(t), is a uniquevetor funtion suh that for any t one has�( _ai(t); v) = �(li; v); 8v 2 �(t);or, equivalently, _ai(t) � li mod �(t): (2.30)Finally, let A(t) be the s � s matrix with the following entriesAkm(t) = ��lk; am(t)�; 1 � k;m � s: (2.31)Note that by (2.30) and the de�nitions of _�(t)Akm(�) = �� _ak(t); am(t)� = _�(t)ak(t)�am(t)�; (2.32)whih implies that the matrix A(t) is symmetri.Theorem 1 Suppose that �(�) is a regular urve in the Lagrange Grassmannian L(�) and` = (l1; : : : ; ls) is a tuple of s vetors in � suh that (2.21) holds and detA(�) 6= 0 for somepoint � . Then the urvature form r�(�) of the urve �(�) and the urvature form r�`(t) ofits `-redution �(�)l at the point � satisfy the following identity for all v 2 �(�)\�span `�\:r�`(�)(v)� r�(�)(v) = 34 sXk;m=1�A(�)�1�km���ak(�); v����am(�); v�; (2.33)where �A(�)�1�km is the km-entry of the matrix A(�)�1. In addition, the urvature oper-ator R�(�) of the urve �(�) and the urvature operator R�`(�) of its `-redution �(�)l atthe point � satisfy on �(�) \ �span `�\ the following identity:R�`(�)�R�(�) = 34 sXk;m=1(A(�)�1)kmB�(�)�am(�)
�� _�(�)��1 ÆB�(�)�ak(�)� : (2.34)(As usual, for a given linear funtional � and a given vetor v by � 
 v we denote thefollowing rank 1 linear operator � 
 v(�) = �(�)v.)15



Proof. First let us prove identity (2.33). As before, denote by ei the ith vetor of thestandard basis of Rn. The ondition detA(�) 6= 0 it equivalent tospan�a1(�); : : : ; as(�)� \ �span `�\ = 0: (2.35)Hene one an hoose a basis in � suh that if one oordinatizes � w.r.t. this basis,� �= Rn�Rn, then the sympleti form � satis�es (2.15) and the following relations hold�(�)\ �span `�\ = span �(e1; 0); : : : ; (en�s; 0)�; (2.36)li = (0; en�s+i); 1 � i � s; (2.37)ai(�) 2 span�(en�s+1; 0); : : : ; (en; 0)�; 1 � i � s: (2.38)Note that by onstrution�span `�\ = span �(e1; 0); : : : ; (en�s; 0); (0; e1); ; : : : ; (0; en)�:Therefore one an make the following identi�ation:(span `)\=span ` �= span �(e1; 0); : : : ; (en�s; 0); (0; e1); : : : ; (0; en�s)�: (2.39)Sine by de�nition ai(t) 2 �(t), there exists bi(t) 2 Rn suh that a(t) = �bi(t); Stbi(t)�.Note that _ai(t) = �0; _Stbi(t)�+ �_bi(t); St _bi(t)� � �0; _Stbi(t)� mod�(t): (2.40)This, together with (2.30) and (2.37), implies that li = �0; _Stbi(t)� and thenbi(t) = _S�1t en�s+i : (2.41)On the other hand, from (2.37) and (2.38), using (2.15) one an obtain thatbi(�) = sXj=1 ��ai(�); lj�en�s+j = � sXj=1Aij(�)en�s+j (2.42)(in the last equality we used the symmetry of the matrix A(�)). So, from (2.41), (2.42)and symmetry of _S� (see Remark 6) it follows that81 � i � n � s; n� s+ 1 � j � n : ( _S�1� )ij = ( _S�1� )ji = 0; (2.43)81 � i; j � s : ( _S�1� )n�s+i;n�s+j = �Aij(�): (2.44)Further, for given n�n matrix A denote by C(A) the (n�s)�(n�s) matrix, obtainedfrom A by erasing the last s olumns and rows. Consider the urve �(�)` in the LagrangeGrassmannian L((span `)\=span `) (see (2.22) for the notation). By onstrution, if St isthe oordinate representation of the urve �(t) w.r.t. the hosen sympleti basis, thenC(St) is a oordinate representation of the urve �(�)l w.r.t. the basis of (span `)\=span `,indiated in (2.39). Hene from (2.43), (2.44), and assumption det A(�) 6= 0 it follows16



