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On 
urvatures and fo
al points of dynami
al Lagrangiandistributions and their redu
tions by �rst integralsAndrej A. Agra
hev � Natalia N. Cht
herbakova y Igor Zelenko zAbstra
tPairs (Hamiltonian system, Lagrangian distribution), 
alled dynami
al Lagrangiandistributions, appear naturally in Di�erential Geometry, Cal
ulus of Variations andRationalMe
hani
s. The basi
 di�erential invariants of a dynami
al Lagrangian distri-bution w.r.t. the a
tion of the group of symple
tomorphisms of the ambient symple
ti
manifold are the 
urvature operator and the 
urvature form. These invariants 
an beseen as generalizations of the 
lassi
al 
urvature tensor in Riemannian Geometry. Inparti
ular, in terms of these invariants one 
an lo
alize the fo
al points along extremalsof the 
orresponding variational problems. In the present paper we study the behaviorof the 
urvature operator, the 
urvature form and the fo
al points of a dynami
al La-grangian distribution after its redu
tion by arbitrary �rst integrals in involution. Theinteresting phenomenon is that the 
urvature form of so-
alled monotone in
reasingLagrangian dynami
al distributions, whi
h appear naturally in me
hani
al systems,does not de
rease after redu
tion. It also turns out that the set of fo
al points to thegiven point w.r.t. the monotone in
reasing dynami
al Lagrangian distribution and the
orresponding set of fo
al points w.r.t. its redu
tion by one integral are alternatingsets on the 
orresponding integral 
urve of the Hamiltonian system of the 
onsidereddynami
al distributions. Moreover, the �rst fo
al point 
orresponding to the redu
edLagrangian distribution 
omes before any fo
al point related to the original dynami
aldistribution. We illustrate our results on the 
lassi
al N -body problem.Key words: 
urvature operator and form, fo
al points, redu
tion by �rst integrals,
urves in Lagrangian Grassmannians.1 Introdu
tionIn the present paper smooth obje
ts are supposed to be C1. The results remain validfor the 
lass Ck with a �nite and not large k but we prefer not to spe
ify minimal possiblek. �S.I.S.S.A., Via Beirut 2-4, 34013 Trieste Italy and Steklov Mathemati
al Institute, ul. Gubkina 8,117966 Mos
ow Russia; email: agra
hev�sissa.ityS.I.S.S.A., Via Beirut 2-4, 34013 Trieste Italy; email: 
ht
h�sissa.itzS.I.S.S.A., Via Beirut 2-4, 34013 Trieste Italy; email: zelenko�sissa.it1



1.1 Dynami
al Lagrangian distributions. Let W be a symple
ti
 manifold withsymple
ti
 form �. Lagrangian distribution D on W is a smooth ve
tor sub-bundle ofthe tangent bundle TW su
h that ea
h �ber D� is a Lagrangian subspa
e of the linearsymple
ti
 spa
e T�W , i.e., dimD� = 12 dimW and ��(v1; v2) = 0 for all v1; v2 2 D�. Forexample, as a symple
ti
 manifold one 
an take the 
otangent bundle T �M of a manifoldM with standard symple
ti
 stru
ture and as a Lagrangian distribution one 
an take thedistribution �(M) of tangent spa
es to the �bers of T �M , namely,�(M)� = T��T ��(�)M�; (1.1)where � : T �M !M is the 
anoni
al proje
tion on the base manifold M .Let H be a smooth fun
tion on W . Denote by ~H the Hamiltonian ve
tor �eld, 
orre-sponding to the fun
tion H: dH(�) = �(�; ~H), and by et ~H the Hamiltonian 
ow generatedby ~H. The pair ( ~H;D) de�nes the one-parametri
 family of Lagrangian distributionsD(t) = �et ~H��D. The pair ( ~H;D) will be 
alled dynami
al Lagrangian distribution. Thepoint �1 = et1 ~H�0 is 
alled fo
al to �0 w.r.t. the pair ( ~H;D) along the integral 
urvet 7! et ~H�0 of ~H, if �et1 ~H��D�0 \ D�1 6= 0: (1.2)Dynami
al Lagrangian distributions appear naturally in Di�erential Geometry, Cal
u-lus of Variations and Rational Me
hani
s. The model example 
an be des
ribed as follows:Example 1 On a manifold M for a given smooth fun
tion L : TM 7! R, whi
h is 
onvexon ea
h �ber, 
onsider the following standard problem of Cal
ulus of Variation with �xedendpoints q0 and q1 and �xed time T :A�q(�)� = Z T0 L�q(t); _q(t)�dt 7! min (1.3)q(0) = q0; q(T ) = q1: (1.4)Suppose that the Legendre transform H : T �M 7! R of the fun
tion L,H(p; q) = maxX2TqM�p�X�� L(q;X)�; q 2M; p 2 T �qM; (1.5)is well de�ned and smooth on T �M . We will say that the dynami
al Lagrangian distribu-tions � ~H;�(M)� is asso
iated with the problem (1.3)-(1.4)1. The 
urve q : [0; T ℄ 7! M ,satisfying (1.4), is an extremal of the problem (1.3)-(1.4) if and only if there exists anintegral 
urve 
 : [0; T ℄ 7! T �M of ~H su
h that q(t) = ��
(t)� for all 0 � t � T . In this
ase the point 
(T ) is fo
al to 
(0) w.r.t. the pair ( ~H;D) if and only if q1 is 
onjugate toq0 along the extremal q(�) in the 
lassi
al variational sense for the problem (1.3)-(1.4). 21In the model example the Lagrangian distributions are integrable. For appli
ation of one-parametri
families of non-integrable Lagrangian distributions see [10℄.2



The group of symple
tomorphisms ofW a
ts naturally on Lagrangian distribution andHamiltonian ve
tor �elds, therefore it a
ts also on dynami
al Lagrangian distributions.Dynami
al Lagrangian distributions have ri
her geometry w.r.t. this a
tion than justLagrangian distribution. For example, all integrable Lagrangian distributions are lo
allyequivalent w.r.t. the a
tion of the group of symple
tomorphisms of W , while integrabledynami
al Lagrangian distributions have fun
tional moduli w.r.t. this a
tion.First note that for any two ve
tor �elds Y , Z tangent to the distribution D the number���[ ~H; Y ℄; Z� depends only on the ve
tors Y (�), Z(�).2 Therefore for a given dynami
alLagrangian distribution ( ~H;D) the following bilinear form Q( ~H;D)� (�; �) is de�ned on ea
hD�: 8v; w 2 D� : Q( ~H;D)� (v; w) = ���[ ~H; Y ℄; Z�; Y (�) = v; Z(�) = w : (1.6)Moreover, from the fa
t that all D� are Lagrangian it follows that the form Q( ~H;D)� issymmetri
.A dynami
al Lagrangian distribution ( ~H;D) is 
alled regular, if the quadrati
 formsv 7! Q( ~H;D)� (v; v) are non-degenerated for any �. A dynami
al Lagrangian distribu-tions is 
alled monotone (non-de
reasing or non-in
reasing), if the quadrati
 forms v 7!Q( ~H;D)� (v; v) are sign-de�nite (non-negative or non-positive de�nite) for any � . The regu-lar dynami
al Lagrangian distributions is 
alled monotone in
reasing (de
reasing), if thequadrati
 forms v 7! Q( ~H;D)� (v; v) are positive (negative) de�nite for any � .Remark 1 IfW = T �M and D = �(M) are as in (1.1), then the form v 7! Q� ~H;�(M)�� (v; v)
oin
ides with the se
ond di�erential at � of the restri
tion H��T ��(�)M of the HamiltonianH to the �ber T ��(�)M . Therefore in this 
ase the dynami
al Lagrangian distribution� ~H;�(M)� is monotone in
reasing if and only if the restri
tions of H on ea
h �ber of T �Mare strongly 
onvex. Consequently the dynami
al Lagrangian distributions � ~H;�(M)� as-so
iated with the problem (1.3)-(1.4) is monotone in
reasing if and only if the restri
tionsof the fun
tion L : TM 7! R on ea
h �ber of TM are strongly 
onvex.2It turns out that under some non-restri
tive assumptions on the dynami
al Lagrangiandistribution ( ~H;D) (in parti
ular, if this dynami
al Lagrangian distribution is regular)one 
an assign to it a spe
ial linear operator R( ~H;D)� on ea
h linear spa
es D�. Thisoperator is 
alled the 
urvature operator of ( ~H;D) at � and it is the basi
 di�erentialinvariant of dynami
al Lagrangian distribution ( ~H;D) w.r.t. the a
tion of the group ofsymple
tomorphisms of W . Moreover, the following bilinear formr( ~H;D)� (v; w) = Q( ~H;D)� �R( ~H;D)� v; w�; v; w 2 D� (1.7)is symmetri
. The 
orresponding quadrati
 form is 
alled the 
urvature form of the pair( ~H;D). Besides, the tra
e of the 
urvature operator�( ~H;D)� = trR( ~H;D)� (1.8)2Here [v1; v2℄ is the Lie bra
ket of the ve
tor �elds v1 and v2, [v1; v2℄ = v1 Æ v2 � v2 Æ v1.3



