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We present the classical Wagner construction from 1935 of the curvature tensor for the completely nonholonomic man-
ifolds in both invariant and coordinate way. The starting point is the Shouten curvature tensor for the nonholonomic
connection introduced by Vranceanu and Shouten. We illustrate the construction by two mechanical examples: the case
of a homogeneous disc rolling without sliding on a horizontal plane and the case of a homogeneous ball rolling without
sliding on a fixed sphere. In the second case we study the conditions imposed on the ratio of diameters of the ball and
the sphere to obtain a flat space — with the Wagner curvature tensor equal to zero.

1. Introduction

1.1. Historical overview

It is well known that the full difference between the nonholonomic variational problems and non-
holonomic mechanics was understood after Hertz [5]. The geometrization of nonholonomic mechan-
ics started in the late 20’th of the XX century with the works of Vranceanu, Synge and Shouten.
Vranceanu defined the notion of the nonholonomic structure on a manifold (see [11]). Synge and
Shouten made the first steps toward the definition of the curvature in the nonholonomic case (see
[9, 8]). It was Shouten who introduced the notion of partial, or nonholonomic connection. However,
the highlights of that pioneers period of development of mechanically motivated nonholonomic geom-
etry was the work of V. V. Wagner, published in several papers from 1935 till 1941 (see [13, 14, 15]).
Wagner constructed the curvature tensor as an extension of the Shouten tensor. This construction is
performed in several steps, following the flag of the distribution. In that sence, the structure of non-
holonomicity of a given distribution is reflected in the Wagner construction. For those achievements,
Wagner was awarded in 1937 by Kazan University (see [16]).

The main aim of this paper is to present Wagner’s construction, both in invariant and coordinate
way. The existence of Gorbatenko’s recent, review [17] is very helpful in understanding THE original
Wagner’s works. Since we want to follow the original Wagner ideas, there are some differences from
the Gorbatenko’s presentation.

We also give two mechanical examples. The first one is the problem of a homogeneous disc
rolling without sliding on a horizontal plane and the second is the problem of a homogeneous ball
rolling without sliding on a fixed sphere. In both cases we produced the complete computations
of the construction of the Wagner curvature tensor. Although the first problem is of degree 2 of
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nonholonomicity, and the second one is of degree 1, the computations in the second case are much
more complicated.

The problem of a homogeneous ball rolling without sliding on a fixed sphere is interesting because
it gives a family of (3, 5)-problems depending on a parameter k, which is the ratio between the
diameters of the ball and the sphere. We investigate the Wagner flatness in these cases, in terms of
this parameter k.

Geometry of the nonholonomic variational problems is deing intensively developed nowadays, (see
[6, 7, 1]) motivated by the Control Theory. As an important example, we mention the Agrachev cur-
vature tensor and related invariants of Sub-Riemannian Geometry (see [1]). These natural geometric
constructions were developed further in [2, 3], and Agrachev and Zelenko implied their theory to the
situation of a homogeneous ball rolling without sliding on a fixed sphere. It appears that there exist k
for which their invariants are zero, exactly in the same cases when the Cartan tensor is zero (see [4, 7]).

So, summarizing, we can make a conclusion that the Wagner construction of the curvature tensor
is natural, and essentially different from other natural constructions, such as the Cartan and the
Agrachev curvatures.

1.2. Basic notions from the nonholonomic geometry

Let us fix some basic notions from the theory of distributions [16].

Definition 1. Let TM =
⋃

x∈M

TxM , be the tangent bundle of a smooth n-dimensional mani-

fold M . The sub-bundle V =
⋃

x∈M

Vx, where Vx is the vector subspace of TxM , smoothly dependent

on points x ∈ M , is the distribution. If the manifold M is connected with dimVx it is called the
dimension of the distribution.

A vector field X on M belongs to the distribution V if X(x) ⊂ Vx. A curve γ is admissible
relatively to V , if the vector field γ̇ belongs to V .

A differential system is the linear space of vector fields having a structure of C∞(M)-module.
Vector fields which belong to the distribution V form a differential system N(V ).

The k-dimensional distribution V is integrable if the manifold M is foliated into k-dimensional
sub-manifolds, having Vx as the tangent space at the point x. According to the Frobenius theorem,
V is integrable if and only if the corresponding differential system N(V ) is involutive, i.e. if it is a Lie
sub-algebra of Lie algebra of the vector fields on M .