that the germ at � of the urve �(�)` is regular. In partiular, the urvature form of the`-redution �(�)` is well de�ned at � . Using (2.18), we obtain that the quadrati formr�`(�)����(�)\(span`)\ � r�(�)����(�)\(span`)\ ;has the following matrix in the basis �(e1; 0); : : : ; (en�s; 0)�:� dd� C(S�)S�C(S�)�+ C� _S�S�S� )�:Using the bloked struture of the matrix _S� , given by (2.43), one an obtain from (2.18)without diÆulties that� dd� C(S�)S�C(S�)�+ C� _S�S�S� )� = �34n nXk;m=n�s+1( �S�)ik( _S�1� )km( �S�)mjon�si;j=1In order to prove (2.33), it is suÆient to prove the followingLemma 1 The restrition of the quadrati formv 7! sXk;m=1(A(�)�1)km���ak(�); v����am(�); v� (2.45)on �(�)\ l\ has the matrix with ij-entry equal to� nXk;m=n�s+1( �S�)ik( _S�1� )km( �S�)mjin the basis �(e1; 0); : : : ; (en�s; 0)�.Proof. First, using the symmetry of St and (2.44), one has the following identity:nXk;m=n�s+1( �S�)ik( _S�1� )km( �S�)mj = nXk;m=n�s+1( �S� _S�1� )ik( _S�)km( �S� _S�1� )jm =� sXk;m=1( �S� _S�1� )i;n�s+k�A(�)�1�km( �S� _S�1� )j;n�s+m (2.46)On the other hand, from (2.40) we have:�ai(t) = �0; �Stbi(t)�+ 2�0; _St _bi(t)�+ ��bi(t); St�bi(t)�:Substitute t = � in the last relation. Note that _S� has the same bloked struture, as_S�1� , whih together with (2.42) implies that �0; _St _bi(t)� 2 span `. From this and (2.41) itfollows that �ai(�) � �0; �S� _S�1� en�s+i(t)� mod span��(�); l1; : : : ; ls�: (2.47)17



Hene 81 � j � n� s; 1 � i � s : ���ai(�); (ej; 0)� = �( �S� _S�1� )j;n�s+i; (2.48)The last identity together with (2.46) implies the statement of the lemma and also formula(2.33). 2Finally, identity (2.34) follows diretly from (2.12). The proof of the theorem is om-pleted. 2Note that if the urve �(�) is monotone inreasing or dereasing , then from (2.32) itfollows that the ondition detA(�) 6= 0 is equivalent to the following ondition�(�)\ span ` = 0: (2.49)As a diret onsequene of identity (2.33) and the last fat one has the followingCorollary 1 If the urve �(�) is monotone inreasing and the tuple ` = (l1; : : : ; ls) of svetors in � satis�es (2.49) for some t, then on the spae �(t) \ �span `�\ the urvatureform of the `-redution of the urve �(�) is not less than the urvature form of the urve�(�) itself. Moreover, on the spae �(t) \ �span `�\ the di�erene between the urvatureform of the `-redution of the urve �(�) and the urvature form of the urve �(�) itself isnon-negative de�nite quadrati form of rank not greater than s.Let us translate the results of Theorem 1 in terms of a regular dynamial Lagrangiandistribution ( ~H;D) on a sympleti spae W . Suppose that the Hamiltonian H admitsa s-tuple G = (g1; : : : ; gs) of involutive �rst integrals. Similarly to (2.5) denote by BD� :T�W 7! D�� the linear mapping suh that for given Y 2 T�W the following identity holdsBD�Y (Z) = �(Y; Z); 8Z 2 D�: (2.50)Let us look at _J�(0) (the veloity at t = 0 of the Jaobi urve attahed at �) as at a linearmapping from D� to D��. Then using regularity by analogy with (2.29) one an de�ne thefollowing s vetor �elds Xi on W :Xi(�) = � _J�(0)��1 Æ BD��~gi(�)�: (2.51)Using relation (2.3) one an obtain by analogy with (2.30) that Xi is a unique vetor �eld,satisfying Xi(�) 2 D� and [ ~H;Xi℄(�) � ~gi(�) mod D� (2.52)for all � 2 W . Finally let �(�) be the s� s matrix with the following entries�(�)km = ���~gk;Xm�; 1 � k;m � s: (2.53)From Theorem 1 and relation (2.3) one gets immediately18