is 
alled the generalized Ri

i 
urvature of ( ~H;D) at �. All these invariants where intro-du
ed in [2℄ (see also [3℄ and se
tion 2 below) and the e�e
tive method for their 
al
ulationsis given in the re
ent work [4℄. Below we present the results of these 
al
ulations on sev-eral important examples. In all these examples W = T �M for some manifold M andD = �(M), a smooth fun
tion L : TM 7! R is given, the fun
tional A�q(�)� is as in (1.3),and H : T �M 7! R is as in (1.5).Example 2 (Natural me
hani
al system) M = Rn, W = Rn � Rn, � = nPi=1 dpi ^ dqi,D(p;q) = (Rn; 0), L(q;X) = 12kXk2� U(q) (in this 
ase the fun
tion A�q(�)� is the A
tionfun
tional of the natural me
hani
al system with potential energy U(q)). Then81 � i; j � n : r( ~H;D)(p;q) (�pi ; �pj) = �2U�qi�qj (q): (1.9)In other words, in this 
ase the 
urvature operator 
an be identi�ed with the Hessian ofthe potential U .Example 3 (Riemannian manifold) Let a Riemannian metri
 G is given on a manifoldM by 
hoosing an inner produ
t Gq(�; �) on ea
h subspa
es TqM for any q 2M smoothlyw.r.t. q. Let L(q;X) = 12Gq(X;X). The inner produ
t Gq(�; �) de�nes the 
anoni
alisomorphism between T �qM and TqM . For any q 2M and p 2 T �qM we will denote by p"the image of p under this isomorphism, namely, the ve
tor p" 2 TqM , satisfyingp(�) = Gq(p"; �) (1.10)(the operation " 
orresponds to the operation of raising of indexes in the 
orresponding
oordinates of 
o-ve
tors and ve
tors). Sin
e the �bers of T �M are linear spa
es, one 
anidentify D� (= T�T ��(�)M) with T ��(�)M , i.e., the operation " is de�ned also on ea
h D�with values in T�(�)M . It turns out (see [2℄) that8v 2 D� : �R(~H;D)� v�" = Rr��"; v"��" (1.11)where Rr is the Riemannian 
urvature tensor of the metri
 G. The right-hand side of(1.11) appears in the 
lassi
al Ja
obi equation for Ja
obi ve
tor �elds along the Riemanniangeodesi
s. Also, 1n�1 trR( ~H;D)� is exa
tly the Ri

i 
urvature 
al
ulated at �". Besides, using(1.11), the Riemannian 
urvature tensor Rr 
an be re
overed uniquely from the 
urvatureoperator R( ~H;D)� . Therefore studying di�erential invariants of the appropriate integrabledynami
al Lagrangian distributions, one 
an obtain the 
lassi
al Riemannian tensor.Example 4 (Me
hani
al system on a Riemannian manifold) Let G be the metri
 of theprevious example and L(q;X) = 12Gq(X;X)�U(q) (in this 
ase the fun
tion A�q(�)� is theA
tion fun
tional of the me
hani
al system on the Riemannian manifold with potentialU(q)). Let the operation " be as in (1.10). Then the 
urvature operator satis�es8v 2 D� : �R( ~H;D)� v�" = Rr��"; v"��" +rv"(gradGU)��(�)�; (1.12)4



where gradGU is the gradient of the fun
tion U w.r.t. the metri
 G, i.e., gradGU = dU",and r is the Riemannian 
ovariant derivative. 2Remark 2 A

ording to Remark 1, the dynami
al Lagrangian distributions from Exam-ples 2-4 are monotone in
reasing.2The generalization of di�erent kinds of Riemannian 
urvatures, using the notion of the
urvature operator of dynami
al Lagrangian distributions, leads to the generalization ofseveral 
lassi
al results of Riemannian geometry. In [2℄ for the given monotone in
reasingdynami
al Lagrangian distribution ( ~H;D) the estimates of intervals between two 
onse
-utive fo
al points w.r.t. the pair ( ~H;D) along the integral 
urve 
(t) = et ~H�0 of ~H wereobtained in terms of the 
urvature form of the pair ( ~H;D). This result is the general-ization of the 
lassi
al Rau
h Comparison Theorem in Riemannian geometry, whi
h givesthe lower and upper bounds of the interval between 
onse
utive 
onjugate points alongthe Riemannian geodesi
s in terms of upper bound for the se
tional 
urvatures and lowerbound for the Ri

i 
urvature respe
tively. In re
ent work [1℄ it was shown that the Hamil-tonian 
ow, generated by a ve
tor �eld ~H on the 
ompa
t level set of H, is hyperboli
, ifthere exists a Lagrangian distribution D su
h that the dynami
al Lagrangian distribution( ~H;D) is monotone (in
reasing or de
reasing) and the 
urvature form of so-
alled redu
-tion of this dynami
al distribution by Hamiltonian H on this level set is negative de�nite.This is an analog of the 
lassi
al theorem about hyperboli
ity of geodesi
 
ows of negativese
tional 
urvature on a 
ompa
t Riemannian manifold.1.2 The redu
tion by the �rst integrals. The subje
t of the present paper is thebehavior of the 
urvature form and the fo
al points after the redu
tion of the dynami
alLagrangian distribution ( ~H;D) by the arbitrary s �rst integral g1; : : : ; gs in involution ofthe Hamiltonian H, i.e., s fun
tions on W su
h thatfH; gig = 0; fgi; gjg = 0; 81 � i; j � s (1.13)(here fh; gg is the Poisson bra
ket of the fun
tions h and g, fh; gg = dg(~h)). This problemappears naturally in the framework of me
hani
al systems and variational problems withsymmetries. Let G = (g1; : : : ; gs) andDG� = � s\i=1ker d�gi� \ D� + span�~g1(�); : : : ; ~gs(�)�: (1.14)Obviously, DG is a Lagrangian distribution. The pair ( ~H;D~G) is 
alled the redu
tion by thetuple G of s �rst integrals of H in involution or shortly the G-redu
tion of the dynami
alLagrangian distribution ( ~H;D). The following example justi�es the word "redu
tion" inthe previous de�nition:Example 5 Assume that we have one �rst integral g of H su
h that the Hamiltonianve
tor �eld ~g, 
orresponding to the �rst integral g, preserves the distribution D�, namely,(et~g)�D = D: (1.15)5



Fixing some value 
 of g, one 
an de�ne (at least lo
ally) the following quotient manifold:Wg;
 = g�1(
)=C ;where C is the line foliation of the integral 
urves of the ve
tor �eld ~g. The symple
ti
form � of W indu
es the symple
ti
 form on a manifold Wg;
, making it symple
ti
 too.Besides, if we denote by � : g�1(
) 7! Wg;
 the 
anoni
al proje
tion on the quotient set,the ve
tor �eld ��( ~H) is well de�ned Hamiltonian ve
tor �eld on Wg;
, be
ause by ourassumptions the ve
tor �elds ~H and ~g 
ommute. A
tually we have des
ribed the standardredu
tion of the Hamiltonian systems on the level set of the �rst integral, 
ommonlyused in Me
hani
s. In addition, by (1.15), ��(Dg) is well de�ned Lagrangian distributionon Wg;
. So, to any dynami
al Lagrangian distribution ( ~H;D) on W one 
an asso
iatethe dynami
al Lagrangian distribution (�� ~H;��Dg) on the symple
ti
 manifold Wg;
 ofsmaller dimension. It turns out (see subse
tion 2.2 below) that the 
urvature form of theg-redu
tion ( ~H;Dg) at � 2 g�1(
) is equal to the pull-ba
k by � of the 
urvature formof the dynami
al Lagrangian distribution (�� ~H;��Dg). So, instead of ( ~H;Dg) one 
anwork with (�� ~H;��Dg) on the redu
ed symple
ti
 spa
e Wg;
. This is the essen
e of theredu
tion on the level set of the �rst integral.2Remark 3 Suppose now that W = T �M for some manifold M and D = �(M). In this
ase if g is a �rst integral of H, whi
h is "linear w.r.t. the impulses", i.e., there exists ave
tor �eld V on M su
h thatg(p; q) = p�V (q)�; q 2M; p 2 T �qM; (1.16)then it satis�es (1.15). If we denote by V the line foliation of integral 
urves of V , thenthe redu
ed symple
ti
 spa
e Wg;
 
an be identi�ed with T �(M=V) and the distribution�(M)g 
an be identi�ed with �(M=V). So, after redu
tion we work with the dynami
alLagrangian distribution ��� ~H;�(M=V)� on the redu
ed phase spa
e T �(M=V) instead of� ~H;�(M)�. 2In view of the previous example the following analog of the notion of the fo
al pointsalong the extremal w.r.t. the G-redu
tion of the pair ( ~H;D) is natural: The point �1 =et1 ~H�0 is 
alled fo
al to �0 w.r.t. the G-redu
tion of the pair ( ~H;D) along the integral
urve t 7! et ~H�0 of ~H, if��et1 ~H��DG�0 \ DG�1�=span�~g1(�); : : : ; ~gs(�)� 6= 0: (1.17)In the situation, des
ribed in Example 5, the point �1 = et1 ~H�0 is fo
al to �0 w.r.t. theg-redu
tion of the pair ( ~H;D) along the 
urve t 7! et ~H�0 if and only if �(�1) is fo
alto �(�0) w.r.t. the pair �(�)� ~H; (�)�Dg� along the 
urve t 7! �(et ~H�0) in Wg;
. Weillustrate the meaning of the fo
al points of the redu
tion from the variational point ofview on the following two examples. In both examples W = T �M for some manifoldM and D = �(M), a �ber-wise 
onvex and smooth fun
tion L : TM 7! R is given andH : T �M 7! R is as in (1.5). 6



Example 6 Assume that the Hamiltonian H admits a �rst integral g, satisfying (1.16).It is well known that g, satisfying (1.16), is the �rst integral of H if and only if the 
ow etVindu
es the one-parametri
 family of �ber-wise di�eomorphisms on TM , whi
h preservethe fun
tion L, i.e., L Æ (etV )� = L.Let V1 : R 7!M be an integral 
urve of V and a(�) be a fun
tion on V1 su
h thata(V1(s)) = s; s 2 R:Fix some real 
. Then for the given point q0, and the time T 
onsider the followingvariational problem Z T0 L�q(t); _q(t)�dt� 
 a�q(T )�! min; (1.18)q(0) = q0; q(T ) = V1: (1.19)The 
urve q : [0; T ℄ 7!M , satisfying (1.19), is an extremal of the problem (1.18)-(1.19) ifand only if there exists an integral 
urve 
 : [0; T ℄ 7! g�1(
) of ~H , su
h that q(t) = ��
(t)�for all 0 � t � T . In this 
ase the point 
(0) is fo
al to 
(T ) w.r.t. the g-redu
tion of thepair ( ~H;D) if and only if the point q0 is fo
al to the point q(T ) along the extremal q(�) inthe 
lassi
al variational sense for the problem (1.18)-(1.19). 2Example 7 Suppose that g = H. For given real 
 and points q0, q1 
onsider the followingvariational problem with free terminal timeZ T0 L�q(t); _q(t)� dt� 
T ! min; T is free; (1.20)q(0) = q0; q(T ) = q1: (1.21)The 
urve q : [0; T ℄ 7!M , satisfying (1.21), is an extremal of the problem (1.20)-(1.21) ifand only if there exists an integral 
urve 
 : [0; T ℄ 7! H�1(
) of ~H , su
h that q(t) = ��
(t)�for all 0 � t � T . In this 
ase the point 
(0) is fo
al to 
(T ) w.r.t. the H-redu
tion of thepair ( ~H;D) if and only if the point q0 is fo
al to the point q1 along the extremal q(�) inthe 
lassi
al variational sense for the problem (1.20)-(1.21). A
tually the 
onsidered 
ase
an be seen as a parti
ular 
ase of the previous example. For this one 
an pass to theextended (
on�guration) spa
e M =M �R instead of M and take the following fun
tionL : TM 7! R instead of L: L(�q;X) def= L(q; Xy )y;where �q 2 M su
h that �q = (q; t), q 2 M , t 2 R and X 2 T�qM su
h that X = (X; y),X = (X; y), X 2 TqM , y 2 TtR�= R (it is well known that (t; H) is the pair of 
onjugatevariables for fun
tion L, so as the �eld V one takes ��t). 21.3 Des
ription of main results. For the redu
ed dynami
al Lagrangian distribu-tion ( ~H;DG) one 
an also de�ne the 
urvature operator R( ~H;DG)� and the 
urvature formr( ~H;DG)� on ea
h linear spa
es DG� . The natural problem is to �nd the relation between7



R( ~H;D)� (or r( ~H;D)� ) and their redu
ed analogs R( ~H;DG)� (or r( ~H;DG)� ) on the linear spa
e� s\i=1 ker d�gi�\D� (whi
h is the interse
tion of the 
orresponding spa
es of de�nition D�and DG� ). We solve this problem in se
tion 2 for regular dynami
al distributions. It givesan e�e
tive and 
exible method to 
ompute and evaluate the 
urvature of Hamiltoniansystems arising in Rational Me
hani
s and geometri
 variational problems. The interestingphenomenon is that the 
urvature form of a monotone in
reasing Lagrangian dynami
aldistribution does not de
rease after redu
tion. More pre
isely, for su
h distribution thequadrati
 form v 7! r( ~H;DG)� (v; v)� r( ~H;D)� (v; v); v 2 � s\i=1 ker d�gi� \ D�is always non-negative de�nite of rank not greater than s, where s is the number of the�rst integrals in the tuple G.Further, in se
tion 3 we show that the set of fo
al points to the given point alongan integral 
urve w.r.t. the monotone in
reasing (or de
reasing) dynami
al Lagrangiandistribution and the 
orresponding set of fo
al points w.r.t. its redu
tion by one integralare alternating sets on the 
urve and the �rst fo
al point w.r.t. the redu
tion 
omes beforeany fo
al point w.r.t. the original dynami
al Lagrangian distribution. In view of Examples6 and 7 this result looks natural: The redu
tion enlarge the set of admissible 
urves inthe 
orresponding variational problems (instead of the problem with �xed endpoints antterminal time one obtains the problem with variable endpoints or free terminal time).This justi�es the fa
t that the �rst fo
al point of the redu
tion 
omes sooner. Besides,for the mentioned examples the last fa
t and the alternation of fo
al points are also a
onsequen
e of the 
lassi
al Courant Minimax Prin
iple, applied to the se
ond variationalong the referen
e extremal in the 
orresponding variational problems.In addition, we demonstrate our results on the 
lassi
al N - body problem.2 Curvature and redu
tion2.1 Curvature operator and 
urvature form. For the 
onstru
tion of the 
urva-ture operator of the dynami
al Lagrangian distribution we use the theory of 
urves in theLagrange Grassmannian, developed in [2℄ and [5℄. The 
urvet 7! J�(t) def= e�t ~H� �Det ~H��: (2.1)is 
alled the Ja
obi 
urve of the 
urve t 7! et ~H� atta
hed at the point � (w.r.t. thedynami
al distribution ( ~H;D)). It is the 
urve in the Lagrange Grassmannian L(T�W )of the linear symple
ti
 spa
e T�W . A
tually, the Ja
obi 
urve is a generalization of thespa
e of \Ja
obi �elds" along the extremal of variational problem of type (1.3)-(1.4). Note8



that if �� = e�t ~H� then by (2.1) we haveJ��(t) = e�t ~H� J�(t� �t):In other words, the Ja
obi 
urves of the same integral 
urve of ~H atta
hed at two di�erentpoints of this 
urve are the same, up to symple
ti
 transformation between the 
orrespond-ing ambient linear symple
ti
 spa
es and the 
orresponding shift of the parameterizations.Therefore, any di�erential invariants of the Ja
obi 
urve w.r.t. the a
tion of the linearSymple
ti
 group (in other words, any symple
ti
 invariant of the 
urve) produ
es theinvariant of the 
orresponding dynami
al Lagrangian distributions w.r.t. the a
tion of thegroup of symple
tomorphisms of the ambient spa
e W .Now, following [2℄ and [5℄, we des
ribe the 
onstru
tion of the 
urvature operator ofthe 
urve in the Lagrange Grassmannian. Let � be 2n-dimensional linear spa
e, endowedwith symple
ti
 form �. The Lagrange Grassmannian L(�) is real analyti
 manifold. Notethat the tangent spa
e T�L(�) to the Lagrangian Grassmannian at the point � 
an benaturally identi�ed with the spa
e of quadrati
 forms Quad(�) on the linear spa
e � � �.Namely, take a 
urve �(t) 2 L(�) with �(0) = �. Given some ve
tor l 2 �, take a 
urvel(�) in W su
h that l(t) 2 �(t) for all t and l(0) = l. De�ne the quadrati
 forml 7! �( ddtl(0); l): (2.2)Using the fa
t that the spa
es �(t) are Lagrangian, it is easy to see that this form dependsonly on ddt�(0). So, we have the map from T�L(�) to the spa
e Quad(�). A simple
ounting of dimension shows that this mapping is a bije
tion.Remark 4 In the sequel, depending on the 
ontext, we will look on the elements ofT�L(�) not only as on the quadrati
 forms on �(t), but also as on the 
orrespondingsymmetri
 bilinear forms on �(t) or on the 
orresponding self-adjoint operator from �(t)to �(t)� 2The 
urve �(�) in L(�) is 
alled regular, monotone, monotone in
reasing (de
reasing),if its velo
ity _�(t) at any point t is respe
tively a non-degenerated, sign-de�nite, positive(negative) de�nite quadrati
 form on the spa
e �(t).Proposition 1 A dynami
al distribution ( ~H;D) is regular, monotone, monotone in
reas-ing (de
reasing) if and only if all Ja
obi 
urves w.r.t. this distribution are respe
tively reg-ular, monotone, monotone in
reasing (de
reasing) 
urves in the 
orresponding LagrangeGrassmannians.Proof. Re
all that for any two ve
tor �elds ~H and ` in M one hasddt�(e�t ~H)�`� = (e�t ~H)�[ ~H; `℄: (2.3)Let Q( ~H;D)� be as in (1.6). Applying this fa
t to the Ja
obi 
urve J�(t) and using (1.6),(2.1), and (2.2) one obtains easily thatQ( ~H;D)� = _J�(0); (2.4)9



whi
h implies the statement of the proposition. 2Fix some � 2 L(�). De�ne the linear mapping B� : � 7! �� in the following way: forgiven w 2 � one has B�(w)(v) = �(w; v); 8v 2 �: (2.5)Denote by �t the set of all Lagrangian subspa
es of � transversal to �, i.e. �t = f� 2Gm(W ) : � \ � = 0g. Then for any subspa
e � 2 �t the restri
tion B���� : � 7! �� is anisomorphism.Remark 5 In other words, any � 2 �t 
an be 
anoni
ally identi�ed with the dual spa
e��. Let I� = �B������1. Note that by 
onstru
tion I� is linear mapping from �� to � andI�l � I�l 2 �: (2.6)The 
ru
ial observation is that the set �t 
an be 
onsidered as an aÆne spa
e over thelinear spa
e Quad(��) of all quadrati
 forms on the spa
e ��. Indeed, one 
an de�ne theoperation of subtra
tion on �t with values in Quad(��) in the following way:(���)(l) = �(I�l; I�l): (2.7)It is not diÆ
ult to show that �t endowed with this operation of subtra
tion satis�es theaxioms of aÆne spa
e. For example, let us prove that(���)+ (�� �) = (�� �) (2.8)Indeed, using skew-symmetry of � and relation (2.6), one has the following series of iden-tities for any l 2 ���(I�l; I�l) + �(I�l; I�l) = �(I�l � I�l; I�l) = �(I�l � I�l; I�l� I�L)+�(I�l� I�l; I�l) = �(I�l� I�l; I�l) = �(I�l; I�l);whi
h implies (2.8).3Consider now some 
urve �(�) in L(�). Fix some parameter � . Assume that �(t) 2�(�)t for all t from a pun
tured neighborhood of � . Then we obtain the 
urve t 7!�(t) 2 �(�)t in the aÆne spa
e �(�)t. Denote by �� (t) the identi
al embedding of �(t)in the aÆne spa
e �(�)t. Fixing an \origin" � in �(�)t we obtain a ve
tor fun
tiont 7! �� (t)�� with values in Quad (��). The 
urve �(�) is 
alled ample at the point � ifthe fun
tion �� (t)� � has the pole at t = � (obviously, this de�nition does not dependon the 
hoi
e of the "origin" � in �(�)t). In parti
ular, if �(�) is a regular 
urve in L(�),then one 
an show without diÆ
ulties that the fun
tion t 7! ��(t)�� has a simple poleat t = � for any � 2 �(�)t. Therefore any regular 
urve in L(�) is ample at any point.3For slightly di�erent des
ription of the aÆne stru
ture on �t see [2℄,[5℄, and also [4℄, where a similar
onstru
tion is given for the Grassmannian Gn(R2n) of half-dimensional subspa
es of R2n.10