Theorem 2 Suppose that ( ~H;D) is a regular Lagrangian dynamial distribution on asympleti spae W and the Hamiltonian H admits a tuple G = (g1; : : : ; gs) of s involutive�rst integrals suh that det �(�) 6= 0. Then the urvature form r( ~H;D)� of the dynamialdistribution ( ~H;D) and the urvature form r( ~H;DG)� of its G-redution ( ~H;DG) satisfy thefollowing identity for all v 2 � s\i=1 ker d�gi� \ D�r( ~H;DG)� (v)� r( ~H;D)� (v) = 34 sXk;m=1��(�)�1�km���� ~H; [ ~H;Xk℄�; v����� ~H; [ ~H;Xm℄�; v�;(2.54)while the urvature operator R( ~H;D)� of the dynamial distribution ( ~H;D) and the urvatureoperator R( ~H;DG)� of its G-redution ( ~H;DG) satisfy on � s\i=1ker d�gi� \ D� the followingidentity: R( ~H;DG)� � R( ~H;D)� =34 sXk;m=1��(�)�1�kmBD�� ~H; [ ~H;Xm℄�(�)
�� _J�(0)��1 Æ BD�� ~H; [ ~H;Xk℄�(�)�: (2.55)Also, by analogy with Corollary 1 we haveCorollary 2 If the dynamial Lagrangian distribution ( ~H;D) is monotone inreasing andthe Hamiltonian H admits a tuple G = (g1; : : : ; gs) of s involutive �rst integrals suh thatD� \ span�~g1(�); : : : ; ~gs(�)� = 0; (2.56)then on the spae � s\i=1 ker d�gi�\D� the urvature form of the G-redution of the dynam-ial Lagrangian distribution ( ~H;D) is not less than the urvature form of ( ~H;D) itself.Moreover, on the spae � s\i=1 ker d�gi� \ D� the di�erener( ~H;DG)� � r( ~H;D)�is non-negative de�nite quadrati form of rank not greater than s.Now let us give the oordinate representation of the vetor �elds Xi, 1 � i � s fromTheorem 2 in the ase, when W = T �M and D = �(M). Let q = (q1; : : : ; qn) be loaloordinates in some open subset N of M and p = (p1; : : : ; pn) be indued oordinatesin the �ber of T �N so that the anonial sympleti form is given by � = nPi=1 dpi ^ dqi.19



It gives the identi�ation of T �N �= Rn � Rn = f(p; q); p; q 2 Rn) (so, N = 0 � Rn).Also the tangent spae T�(T �N ) to T �N at any � is identi�ed with Rn � Rn. Underthis identi�ation ~H = ���H�q ; �H�p �, where for given funtion h on T �N we denote by�h�q = � �h�q1 ; : : : ; �h�qn�T and �h�p = � �h�p1 ; : : : ; �h�pn�T . Denote by Hpp the Hessian matrix ofthe restrition of H to the �bers. Then from Remark 1 and relation (2.51) we haveXi = (H�1pp �gi�p ; 0) (2.57)Now suppose for simpliity that the dynamial Lagrangian distribution is assoiatedwith a natural mehanial system (Example 2) or, more generally, with a mehanialsystem on a Riemannian manifolds (Example 3), whih admits one or several �rst integralsbeing in involution and linear w.r.t. the impulses. One way to ompute the reduedurvatures is to pass to the redued phase spae, as was desribed in Remark 3, and applythe method of omputation of the urvatures from [4℄ to the orresponding dynamialLagrangian distribution in the redued phase spae (this way was atually implementedin Example 8). But in order to apply the method of [4℄ we need to �nd a new anonialoordinates in the redued phase spae, whih is not just a trivial exerise. Moreover, veryoften the new Hamiltonian system on the redued phase spae has more ompliated formthan the original one. Both these fats make the omputation in this way quite triky.Theorem 2 gives another method to ompute all redued urvatures without passing to theredued phase spae: to do this one an ombine (1.9) or (1.12) with (2.54) (or (2.55)) and(2.57). This method is more e�etive from the omputational point of view, espeially ifthe number of the involutive �rst integrals is essentially less than the number of the degreesof freedom in the problem. We illustrate the e�etiveness of this method on the followingexample:Example 9 ( Plane N -body problem with equal masses) Let us onsider the motion ofN bodies of unit mass in R2 endowed with the standard Cartesian oordinates so thatri = (q2i�1; q2i) 2 R2 represents the radius vetor of the i-th body with respet to someinertial frame. It is desribed by a natural mehanial system onM = R2N with potentialenergy U(r1; : : : ; rN) = � NXi<j 1rij ; rij = kri � rjk : (2.58)Then T �M �= R2N�R2N = f(p; q); p; q 2 R2Ng, p1 : : : ; p2N are the anonial impulsesonjugated to q1; : : : ; q2N (pi � _qi). The systems has the following �rst integralg = NXi=1(p2iq2i�1 � p2i�1q2i) (2.59)whih is nothing but the angular momentum (in the onsidered planar ase the angularmomentum is salar). From Example 2 we know that the generalized urvature form of thedynamial Lagrangian distribution ( ~H;�(M)) is just the Hessian of the potential energy20



U and the generalized Rii urvature (see (1.8) for the de�nition) is the Laplaian of U ,whih an be alulated without diÆulties:�� ~H;�(M)�� = �U = �2 NXi<j 1r3ij ; � = (p; q): (2.60)Our goal is to ompute the redued generalized Rii urvatures �� ~H;�(M)g�� , usingthe formula (2.54). In our ase s = 1. Let X be as in (2.51) with g instead of gi. Notethat by de�nition the vetor X (�) is orthogonal to the subspae �(M)� \ kerd�g w.r.t.the inner produt Q� ~H;�(M)�� (�; �). Therefore��~H;�(M)g�� = �� ~H;�(M)�� � r� ~H;�(M)�� (X )Q� ~H;�(M)�� (X ;X )+tr��R� ~H;�(M)g�� �R� ~H;�(M)�� �����(M)�\kerd�g� (2.61)Further, the Hamiltonian vetor �elds orresponding to the funtions H and g are givenby ~H = (Uq; p) and ~g = (Jp;�Jq) with Uq = � �U�q1 ; : : : ; �U�qn�T and J being the unitsympleti 2N � 2N matrix:J = 0BBBBB� 0 1 0 : : : 0�1 0 0 : : : 0.. .0 : : : 0 0 10 : : : 0 �1 0 1CCCCCA :Applying formula (2.57) we �nd that X = (Jq; 0): (2.62)Denote X = Jq. Also, let h�; �i and k � k be the standard Eulidean inner produt andnorm. Using again (1.9), one an obtain by diret omputation thatr( ~H;�(M))� (X ) = hUqqX ;Xi = �U: (2.63)Further, using (2.54) (or (2.55)) and (2.62), one an obtain without diÆulties thattr��R� ~H;�(M)g�� �R� ~H;�(M)�� �����(M)�\kerd�g� =34�(X ; ~g)0B� 2NXi=1 �([ ~H; [ ~H;X ℄℄; �pi)2 � �([ ~H; [ ~H;X ℄℄;X )2Q� ~H;�(M)�� (X ;X )1CA = 34 �kpk2kqk2 � hp; qi2kqk4 � : (2.64)21



Substituting (2.60), (2.63), and (2.64) into (2.61) we obtain �nally that�� ~H;�(M)g�� = �2 NXi<j 1r3ij � UI + 3I2 (2TI � 14fH; Ig2) ; (2.65)where I = kqk2, T = 12kpk2 are the entral momentum of inertia and the kineti energy ofthe system of N bodies. Note that the sum of the �rst two terms in (2.65) is the trae ofthe restrition of the urvature operator R� ~H;�(M)�� on the spae �(M)� \ kerd�g. So, byRemark 2 and Corollary 2, the last term in (2.65) has to be nonnegative. Atually this termontains the right-hand side of the famous Sundman's inequality 2TI � 14fH; Ig2 � 0 andit is nothing but the generalized area of the parallelogram formed by two 2N -dimensionalvetors p and q. 23 Foal points and RedutionIn the present setion we study the relation between the set of foal points to the givenpoint w.r.t. the monotone inreasing (or dereasing) dynamial Lagrangian distributionand the set of foal points w.r.t. its redution. As before, �rst we prove the orrespondingresult for the urves in Lagrange Grassmannians and then reformulate it in terns of thedynamial Lagrangian distributions.Let �(�) be a urve in the Lagrange Grassmannian L(�), de�ned on the