Suppose that the 
urve �(�) is ample at some point � . Using only the axioms of aÆnespa
e, one 
an prove easily that there exist a unique subspa
e �Æ(�) 2 �t su
h that thefree term in the expansion of the fun
tion t 7! ��(t)� �Æ(�) to the Laurent series at � isequal to zero. The subspa
e �Æ(�) is 
alled the derivative subspa
e of the 
urve �(�) atthe point � . If the 
urve �(�) is ample at any point, one 
an 
onsider the 
urve � 7! �Æ(�)of the derivative subspa
es. This 
urve is 
alled derivative 
urve of the 
urve �(�).Now assume that the derivative 
urve �Æ(t) is smooth at a point � . In parti
ular, thederivative 
urve of a regular 
urve in the Lagrange Grassmannian is smooth at any point(see, for example, [2℄ and the 
oordinate representation below). In general, the derivative
urve of the ample 
urve is smooth at generi
 points (the points of so-
alled 
onstantweight, see [5℄). As was mentioned already in Remark 4, one 
an look on _�(�) and _�Æ(�)as on the 
orresponding self-adjoint linear mappings:_�(�) : �(�) 7! �(�)�; _�Æ(�) : �Æ(�) 7! ��Æ(�)�� (2.9)Besides, by 
onstru
tion �Æ(�) 2 �(�)t. Therefore by Remark 5 the following spa
es 
anbe 
anoni
ally identi�ed: �(�)� �= �Æ(�); ��Æ(�)�� �= �(�) (2.10)After these identi�
ations, the 
omposition _�Æ(�) Æ _�(�) is well-de�ned linear operator on�(t).De�nition 1 The linear operatorR�(�) = � _�Æ(�) Æ _�(�) : (2.11)on �(�) is 
alled the 
urvature operator of the 
urve �(�) at a point � . The quadrati
 formr�(�) on �(�), de�ned byr�(�)(v) = � _�(�) ÆR�(�)v�(v); v 2 �(�) (2.12)is 
alled the 
urvature form of the 
urve �(�) at a point � .Suppose that for all Ja
obi 
urves w.r.t. the dynami
al Lagrangian distribution ( ~H;D)the 
urvature operator is de�ned. The 
urvature operator R( ~H;D)� of the dynami
al La-grangian distribution ( ~H;D) at a point � is by de�nition the 
urvature operator of theJa
obi 
urve J�(t) at t = 0, namely,R( ~H;D)� = RJ�(0): (2.13)By 
onstru
tion, it is the linear operator on D�. The 
urvature form r( ~H;D)� of the dynam-i
al Lagrangian distribution ( ~H;D) at a point � is by de�nition the 
urvature form of theJa
obi 
urve J�(t) at t = 0 (see also (1.7)). 11



Now for a regular 
urve �(�) in the Lagrange Grassmannian L(�) let us give a 
oordi-nate representation of the derivative 
urve and the 
urvature operator. One 
an 
hoose abasis in � su
h that � �= Rn�Rn = f(x; y) : x; y 2 Rng; (2.14)�((x1; y1); (x2; y2)) = hx1; y2i � hx2; y1i; (2.15)where h�; �i is the standard inner produ
t in Rn (su
h basis is 
alled symple
ti
 or Darbouxbasis). Denote by ei the ith ve
tor of the standard basis of Rn.Assume also that �(�) \ f(0; y) : y 2 Rng = 0. Then for any t suÆ
iently 
losed to� there exits the symmetri
 n � n matrix St su
h that �(t) = f(x; Stx) : x 2 Rng. Thematrix 
urve t 7! St is the 
oordinate representation of the 
urve �(�) (w.r.t. the 
hosensymple
ti
 basis in �).Remark 6 Note that from (2.15) and the fa
t that the subspa
es �(t) are Lagrangian itfollows that the matri
es St are symmetri
.The 
urve �(�) is regular if and only if the matri
es _St are non-degenerated. Theexpression of the derivative 
urve and the 
urvature operator of the regular 
urve �(�) interms of St is given by the followingProposition 2 The derivative 
urve �Æ(�) of the regular 
urve �(�) in L(�) satis�es�Æ(�) = f(�12 _S�1� �S� _S�1� y; y � 12S� _S�1� �S� _S�1� y); y 2 Rng: (2.16)In the basis f(ei; S�ei)gni=1 of �(�) the 
urvature operator R�(�) is represented by thefollowing matrix S(St) = 12 _S�1� S(3)� � 34( _S�1� �S�)2: (2.17)The 
urvature form r�(�) has the following matrix w.r.t. the same basis� _S�S(St) = �12 _S(3)� + 34 �S� _S�1� �S� : (2.18)For the proof of (2.16) and of the matrix representation (2.17) for the 
urvature operatorsee, for example, [4℄. The matrix representation (2.18) of the 
urvature form followsdire
tly from (2.17) and (2.12).Remark 7 If St is a s
alar fun
tion (i.e., n = 1), thenS(St) is just the 
lassi
al S
hwarzianderivative or S
hwarzian of St. It is well known that for s
alar fun
tions the S
hwarziansatis�es the following remarkable identity:S�a'(t) + b
'(t) + d� = S�'(t)� (2.19)for any 
onstant a, b, 
, and d, ad � b
 6= 0. Note that by 
hoosing another symple
ti
basis in �, we obtain a new 
oordinate representation t 7! eSt of the 
urve �(�) whi
h is amatrix M�obious transformation of St,eSt = (C +DSt)(A+BSt)�1 (2.20)12



for some n � n matrix A, B, C, and D. It turns out that the matrix S
hwarzian (2.17)is invariant w.r.t. matrix M�obious transformations (2.20) by analogy with identity (2.19)(the only di�eren
e is that instead of identity we obtain similarity of 
orresponding ma-tri
es). This is another explanation for invariant meaning of the expression (2.17), givenby Proposition 2.The 
oordinate representations (2.17) and (2.18) are 
ru
ial in the proof of the maintheorem of this se
tion (see Theorem 1 below).2.2 Curvature operator and 
urvature form of redu
tion. Now �x some sve
tors l1; : : :ls in � su
h that81 � i; j � s : �(li; lj) = 0: (2.21)Denote by ` = (l1; : : :ls) and span ` = span(l1; : : : ls) For any � 2 L(�) let�` = � \ (span `)\ + span `; �` = �`=span `; (2.22)where (span `)\ def= fv 2 � : 81 � i � s �(v; li) = 0g is the skew-orthogonal 
omplementof the isotropi
 subspa
e span `. A
tually, �` is a Lagrangian subspa
e of the symple
ti
spa
e (span `)\=span ` (with symple
ti
 form indu
ed by �).Let, as before, �(�) be an ample 
urve in L(�). The 
urve �(�)` is 
alled the redu
tionby the s-tuple `, satisfying (2.21), or shortly the `-redu
tion of the 
urve �(�). Notethat by (2.22) span ` � �(t)` for any t. Therefore the 
urve �(�)` is not ample and the
onstru
tions of the previous subse
tion 
annot be applied to it dire
tly. Instead, supposethat the 
urve �(�)` is ample 
urve in the Lagrange Grassmannian L((span `)\=span `).Then the 
urvature operator R�`(t) of this 
urve is well-de�ned linear operator on thespa
e �(t)` (at least for a generi
 point t). Let � : � 7! �=span ` be the 
anoni
alproje
tion on the fa
tor-spa
e.De�nition 2 The 
urvature operator R�`(�) of the `-redu
tion �(�)` at a point � is thelinear operator on �(�)`, satisfyingR�`(�)(v) = �����(�)\(span`)\��1 ÆR�`(�) Æ �(v); v 2 �(�)`: (2.23)The 
urvature form r�`(�) of the `-redu
tion �(�)` at a point � is the quadrati
 form on�(�)`, satisfying r�`(�)(v) = dd� ��(�)`��R�`(�)v; v�: (2.24)All these 
onstru
tions are dire
tly related to the redu
tion of dynami
al distributionsby a tuple G = (g1; : : : ; gs) of s involutive �rst integrals, de�ned in Introdu
tion. Indeed,the Ja
obi 
urves atta
hed at some point � w.r.t. the G-redu
tion ( ~H;DG) of a dynami-
al Lagrangian distribution ( ~H;D) are exa
tly �~g1(�); : : : ; ~gs(�)�-redu
tions of the Ja
obi
urves atta
hed at � w.r.t. ( ~H;D) itself. The 
urvature operator R( ~H;DG)� and the 
urva-ture form r( ~H;DG)� at � of the G-redu
tion ( ~H;DG) are by de�nition the 
urvature operatorand the 
urvature form of the Ja
obi 
urves atta
hed at � w.r.t. ( ~H;DG).13