interval [0; T ℄.The time t1 is alled foal to the time 0 w.r.t. the urve �(�), if �(t1) \ �(0) 6= 0. Thedimension of the spae �(t1) \ �(0) is alled the multipliity of the foal time t1. Denoteby #fo0�(�)��I the number of foal times to 0 on the subset I w.r.t. �(�), ounted withtheir multipliity. If the urve �(�) is monotone inreasing, then #fo0�(�)��I is �nite andone an write #fo0�(�)��I =Xt2I dim��(t)\ �(0)�: (3.1)Fix some tuple ` = (l1 : : : ; ls) of s linearly independent vetors in �, satisfying (2.21).The time t1 is alled foal to the time 0 w.r.t. the `-redution �(�)` of the urve �(�), if�`(t1) \ �`(0) 6= span ` or, equivalently, t1 is the foal time to 0 w.r.t. the urve �(�)` inthe Lagrange Grassmannian L((span `)\=span `). The multipliity of the foal time t1 to0 w.r.t. the `-redution �(�)` is equal by de�nition todim ��(t1)` \ �(0)`� = dim ��(t1)` \ �(0)`�� s: (3.2)So, the number of foal times to 0 on the subset I w.r.t. the `-redution �(�)`, ountedwith their multipliity, is equal to #fo0�(�)`��I .It is not hard to see that if �(�) is monotone inreasing, then �(�)` is monotone in-reasing too. So, the number of foal times to 0 w.r.t. the `-redution is also �nite. Thequestion is what is the relation between the set of points, whih are foal to 0 w.r.t. the22



urves �(�) and its `-redution �(�)`? To answer this question, we use the fat that if �(�)is monotone urve, then the number #fo�(�)��(0;T ℄ an be represented as the intersetionindex of this urve with a ertain ooriented hypersurfae in L(�). The advantage of thisrepresentation is that the intersetion index is a homotopi invariant.More preisely, for given Lagrangian subspae �0 denote by M�0 the following subsetof L(�): M�0 = L(�)n�t0 = f� 2 L(�) : � \ �0 6= 0g :Following [6℄, the set M�0 is alled the train of the Lagrangian subspae �0. The setM�0 is a hypersurfae in L(�) with singularities, onsisting of the Lagrangian subspaes� suh that dim (�\�0) � 2. The set of singular points has odimension 3 in L(�). As wehave already seen, the tangent spae T�L(�) has a natural identi�ation with the spaeof quadrati forms on �. If � is a non-singular point of the train M�0 , then vetors fromT�L(�) that orrespond to positive or negative de�nite quadrati forms are not tangent tothe train. It de�nes the anonial oorientation of the hyper-surfaeM�0 at a non-singularpoint � by taking as a positive side the side of M�0 ontaining positive de�nite forms.The de�ned oorientation permits to de�ne orretly the intersetion index �(�) � M�0of an arbitrary ontinuous urve in the Lagrangian Grassmannian �(�), having endpointsoutsideM�0 : If �(�) is smooth and transversally intersetingM�0 in non-singular points,then, as usual, every intersetion point �(�t) with M�0 adds +1 or �1 into the valueof the intersetion index aording to the diretion of the vetor _�(�t) respetively tothe positive or negative side of M�0 . Further, an arbitrary ontinuous urve �(�) withendpoints outsideM�0 an be (homotopially) perturbed to a urve whih is smooth andtransversally intersets M�0 in non-singular points. Sine the set of singular points ofM�0 has odimension 3 in L(�), any two urves, obtained by suh perturbation, anbe deformed one to another by homotopy, whih avoids the singularities of M�0 . Henethe intersetion index of the urve, obtained by the perturbation, does not depend onthe perturbation and an be taken as the intersetion index of the original urve. Theintersetion index �(�) � M�0 an be alulated using the notion of the Maslov index ofthe triple of Lagrangian subspaes (see [3℄, [6℄) for details). This implies in partiular thatif the urve � : [0; T ℄ 7! L(�) is monotone inreasing with endpoints outside M�0 , then�(�) �M�0 = X0�t�T dim��(t)\ �0� (3.3)Now we are ready to formulate the main result of this setion:Theorem 3 Let � : [0; T ℄ 7! L(�) be a monotone inreasing urve and ` = (l1 : : : ; ls) bea tuple of s linearly independent vetors in �, satisfying (2.21) and (2.49) at 0. Then onthe set (0; T ℄ the di�erene between the number of foal times to 0 w.r.t. the `-redution�(�)` and the number of foal times to 0 w.r.t. the urve �(�) itself , ounted with theirmultipliity, is nonnegative and does not exeed s, namely0 � #fo0�(�)`��(0;T ℄ �#fo0�(�)��(0;T ℄ � s : (3.4)23



Proof. Sine the urves �(�) and �(�)` are monotone inreasing, for suÆiently small" > 0 the set (0; "℄ does not ontain the times foal to 0 w.r.t. both of these urves. Also,without loss of generality, one an assume that T is not foal to 0 w.r.t. both of theseurves (otherwise, one an extend �(�) as a monotone inreasing urve to a slightly biggerinterval [0; T + ~"℄ suh that �(T + ~") \ �(0) = 0 and �(T + ~")` \ �(0)` = 0). So, byrelations (3.1), (3.3), we have �rst that#fo0�(�)��(0;T ℄ = �(�)��[";T ℄ �M�(0): (3.5)Besides, from (2.49) it follows thatdim ��(t)` \ �(0)`�� s = dim ��`(t) \ �(0)�: (3.6)Hene, ombining (3.1) and (3.3) with (3.2) and (3.6), we get#fo0�(�)`��(0;T ℄ = �(�)`��[";T ℄ �M�(0) (3.7)Now we prove the theorem in the ase s = 1. In this ase ` = l1. We use the invarianeof the de�ned intersetion index under homotopies, preserving the endpoints.Let a1(t) be as in (2.29). DenoteF (�; t) = span��(t)\ l\1 ; (1� �)a1(t) + �l1� (3.8)Note that all subspaes F (�; t) are Lagrangian. Let �� : [0; T ℄ 7! L(�) and �t : [0; 1℄ 7!L(�) be the urves, satisfying �� (�) = F (�; �); 0 � � � 1;�t(�) = F (�; t); 0 � t � T: (3.9)Then �0(�) = �(�), �1(�) = �l1(�), and the urves�"(�)��[0;� ℄ [ ��(�)��[";T ℄ [ ���T (�)��[0;� ℄�de�ne the homotopy between �(�)��[";T ℄ and �"(�) [ �(�)l1��[";T ℄ [ ���T (�)�, preserving theendpoints (here �(�) means the urve, obtained from a urve (�) by inverting the orien-tation). Therefore,�(�)��[";T ℄ �M�(0) = �"(�) �M�(0) + �(�)l1��[";T ℄ �M�(0) � �T (�) �M�(0)Using (3.5) and (3.7), the last relation an be rewritten in the following form#fo0�(�)l1��(0;T ℄�#fo0�(�)��(0;T ℄ = �T (�) �M�(0) � �"(�) �M�(0): (3.10)So, in order to prove the theorem in the onsidered ase it is suÆient to prove the followingtwo relations: 0 � �T (�) �M�(0) � 1; (3.11)9"0 > 0 s: t: 8"0 � " > 0 : �"(�) �M�(0) = 0: (3.12)24



a) Let us prove (3.11). If l1 2 �(T ), then by de�nition �T (�) � �(T ). Sine, by ourassumptions, �(T )\ �(0) = 0, we obviously have �T (�) �M�(0) = 0.If l1 62 �(T ), then dim (�(0) + �(T )\ (l1)\) = 2n� 1. In partiular, it implies that0 � dim ��T (�)\ �(0)� � 1: (3.13)Further, let p : � 7! �=(�(0) + �(T ) \ (l1)\) be the anonial projetion on the fatorspae. Then from (3.8) and (3.9), using standard arguments of Linear Algebra, it followsthat �T (�) \ �(0) 6= 0 if and only if(1� �)p�a1(T )�+ �p(l1) = 0 (3.14)Sine, by assumptions, �T (0) \ �(0) = 0 (reall that �T (0) = �(T )), the equation (3.14)has at most one solution on the segment [0; 1℄. In other words, the urve �T (�) intersetsthe train M�(0) at most