To justify these de�nitions suppose that we are in situation of Example 5, i.e. H admitsone �rst integral g, satisfying (1.15). Let a symple
ti
 manifold Wg;
 and a mapping� : g�1(
) 7!Wg;
 be as in this example. Then dire
tly from the de�nition it follows that8v 2 Dg : r(~h;Dg)� (v) = r(��~h;��Dg)�(�) (��v): (2.25)In other words, the 
urvature form of the g-redu
tion ( ~H;Dg) at � 2 g�1(
) is equalto the pull-ba
k by � of the 
urvature form of the dynami
al Lagrangian distribution(�� ~H;��Dg), asso
iated to the original dynami
al Lagrangian distribution (~h;D) on theredu
ed symple
ti
 spa
e Wg;
.The natural question is what is the relation between the 
urvature forms and operatorsof the dynami
al Lagrangian distribution and its redu
tion on the 
ommon spa
e of theirde�nition. Before answering this question in the general situation, let us 
onsider thefollowing simple example:Example 8 (Kepler's problem) Consider a natural me
hani
al system on M = R2 withthe potential energy U = �r�1, where r is the distan
e between a moving point in a planeand some �xed point. This system des
ribes the motion of the 
enter of masses of twogravitationally intera
ting bodies in the plane of their motion (see [7℄). Let q = (r; ')be the polar 
oordinates in R2. Then the Hamiltonian fun
tion of the problem takes theform h = p2r2 + p2'2r2 � 1r ; (2.26)where pr and p' are the 
anoni
al impulses 
onjugated to r and '. If � = (p; q), whereq 2 M , p 2 T �qM , then pr(�) = p��r(q)� = dqr, p'(�) = r2p��'(q)� = r2dq'. Observethat g = p' is nothing but the angular momentum and from (2.26) we immediately seethat it is a �rst integral of the system. Let us 
ompare the 
urvature forms r(~h;�(M))� andr(~h;�(M)g)� on the 
ommon spa
e �(M)\ kerd�g = R�pr of their de�nition.First, a

ording to (1.9) of Example 2, the 
urvature form of (~h;�(M)) is equal theHessian of U at q. In parti
ular, it implies thatr�~h;�(M)�� (�pr) = �2�r2U(q) = � 2r3 : (2.27)Further, let 
 = g(�). Note that g satis�es the 
ondition (1.16) of Remark 3 with V =r2�'. Let Wg;
 and � be as in Example 5. Then, following Remark 3, Wg;
 �= T �R+ andthe dynami
al Lagrangian distribution (��~h;��R�pr) is equivalent (symple
tomorphi
)to the dynami
al Lagrangian distribution asso
iated with the natural me
hani
al systemwith 
on�guration spa
e R+ and the potential energyUa = 
22r2 � 1r(Ua is the so - 
alled amended potential energy; it 
omes from the following identity:h��g�1(
) = p2r2 + Ua(r)). Hen
e by (2.25)r�~h;�(M)g�� (�pr) = d2dr2Ua(r) = 3
2r4 � 2r3 = r�~h;�(M)�� (�pr) + 3
2r4 : (2.28)14



Note that from (2.28) it follows that on the 
ommon spa
e of the de�nition the redu
ed
urvature form is not less than the 
urvature form itself. We will show later (Corollary 2)that this is a general fa
t.22.3 The 
hange of the 
urvature after the redu
tion. Now we give the relationbetween the 
urvature forms of the regular 
urve �(�) and its `-redu
tion �(�)`, where ,asbefore, ` = (l1; : : : ; ls) is the tuple of s ve
tors, satisfying (2.21). First, let us introdu
esome notations. Let B�(t) : � 7! �� be as in (2.5). Looking at _�(t) as at a linear mappingfrom �(t) to �(t)�, denote by ai(t), 1 � i � s the following ve
tors in �(t):ai(t) = � _�(t)��1 ÆB�(t)(li): (2.29)Using de�nition of _�(t) and B�(t) one 
an show that t 7! ai(t), ai(t) 2 �(t), is a uniqueve
tor fun
tion su
h that for any t one has�( _ai(t); v) = �(li; v); 8v 2 �(t);or, equivalently, _ai(t) � li mod �(t): (2.30)Finally, let A(t) be the s � s matrix with the following entriesAkm(t) = ��lk; am(t)�; 1 � k;m � s: (2.31)Note that by (2.30) and the de�nitions of _�(t)Akm(�) = �� _ak(t); am(t)� = _�(t)ak(t)�am(t)�; (2.32)whi
h implies that the matrix A(t) is symmetri
.Theorem 1 Suppose that �(�) is a regular 
urve in the Lagrange Grassmannian L(�) and` = (l1; : : : ; ls) is a tuple of s ve
tors in � su
h that (2.21) holds and detA(�) 6= 0 for somepoint � . Then the 
urvature form r�(�) of the 
urve �(�) and the 
urvature form r�`(t) ofits `-redu
tion �(�)l at the point � satisfy the following identity for all v 2 �(�)\�span `�\:r�`(�)(v)� r�(�)(v) = 34 sXk;m=1�A(�)�1�km���ak(�); v����am(�); v�; (2.33)where �A(�)�1�km is the km-entry of the matrix A(�)�1. In addition, the 
urvature oper-ator R�(�) of the 
urve �(�) and the 
urvature operator R�`(�) of its `-redu
tion �(�)l atthe point � satisfy on �(�) \ �span `�\ the following identity:R�`(�)�R�(�) = 34 sXk;m=1(A(�)�1)kmB�(�)�am(�)
�� _�(�)��1 ÆB�(�)�ak(�)� : (2.34)(As usual, for a given linear fun
tional � and a given ve
tor v by � 
 v we denote thefollowing rank 1 linear operator � 
 v(�) = �(�)v.)15



Proof. First let us prove identity (2.33). As before, denote by ei the ith ve
tor of thestandard basis of Rn. The 
ondition detA(�) 6= 0 it equivalent tospan�a1(�); : : : ; as(�)� \ �span `�\ = 0: (2.35)Hen
e one 
an 
hoose a basis in � su
h that if one 
oordinatizes � w.r.t. this basis,� �= Rn�Rn, then the symple
ti
 form � satis�es (2.15) and the following relations hold�(�)\ �span `�\ = span �(e1; 0); : : : ; (en�s; 0)�; (2.36)li = (0; en�s+i); 1 � i � s; (2.37)ai(�) 2 span�(en�s+1; 0); : : : ; (en; 0)�; 1 � i � s: (2.38)Note that by 
onstru
tion�span `�\ = span �(e1; 0); : : : ; (en�s; 0); (0; e1); ; : : : ; (0; en)�:Therefore one 
an make the following identi�
ation:(span `)\=span ` �= span �(e1; 0); : : : ; (en�s; 0); (0; e1); : : : ; (0; en�s)�: (2.39)Sin
e by de�nition ai(t) 2 �(t), there exists bi(t) 2 Rn su
h that a(t) = �bi(t); Stbi(t)�.Note that _ai(t) = �0; _Stbi(t)�+ �_bi(t); St _bi(t)� � �0; _Stbi(t)� mod�(t): (2.40)This, together with (2.30) and (2.37), implies that li = �0; _Stbi(t)� and thenbi(t) = _S�1t en�s+i : (2.41)On the other hand, from (2.37) and (2.38), using (2.15) one 
an obtain thatbi(�) = sXj=1 ��ai(�); lj�en�s+j = � sXj=1Aij(�)en�s+j (2.42)(in the last equality we used the symmetry of the matrix A(�)). So, from (2.41), (2.42)and symmetry of _S� (see Remark 6) it follows that81 � i � n � s; n� s+ 1 � j � n : ( _S�1� )ij = ( _S�1� )ji = 0; (2.43)81 � i; j � s : ( _S�1� )n�s+i;n�s+j = �Aij(�): (2.44)Further, for given n�n matrix A denote by C(A) the (n�s)�(n�s) matrix, obtainedfrom A by erasing the last s 
olumns and rows. Consider the 
urve �(�)` in the LagrangeGrassmannian L((span `)\=span `) (see (2.22) for the notation). By 
onstru
tion, if St isthe 
oordinate representation of the 
urve �(t) w.r.t. the 
hosen symple
ti
 basis, thenC(St) is a 
oordinate representation of the 
urve �(�)l w.r.t. the basis of (span `)\=span `,indi
ated in (2.39). Hen
e from (2.43), (2.44), and assumption det A(�) 6= 0 it follows16



that the germ at � of the 
urve �(�)` is regular. In parti
ular, the 
urvature form of the`-redu
tion �(�)` is well de�ned at � . Using (2.18), we obtain that the quadrati
 formr�`(�)����(�)\(span`)\ � r�(�)����(�)\(span`)\ ;has the following matrix in the basis �(e1; 0); : : : ; (en�s; 0)�:� dd� C(S�)S�C(S�)�+ C� _S�S�S� )�:Using the blo
ked stru
ture of the matrix _S� , given by (2.43), one 
an obtain from (2.18)without diÆ
ulties that� dd� C(S�)S�C(S�)�+ C� _S�S�S� )� = �34n nXk;m=n�s+1( �S�)ik( _S�1� )km( �S�)mjon�si;j=1In order to prove (2.33), it is suÆ
ient to prove the followingLemma 1 The restri
tion of the quadrati
 formv 7! sXk;m=1(A(�)�1)km���ak(�); v����am(�); v� (2.45)on �(�)\ l\ has the matrix with ij-entry equal to� nXk;m=n�s+1( �S�)ik( _S�1� )km( �S�)mjin the basis �(e1; 0); : : : ; (en�s; 0)�.Proof. First, using the symmetry of St and (2.44), one has the following identity:nXk;m=n�s+1( �S�)ik( _S�1� )km( �S�)mj = nXk;m=n�s+1( �S� _S�1� )ik( _S�)km( �S� _S�1� )jm =� sXk;m=1( �S� _S�1� )i;n�s+k�A(�)�1�km( �S� _S�1� )j;n�s+m (2.46)On the other hand, from (2.40) we have:�ai(t) = �0; �Stbi(t)�+ 2�0; _St _bi(t)�+ ��bi(t); St�bi(t)�:Substitute t = � in the last relation. Note that _S� has the same blo
ked stru
ture, as_S�1� , whi
h together with (2.42) implies that �0; _St _bi(t)� 2 span `. From this and (2.41) itfollows that �ai(�) � �0; �S� _S�1� en�s+i(t)� mod span��(�); l1; : : : ; ls�: (2.47)17