ones and aording to (3.13) the point of intersetion is non-singular.Finally, the urve �T (�) is monotone non-dereasing, i.e. its veloities dd� �T (�) arenon-negative de�nite quadrati forms for any � . Indeed, sine �(T )\ (l1)\ is the ommonspae for all �T (�), one has dd��T (�)���(T )\(l1)\ � 0. On the other hand, if we denote by(�) = (1� �)a1(t) + �l1, then by (2.2), one hasdd� �T (�)�(�)� = ��0(�); (�)�= ��l1 � a1(T ); (1� �)a1(T ) + �l1� = �(l1; a1) > 0(the last inequality follows from (2.31), (2.32) and the assumption about monotoniity of�(�)).So, dd� �T (�) are non-negative de�nite quadrati forms. Hene in the uniquely possiblepoint of intersetion of �T (�) with the train M�(0) the intersetion index beomes equalto 1. This proves (3.11).b) Let us prove (3.12). Take a Lagrangian subspae � suh that l1 2 � and �\�(0) =0. Then there exists "0 suh that �(�)��[0;"0℄ � �t: (3.15)Similarly to the arguments in a), for any 0 < " � "0 the urve �"(�) intersets the trainM�one. But by onstrution this unique intersetion ours at � = 1. Indeed, �"(1) = �(")l1,hene l1 2 �"(1) \�. In other words,�"(�)��[0;1) � �t: (3.16)Further, one an hoose a sympleti basis in � suh that � = Rn � Rn, the sympletiform � is as in (2.15), �(0) = 0�Rn, and � = Rn� 0. By (3.15) and (3.16), there existstwo one parametri families of symmetri matries St, 0 � t � "0 and C� ,0 � � < 1 suhthat �(t) = f(Stp; p) : p 2 Rng and �"(�) = f(C�p; p) : p 2 Rng. Sine the urve �(�) ismonotone inreasing and the urve �"(�) is monotone nondereasing, for any 0 � � < 1the quadrati forms p 7! hC�p; pi are positive de�nite, while S0 = 0. It implies that80 � � < 1 : ��(�) \ �(0) = 0: (3.17)25



Note also that for suÆiently small " > 0�"(1)\ �(0) = 0: (3.18)Indeed, �"(1) = �l1(") and a suÆiently small " > 0 is not a foal time for the l1-redution�l1(�), whih aording to (3.6) is equivalent to the fat that �l1(")\�(0) = 0 and hene to(3.18). By (3.17) and (3.18), for suÆiently small " > 0 the urve ��(�) does not intersetthe train M�(0). The relation (3.12) is proved, whih ompletes the proof of our theoremin the ase s = 1.The ase of arbitrary s an be obtained immediately from the ase s = 1 by indution,using the fat that �(�)(l1;:::;ls) = ��(�)(l1;:::;ls�1)�ls : 2 (3.19)Remark 8 Note that in the ase s = 1 from Theorem 3 it follows immediately that thesets of foal times ( to 0) w.r.t monotone inreasing urve and its redution are alternating.Also, for any s the �rst foal time to 0 w.r.t. the redution does exeed the �rst foal timew.r.t. the urve itself. 2All onstrutions above are diretly related to the notion of foal points of a dynamialLagrangian distributions and ( ~H;D) and its redution by a tuple G = (g1; : : : ; gs) of sinvolutive �rst integrals, de�ned in Introdution. Note that the point �1 = et1 ~H�0 is foalto �0 w.r.t. the pair ( ~H;D) along the integral urve t 7! et ~H�0 of ~H if and only if the timet1 is foal to 0 w.r.t the Jaobi urve J�0(�) attahed at the point �0, while �1 = et1 ~H�0 isfoal to �0 w.r.t. the G-redution of the pair ( ~H;D) along the integral urve t 7! et ~H�0 of~H if and only if t1 is foal to 0 w.r.t �~g1(�0); : : : ; ~gs(�0)�-redutions of the Jaobi urvesJ�0(�) attahed at �0. Translating Theorem 3 into the terms of dynamial Lagrangiandistribution, we have immediately the followingCorollary 3 If the dynamial Lagrangian distribution ( ~H;D) is monotone inreasing andthe Hamiltonian H admits