Hen
e 81 � j � n� s; 1 � i � s : ���ai(�); (ej; 0)� = �( �S� _S�1� )j;n�s+i; (2.48)The last identity together with (2.46) implies the statement of the lemma and also formula(2.33). 2Finally, identity (2.34) follows dire
tly from (2.12). The proof of the theorem is 
om-pleted. 2Note that if the 
urve �(�) is monotone in
reasing or de
reasing , then from (2.32) itfollows that the 
ondition detA(�) 6= 0 is equivalent to the following 
ondition�(�)\ span ` = 0: (2.49)As a dire
t 
onsequen
e of identity (2.33) and the last fa
t one has the followingCorollary 1 If the 
urve �(�) is monotone in
reasing and the tuple ` = (l1; : : : ; ls) of sve
tors in � satis�es (2.49) for some t, then on the spa
e �(t) \ �span `�\ the 
urvatureform of the `-redu
tion of the 
urve �(�) is not less than the 
urvature form of the 
urve�(�) itself. Moreover, on the spa
e �(t) \ �span `�\ the di�eren
e between the 
urvatureform of the `-redu
tion of the 
urve �(�) and the 
urvature form of the 
urve �(�) itself isnon-negative de�nite quadrati
 form of rank not greater than s.Let us translate the results of Theorem 1 in terms of a regular dynami
al Lagrangiandistribution ( ~H;D) on a symple
ti
 spa
e W . Suppose that the Hamiltonian H admitsa s-tuple G = (g1; : : : ; gs) of involutive �rst integrals. Similarly to (2.5) denote by BD� :T�W 7! D�� the linear mapping su
h that for given Y 2 T�W the following identity holdsBD�Y (Z) = �(Y; Z); 8Z 2 D�: (2.50)Let us look at _J�(0) (the velo
ity at t = 0 of the Ja
obi 
urve atta
hed at �) as at a linearmapping from D� to D��. Then using regularity by analogy with (2.29) one 
an de�ne thefollowing s ve
tor �elds Xi on W :Xi(�) = � _J�(0)��1 Æ BD��~gi(�)�: (2.51)Using relation (2.3) one 
an obtain by analogy with (2.30) that Xi is a unique ve
tor �eld,satisfying Xi(�) 2 D� and [ ~H;Xi℄(�) � ~gi(�) mod D� (2.52)for all � 2 W . Finally let �(�) be the s� s matrix with the following entries�(�)km = ���~gk;Xm�; 1 � k;m � s: (2.53)From Theorem 1 and relation (2.3) one gets immediately18



Theorem 2 Suppose that ( ~H;D) is a regular Lagrangian dynami
al distribution on asymple
ti
 spa
e W and the Hamiltonian H admits a tuple G = (g1; : : : ; gs) of s involutive�rst integrals su
h that det �(�) 6= 0. Then the 
urvature form r( ~H;D)� of the dynami
aldistribution ( ~H;D) and the 
urvature form r( ~H;DG)� of its G-redu
tion ( ~H;DG) satisfy thefollowing identity for all v 2 � s\i=1 ker d�gi� \ D�r( ~H;DG)� (v)� r( ~H;D)� (v) = 34 sXk;m=1��(�)�1�km���� ~H; [ ~H;Xk℄�; v����� ~H; [ ~H;Xm℄�; v�;(2.54)while the 
urvature operator R( ~H;D)� of the dynami
al distribution ( ~H;D) and the 
urvatureoperator R( ~H;DG)� of its G-redu
tion ( ~H;DG) satisfy on � s\i=1ker d�gi� \ D� the followingidentity: R( ~H;DG)� � R( ~H;D)� =34 sXk;m=1��(�)�1�kmBD�� ~H; [ ~H;Xm℄�(�)
�� _J�(0)��1 Æ BD�� ~H; [ ~H;Xk℄�(�)�: (2.55)Also, by analogy with Corollary 1 we haveCorollary 2 If the dynami
al Lagrangian distribution ( ~H;D) is monotone in
reasing andthe Hamiltonian H admits a tuple G = (g1; : : : ; gs) of s involutive �rst integrals su
h thatD� \ span�~g1(�); : : : ; ~gs(�)� = 0; (2.56)then on the spa
e � s\i=1 ker d�gi�\D� the 
urvature form of the G-redu
tion of the dynam-i
al Lagrangian distribution ( ~H;D) is not less than the 
urvature form of ( ~H;D) itself.Moreover, on the spa
e � s\i=1 ker d�gi� \ D� the di�eren
er( ~H;DG)� � r( ~H;D)�is non-negative de�nite quadrati
 form of rank not greater than s.Now let us give the 
oordinate representation of the ve
tor �elds Xi, 1 � i � s fromTheorem 2 in the 
ase, when W = T �M and D = �(M). Let q = (q1; : : : ; qn) be lo
al
oordinates in some open subset N of M and p = (p1; : : : ; pn) be indu
ed 
oordinatesin the �ber of T �N so that the 
anoni
al symple
ti
 form is given by � = nPi=1 dpi ^ dqi.19



It gives the identi�
ation of T �N �= Rn � Rn = f(p; q); p; q 2 Rn) (so, N = 0 � Rn).Also the tangent spa
e T�(T �N ) to T �N at any � is identi�ed with Rn � Rn. Underthis identi�
ation ~H = ���H�q ; �H�p �, where for given fun
tion h on T �N we denote by�h�q = � �h�q1 ; : : : ; �h�qn�T and �h�p = � �h�p1 ; : : : ; �h�pn�T . Denote by Hpp the Hessian matrix ofthe restri
tion of H to the �bers. Then from Remark 1 and relation (2.51) we haveXi = (H�1pp �gi�p ; 0) (2.57)Now suppose for simpli
ity that the dynami
al Lagrangian distribution is asso
iatedwith a natural me
hani
al system (Example 2) or, more generally, with a me
hani
alsystem on a Riemannian manifolds (Example 3), whi
h admits one or several �rst integralsbeing in involution and linear w.r.t. the impulses. One way to 
ompute the redu
ed
urvatures is to pass to the redu
ed phase spa
e, as was des
ribed in Remark 3, and applythe method of 
omputation of the 
urvatures from [4℄ to the 
orresponding dynami
alLagrangian distribution in the redu
ed phase spa
e (this way was a
tually implementedin Example 8). But in order to apply the method of [4℄ we need to �nd a new 
anoni
al
oordinates in the redu
ed phase spa
e, whi
h is not just a trivial exer
ise. Moreover, veryoften the new Hamiltonian system on the redu
ed phase spa
e has more 
ompli
ated formthan the original one. Both these fa
ts make the 
omputation in this way quite tri
ky.Theorem 2 gives another method to 
ompute all redu
ed 
urvatures without passing to theredu
ed phase spa
e: to do this one 
an 
ombine (1.9) or (1.12) with (2.54) (or (2.55)) and(2.57). This method is more e�e
tive from the 
omputational point of view, espe
ially ifthe number of the involutive �rst integrals is essentially less than the number of the degreesof freedom in the problem. We illustrate the e�e
tiveness of this method on the followingexample:Example 9 ( Plane N -body problem with equal masses) Let us 
onsider the motion ofN bodies of unit mass in R2 endowed with the standard Cartesian 
oordinates so thatri = (q2i�1; q2i) 2 R2 represents the radius ve
tor of the i-th body with respe
t to someinertial frame. It is des
ribed by a natural me
hani
al system onM = R2N with potentialenergy U(r1; : : : ; rN) = � NXi<j 1rij ; rij = kri � rjk : (2.58)Then T �M �= R2N�R2N = f(p; q); p; q 2 R2Ng, p1 : : : ; p2N are the 
anoni
al impulses
onjugated to q1; : : : ; q2N (pi � _qi). The systems has the following �rst integralg = NXi=1(p2iq2i�1 � p2i�1q2i) (2.59)whi
h is nothing but the angular momentum (in the 
onsidered planar 
ase the angularmomentum is s
alar). From Example 2 we know that the generalized 
urvature form of thedynami
al Lagrangian distribution ( ~H;�(M)) is just the Hessian of the potential energy20



U and the generalized Ri

i 
urvature (see (1.8) for the de�nition) is the Lapla
ian of U ,whi
h 
an be 
al
ulated without diÆ
ulties:�� ~H;�(M)�� = �U = �2 NXi<j 1r3ij ; � = (p; q): (2.60)Our goal is to 
ompute the redu
ed generalized Ri

i 
urvatures �� ~H;�(M)g�� , usingthe formula (2.54). In our 
ase s = 1. Let X be as in (2.51) with g instead of gi. Notethat by de�nition the ve
tor X (�) is orthogonal to the subspa
e �(M)� \ kerd�g w.r.t.the inner produ
t Q� ~H;�(M)�� (�; �). Therefore��~H;�(M)g�� = �� ~H;�(M)�� � r� ~H;�(M)�� (X )Q� ~H;�(M)�� (X ;X )+tr��R� ~H;�(M)g�� �R� ~H;�(M)�� �����(M)�\kerd�g� (2.61)Further, the Hamiltonian ve
tor �elds 
orresponding to the fun
tions H and g are givenby ~H = (Uq; p) and ~g = (Jp;�Jq) with Uq = � �U�q1 ; : : : ; �U�qn�T and J being the unitsymple
ti
 2N � 2N matrix:J = 0BBBBB� 0 1 0 : : : 0�1 0 0 : : : 0.. .0 : : : 0 0 10 : : : 0 �1 0 1CCCCCA :Applying formula (2.57) we �nd that X = (Jq; 0): (2.62)Denote X = Jq. Also, let h�; �i and k � k be the standard Eu
lidean inner produ
t andnorm. Using again (1.9), one 
an obtain by dire
t 
omputation thatr( ~H;�(M))� (X ) = hUqqX ;Xi = �U: (2.63)Further, using (2.54) (or (2.55)) and (2.62), one 
an obtain without diÆ
ulties thattr��R� ~H;�(M)g�� �R� ~H;�(M)�� �����(M)�\kerd�g� =34�(X ; ~g)0B� 2NXi=1 �([ ~H; [ ~H;X ℄℄; �pi)2 � �([ ~H; [ ~H;X ℄℄;X )2Q� ~H;�(M)�� (X ;X )1CA = 34 �kpk2kqk2 � hp; qi2kqk4 � : (2.64)21



Substituting (2.60), (2.63), and (2.64) into (2.61) we obtain �nally that�� ~H;�(M)g�� = �2 NXi<j 1r3ij � UI + 3I2 (2TI � 14fH; Ig2) ; (2.65)where I = kqk2, T = 12kpk2 are the 
entral momentum of inertia and the kineti
 energy ofthe system of N bodies. Note that the sum of the �rst two terms in (2.65) is the tra
e ofthe restri
tion of the 
urvature operator R� ~H;�(M)�� on the spa
e �(M)� \ kerd�g. So, byRemark 2 and Corollary 2, the last term in (2.65) has to be nonnegative. A
tually this term
ontains the right-hand side of the famous Sundman's inequality 2TI � 14fH; Ig2 � 0 andit is nothing but the generalized area of the parallelogram formed by two 2N -dimensionalve
tors p and q. 23 Fo
al points and Redu
tionIn the present se
tion we study the relation between the set of fo
al points to the givenpoint w.r.t. the monotone in
reasing (or de
reasing) dynami
al Lagrangian distributionand the set of fo
al points w.r.t. its redu
tion. As before, �rst we prove the 
orrespondingresult for the 
urves in Lagrange Grassmannians and then reformulate it in terns of thedynami
al Lagrangian distributions.Let �(�) be a 
urve in the Lagrange Grassmannian L(�), de�ned on the interval [0; T ℄.The time t1 is 
alled fo
al to the time 0 w.r.t. the 
urve �(�), if �(t1) \ �(0) 6= 0. Thedimension of the spa
e �(t1) \ �(0) is 
alled the multipli
ity of the fo
al time t1. Denoteby #fo
0�(�)��I the number of fo
al times to 0 on the subset I w.r.t. �(�), 
ounted withtheir multipli
ity. If the 
urve �(�) is monotone in
reasing, then #fo
0�(�)��I is �nite andone 
an write #fo
0�(�)��I =Xt2I dim��(t)\ �(0)�: (3.1)Fix some tuple ` = (l1 : : : ; ls) of s linearly independent ve
tors in �, satisfying (2.21).The time t1 is 
alled fo
al to the time 0 w.r.t. the `-redu
tion �(�)` of the 
urve �(�), if�`(t1) \ �`(0) 6= span ` or, equivalently, t1 is the fo
al time to 0 w.r.t. the 
urve �(�)` inthe Lagrange Grassmannian L((span `)\=span `). The multipli
ity of the fo
al time t1 to0 w.r.t. the `-redu
tion �(�)` is equal by de�nition todim ��(t1)` \ �(0)`� = dim ��(t1)` \ �(0)`�� s: (3.2)So, the number of fo
al times to 0 on the subset I w.r.t. the `-redu
tion �(�)`, 
ountedwith their multipli
ity, is equal to #fo
0�(�)`��I .It is not hard to see that if �(�) is monotone in
reasing, then �(�)` is monotone in-
reasing too. So, the number of fo
al times to 0 w.r.t. the `-redu
tion is also �nite. Thequestion is what is the relation between the set of points, whi
h are fo
al to 0 w.r.t. the22




urves �(�) and its `-redu
tion �(�)`? To answer this question, we use the fa
t that if �(�)is monotone 
urve, then the number #fo
�(�)��(0;T ℄ 
an be represented as the interse
tionindex of this 
urve with a 
ertain 
ooriented hypersurfa
e in L(�). The advantage of thisrepresentation is that the interse
tion index is a homotopi
 invariant.More pre
isely, for given Lagrangian subspa
e �0 denote by M�0 the following subsetof L(�): M�0 = L(�)n�t0 = f� 2 L(�) : � \ �0 6= 0g :Following [6℄, the set M�0 is 
alled the train of the Lagrangian subspa
e �0. The setM�0 is a hypersurfa
e in L(�) with singularities, 
onsisting of the Lagrangian subspa
es� su
h that dim (�\�0) � 2. The set of singular points has 
odimension 3 in L(�). As wehave already seen, the tangent spa
e T�L(�) has a natural identi�
ation with the spa
eof quadrati
 forms on �. If � is a non-singular point of the train M�0 , then ve
tors fromT�L(�) that 
orrespond to positive or negative de�nite quadrati
 forms are not tangent tothe train. It de�nes the 
anoni
al 
oorientation of the hyper-surfa
eM�0 at a non-singularpoint � by taking as a positive side the side of M�0 
ontaining positive de�nite forms.The de�ned 
oorientation permits to de�ne 
orre
tly the interse
tion index �(�) � M�0of an arbitrary 
ontinuous 
urve in the Lagrangian Grassmannian �(�), having endpointsoutsideM�0 : If �(�) is smooth and transversally interse
tingM�0 in non-singular points,then, as usual, every interse
tion point �(�t) with M�0 adds +1 or �1 into the valueof the interse
tion index a

ording to the dire
tion of the ve
tor _�(�t) respe
tively tothe positive or negative side of M�0 . Further, an arbitrary 
ontinuous 
urve �(�) withendpoints outsideM�0 
an be (homotopi
ally) perturbed to a 
urve whi
h is smooth andtransversally interse
ts M�0 in non-singular points. Sin
e the set of singular points ofM�0 has 
odimension 3 in L(�), any two 
urves, obtained by su
h perturbation, 
anbe deformed one to another by homotopy, whi
h avoids the singularities of M�0 . Hen
ethe interse
tion index of the 
urve, obtained by the perturbation, does not depend onthe perturbation and 
an be taken as the interse
tion index of the original 
urve. Theinterse
tion index �(�) � M�0 
an be 
al
ulated using the notion of the Maslov index ofthe triple of Lagrangian subspa
es (see [3℄, [6℄) for details). This implies in parti
ular thatif the 
urve � : [0; T ℄ 7! L(�) is monotone in
reasing with endpoints outside M�0 , then�(�) �M�0 = X0�t�T dim��(t)\ �0� (3.3)Now we are ready to formulate the main result of this se
tion:Theorem 3 Let � : [0; T ℄ 7! L(�) be a monotone in
reasing 
urve and ` = (l1 : : : ; ls) bea tuple of s linearly independent ve
tors in �, satisfying (2.21) and (2.49) at 0. Then onthe set (0; T ℄ the di�eren
e between the number of fo
al times to 0 w.r.t. the `-redu
tion�(�)` and the number of fo
al times to 0 w.r.t. the 
urve �(�) itself , 
ounted with theirmultipli
ity, is nonnegative and does not ex
eed s, namely0 � #fo
0�(�)`��(0;T ℄ �#fo
0�(�)��(0;T ℄ � s : (3.4)23