a tuple G = (g1; : : : ; gs) of s involutive �rst integrals satisfying(2.56), then along any segment of the integral urve of ~H the di�erene between the numberof the foal points to the starting point of the segment w.r.t. the G-redution of the pair( ~H;D) and the number of the foal points to the starting point of the segment w.r.t. thepair ( ~H;D) itself , ounted with their multipliity 4, is nonnegative and does not exeed s.Example 10 (Plane 3-body problem with equal masses: foal points of the 8-shapedorbit) The following example illustrates the Theorem 3. In 2000, A. Cheniner andR.Montgomery proved the existene of a new periodi solution of the planar 3-body prob-lem with equal masses - the 8-shaped orbit or just the Eight [9℄. In the plane of themotion eah body moves along the same 8-shaped orbit, symmetri w.r.t. the point of itsself-intersetion, oiniding with the enter of mass of the bodies. The on�guration spaeis M = R6. As an initial point in the phase spae T �M we take the point �0 suh that4Here we do not ount the starting point of the segment as the foal point to itself.26



its projetion on the on�guration spae is a ollinear on�guration, i.e. one of the bodieslies in the middle of the segment, onneting the other two.In [8℄ there were found the foal points to �0 along the Eight w.r.t. the g-redutionof the Lagrangian dynamial distribution � ~H;�(M)g�, where H , g are as in Example 9.In partiular it was shown numerially that the 8-shaped orbit ontains three suh foalpoints along its period T , and the �rst foal time �1 � 0:52T .Let eti ~H�0 be the ith foal point w.r.t. � ~H;�(M)� along the Eight, and let e�i ~H�0be the ith foal point w.r.t. its g-redution � ~H;�(M)g� along the same urve. In thefollowing table we present the result of the numerial omputation of ti and �i on theinterval (0; 3T ℄ (all this foal points have the multipliity 1):i 1 2 3 4 5 6 7 8 9 10 11�i=T � 0:52 0:76 0:95 1:08 1:52 1:56 1:88 2:05 2:29 2:49 2:65ti=T � 0:76 0:95 1:08 1:42 1:54 1:88 2:05 2:28 2:45 2:65We observe that �i � ti � �i+1, 1 � i � 10, as was expeted by Theorem 3. 2Referenes[1℄ A.A. Agrahev, N.N. Chtherbakova Hamiltonian Systems of negative urvature areHyperboli, to appear in Math. Doklady, preprint SISSA 39/2004/M[2℄ A.A. Agrahev and R.V. Gamkrelidze Feedbak - invariant optimal ontrol theoryand di�erential geometry -I. Regular extremals. Journal of Dynamial and ControlSystems, vol.3, 3, pp.343-389 (1997)[3℄ A.A. Agrahev and R.V. Gamkrelidze Sympleti Methods for Optimization and Con-trol in \ Geometry of feedbak and optimal ontrol, ed. B.Jakubzyk, V.Respondek,pp.19-77, Marel Dekker, 1998[4℄ A.A. Agrahev, R.V. Gamkrelidze Vetor Fields on n-foliated 2n-dimensional Mani-folds, to appear in "Journal of Mathematial Sienes", preprint SISSA 25/2004/M[5℄ A.A. Agrahev and I. Zelenko,Geometry of Jaobi urves, I and II, J. Dynamial andControl Systems, 8, 2002, No. 1, 93-140 and No.2, 167-215[6℄ V.I. Arnold The Sturm theorems and Sympleti geometry, Funkional. Anal. iPrilozen, 19, No. 4 (1985), 1-10; English translation in Funtional Anal. Appl. 19(1985),251-259.[7℄ V.I. Arnold, V.V. Kozlov, A.I. Neishtadt Mathematial aspets of Classial and Ce-lestial Mehanis (IIed.), Springer, 1997[8℄ N.N.Chtherbakova.On the minimizing properties if the 8-shaped solution of the 3-body problem, SISSA preprint, SISSA 108/2003/AF27
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