Proof. Sin
e the 
urves �(�) and �(�)` are monotone in
reasing, for suÆ
iently small" > 0 the set (0; "℄ does not 
ontain the times fo
al to 0 w.r.t. both of these 
urves. Also,without loss of generality, one 
an assume that T is not fo
al to 0 w.r.t. both of these
urves (otherwise, one 
an extend �(�) as a monotone in
reasing 
urve to a slightly biggerinterval [0; T + ~"℄ su
h that �(T + ~") \ �(0) = 0 and �(T + ~")` \ �(0)` = 0). So, byrelations (3.1), (3.3), we have �rst that#fo
0�(�)��(0;T ℄ = �(�)��[";T ℄ �M�(0): (3.5)Besides, from (2.49) it follows thatdim ��(t)` \ �(0)`�� s = dim ��`(t) \ �(0)�: (3.6)Hen
e, 
ombining (3.1) and (3.3) with (3.2) and (3.6), we get#fo
0�(�)`��(0;T ℄ = �(�)`��[";T ℄ �M�(0) (3.7)Now we prove the theorem in the 
ase s = 1. In this 
ase ` = l1. We use the invarian
eof the de�ned interse
tion index under homotopies, preserving the endpoints.Let a1(t) be as in (2.29). DenoteF (�; t) = span��(t)\ l\1 ; (1� �)a1(t) + �l1� (3.8)Note that all subspa
es F (�; t) are Lagrangian. Let �� : [0; T ℄ 7! L(�) and �t : [0; 1℄ 7!L(�) be the 
urves, satisfying �� (�) = F (�; �); 0 � � � 1;�t(�) = F (�; t); 0 � t � T: (3.9)Then �0(�) = �(�), �1(�) = �l1(�), and the 
urves�"(�)��[0;� ℄ [ ��(�)��[";T ℄ [ ���T (�)��[0;� ℄�de�ne the homotopy between �(�)��[";T ℄ and �"(�) [ �(�)l1��[";T ℄ [ ���T (�)�, preserving theendpoints (here �
(�) means the 
urve, obtained from a 
urve 
(�) by inverting the orien-tation). Therefore,�(�)��[";T ℄ �M�(0) = �"(�) �M�(0) + �(�)l1��[";T ℄ �M�(0) � �T (�) �M�(0)Using (3.5) and (3.7), the last relation 
an be rewritten in the following form#fo
0�(�)l1��(0;T ℄�#fo
0�(�)��(0;T ℄ = �T (�) �M�(0) � �"(�) �M�(0): (3.10)So, in order to prove the theorem in the 
onsidered 
ase it is suÆ
ient to prove the followingtwo relations: 0 � �T (�) �M�(0) � 1; (3.11)9"0 > 0 s: t: 8"0 � " > 0 : �"(�) �M�(0) = 0: (3.12)24



a) Let us prove (3.11). If l1 2 �(T ), then by de�nition �T (�) � �(T ). Sin
e, by ourassumptions, �(T )\ �(0) = 0, we obviously have �T (�) �M�(0) = 0.If l1 62 �(T ), then dim (�(0) + �(T )\ (l1)\) = 2n� 1. In parti
ular, it implies that0 � dim ��T (�)\ �(0)� � 1: (3.13)Further, let p : � 7! �=(�(0) + �(T ) \ (l1)\) be the 
anoni
al proje
tion on the fa
torspa
e. Then from (3.8) and (3.9), using standard arguments of Linear Algebra, it followsthat �T (�) \ �(0) 6= 0 if and only if(1� �)p�a1(T )�+ �p(l1) = 0 (3.14)Sin
e, by assumptions, �T (0) \ �(0) = 0 (re
all that �T (0) = �(T )), the equation (3.14)has at most one solution on the segment [0; 1℄. In other words, the 
urve �T (�) interse
tsthe train M�(0) at most ones and a

ording to (3.13) the point of interse
tion is non-singular.Finally, the 
urve �T (�) is monotone non-de
reasing, i.e. its velo
ities dd� �T (�) arenon-negative de�nite quadrati
 forms for any � . Indeed, sin
e �(T )\ (l1)\ is the 
ommonspa
e for all �T (�), one has dd��T (�)���(T )\(l1)\ � 0. On the other hand, if we denote by
(�) = (1� �)a1(t) + �l1, then by (2.2), one hasdd� �T (�)�
(�)� = ��
0(�); 
(�)�= ��l1 � a1(T ); (1� �)a1(T ) + �l1� = �(l1; a1) > 0(the last inequality follows from (2.31), (2.32) and the assumption about monotoni
ity of�(�)).So, dd� �T (�) are non-negative de�nite quadrati
 forms. Hen
e in the uniquely possiblepoint of interse
tion of �T (�) with the train M�(0) the interse
tion index be
omes equalto 1. This proves (3.11).b) Let us prove (3.12). Take a Lagrangian subspa
e � su
h that l1 2 � and �\�(0) =0. Then there exists "0 su
h that �(�)��[0;"0℄ � �t: (3.15)Similarly to the arguments in a), for any 0 < " � "0 the 
urve �"(�) interse
ts the trainM�on
e. But by 
onstru
tion this unique interse
tion o

urs at � = 1. Indeed, �"(1) = �(")l1,hen
e l1 2 �"(1) \�. In other words,�"(�)��[0;1) � �t: (3.16)Further, one 
an 
hoose a symple
ti
 basis in � su
h that � = Rn � Rn, the symple
ti
form � is as in (2.15), �(0) = 0�Rn, and � = Rn� 0. By (3.15) and (3.16), there existstwo one parametri
 families of symmetri
 matri
es St, 0 � t � "0 and C� ,0 � � < 1 su
hthat �(t) = f(Stp; p) : p 2 Rng and �"(�) = f(C�p; p) : p 2 Rng. Sin
e the 
urve �(�) ismonotone in
reasing and the 
urve �"(�) is monotone nonde
reasing, for any 0 � � < 1the quadrati
 forms p 7! hC�p; pi are positive de�nite, while S0 = 0. It implies that80 � � < 1 : ��(�) \ �(0) = 0: (3.17)25



Note also that for suÆ
iently small " > 0�"(1)\ �(0) = 0: (3.18)Indeed, �"(1) = �l1(") and a suÆ
iently small " > 0 is not a fo
al time for the l1-redu
tion�l1(�), whi
h a

ording to (3.6) is equivalent to the fa
t that �l1(")\�(0) = 0 and hen
e to(3.18). By (3.17) and (3.18), for suÆ
iently small " > 0 the 
urve ��(�) does not interse
tthe train M�(0). The relation (3.12) is proved, whi
h 
ompletes the proof of our theoremin the 
ase s = 1.The 
ase of arbitrary s 
an be obtained immediately from the 
ase s = 1 by indu
tion,using the fa
t that �(�)(l1;:::;ls) = ��(�)(l1;:::;ls�1)�ls : 2 (3.19)Remark 8 Note that in the 
ase s = 1 from Theorem 3 it follows immediately that thesets of fo
al times ( to 0) w.r.t monotone in
reasing 
urve and its redu
tion are alternating.Also, for any s the �rst fo
al time to 0 w.r.t. the redu
tion does ex
eed the �rst fo
al timew.r.t. the 
urve itself. 2All 
onstru
tions above are dire
tly related to the notion of fo
al points of a dynami
alLagrangian distributions and ( ~H;D) and its redu
tion by a tuple G = (g1; : : : ; gs) of sinvolutive �rst integrals, de�ned in Introdu
tion. Note that the point �1 = et1 ~H�0 is fo
alto �0 w.r.t. the pair ( ~H;D) along the integral 
urve t 7! et ~H�0 of ~H if and only if the timet1 is fo
al to 0 w.r.t the Ja
obi 
urve J�0(�) atta
hed at the point �0, while �1 = et1 ~H�0 isfo
al to �0 w.r.t. the G-redu
tion of the pair ( ~H;D) along the integral 
urve t 7! et ~H�0 of~H if and only if t1 is fo
al to 0 w.r.t �~g1(�0); : : : ; ~gs(�0)�-redu
tions of the Ja
obi 
urvesJ�0(�) atta
hed at �0. Translating Theorem 3 into the terms of dynami
al Lagrangiandistribution, we have immediately the followingCorollary 3 If the dynami
al Lagrangian distribution ( ~H;D) is monotone in
reasing andthe Hamiltonian H admits a tuple G = (g1; : : : ; gs) of s involutive �rst integrals satisfying(2.56), then along any segment of the integral 
urve of ~H the di�eren
e between the numberof the fo
al points to the starting point of the segment w.r.t. the G-redu
tion of the pair( ~H;D) and the number of the fo
al points to the starting point of the segment w.r.t. thepair ( ~H;D) itself , 
ounted with their multipli
ity 4, is nonnegative and does not ex
eed s.Example 10 (Plane 3-body problem with equal masses: fo
al points of the 8-shapedorbit) The following example illustrates the Theorem 3. In 2000, A. Chen
iner andR.Montgomery proved the existen
e of a new periodi
 solution of the planar 3-body prob-lem with equal masses - the 8-shaped orbit or just the Eight [9℄. In the plane of themotion ea
h body moves along the same 8-shaped orbit, symmetri
 w.r.t. the point of itsself-interse
tion, 
oin
iding with the 
enter of mass of the bodies. The 
on�guration spa
eis M = R6. As an initial point in the phase spa
e T �M we take the point �0 su
h that4Here we do not 
ount the starting point of the segment as the fo
al point to itself.26



its proje
tion on the 
on�guration spa
e is a 
ollinear 
on�guration, i.e. one of the bodieslies in the middle of the segment, 
onne
ting the other two.In [8℄ there were found the fo
al points to �0 along the Eight w.r.t. the g-redu
tionof the Lagrangian dynami
al distribution � ~H;�(M)g�, where H , g are as in Example 9.In parti
ular it was shown numeri
ally that the 8-shaped orbit 
ontains three su
h fo
alpoints along its period T , and the �rst fo
al time �1 � 0:52T .Let eti ~H�0 be the ith fo
al point w.r.t. � ~H;�(M)� along the Eight, and let e�i ~H�0be the ith fo
al point w.r.t. its g-redu
tion � ~H;�(M)g� along the same 
urve. In thefollowing table we present the result of the numeri
al 
omputation of ti and �i on theinterval (0; 3T ℄ (all this fo
al points have the multipli
ity 1):i 1 2 3 4 5 6 7 8 9 10 11�i=T � 0:52 0:76 0:95 1:08 1:52 1:56 1:88 2:05 2:29 2:49 2:65ti=T � 0:76 0:95 1:08 1:42 1:54 1:88 2:05 2:28 2:45 2:65We observe that �i � ti � �i+1, 1 � i � 10, as was expe
ted by Theorem 3. 2Referen
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