Definition 2. The flag of a differential system N is a sequence of differential systems: N0 =
= N, N1 = [N,N ], . . . , Nl = [Nl−1, N ], . . . .

The differential systems Ni are not always differential systems of some distributions Vi, but if for
every i, there exists Vi, such that Ni = N(Vi), then there exists a flag of the distribution V : V =
= V0 ⊂ V1 . . . . Such distributions, which have flags, will be called regular. It is clear that the sequence
N(Vi) is going to stabilize, and there exists a number r such that N(Vr−1) ⊂ N(Vr) = N(Vr+1).

Definition 3. If there exists a number r such that Vr = TM , the distribution V is called
completely nonholonomic, and the minimal such r is the degree of nonholonomicity of the distribution
V .

We are going to consider only regular and completely nonholonomic distributions.

1.3. The equations of motion of mechanical nonholonomic systems

One of the basic references on nonholonomic mechanics is [18], see also [12]. Let us consider a
nonholonomic mechanical system corresponding to a Riemannian manifold (M,g), where g is a metric
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defined by the kinetic energy. It is well-known that to every Riemannian metric g on M corresponds
the connection ∇ with the properties:

i) ∇Xg(Y,Z) = X(g(Y,Z)) − g(∇XY,Z) − g(Y,∇XZ) = 0,
ii) T (X,Y ) = ∇XY −∇YX − [X,Y ] = 0,

where X,Y,Z are the smooth vector fields on M . This symmetric, metric connection is usually called
the Levi-Chivita connection.

We assume that the distribution V is defined by (n − m) 1-forms ωα; in the local coordinates
q = (q1, . . . , qn) on M

ωρ(q)(q̇) = aρi(q)q̇i = 0, ρ = m+ 1, . . . , n ; i = 1, . . . , n. (1)

Definition 4. The virtual displacement is the vector field X on M , such that ωρ(X) = 0, i.e.
X belongs to the differential system N(V ).

The differential equations of motion of a given mechanical system follow from the D’Alambert-
Lagrange principle: the trajectory γ of a given system is a solution of the equation

〈∇γ̇ γ̇ −Q,X〉 = 0, (2)

where X is an arbitrary virtual displacement, Q is the vector field of the internal forces, and ∇ is the
metric connection for the metric g.

The vector field R(x) on M , such that R(x) ∈ V ⊥
x , V

⊥
x ⊕ Vx = TxM , is called a reaction of the

ideal nonholonomic connections. Equation (2) can be written in the form:

∇γ̇ γ̇ −Q = R,

ωα(γ̇) = 0.
(3)

If the system is potential, by introducing L = T − U , where U is the potential energy of the system
(Q = − gradU), then in the local coordinates q on M , equations (3) become:

d
dt
∂L
∂q̇

− ∂L
∂q

= R̃,

ωα(q̇) = 0.
(4)

Now R̃ is a 1-form in (V ⊥), and it can be represented as a linear combination of 1-forms ωm+1, . . . , ωn

which define the distribution: R̃ =
n∑

α=m+1
λαωα.

Suppose e1, . . . , en are the vector fields on M , such that e1(x), . . . , en(x) form a base of the vector
space TxM at every point x ∈M , and e1, . . . , em generate the differential system N(V ). Express them
through the coordinate vector fields:

ei = Aj
i (q)

∂

∂qj
, i, j = 1, . . . , n.

Denote by p a projection p : TM → V orthogonal to the metric g. The corresponding homomor-
phism of C∞-modules of the sections of TM and V will also be denoted by p:

p

(
∂

∂qi

)
= pa

i ea, a = 1, . . . ,m, i = 1, . . . , n.

Projecting by p the equations (3), we get p(R) = 0, from R(x) ∈ V ⊥(x), and denoting p(Q) = Q̃ we
get

∇̃γ̇ γ̇ = Q̃, (5)
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where ∇̃ is the projected connection. A relationship between the coefficients Γ̃c
ab of the connection ∇̃,

defined by the formula
∇̃eaeb = Γ̃c

abec

and the Christoffel symbols Γk
ij of the connection ∇ follows from

∇̃eaeb = Γ̃c
abec = p (∇eaeb) =

= p

∇
Ai

a
∂

∂qi

Aj
b
∂

∂qj

 =

= p

Ai
a

∂Aj
b

∂qi
∂

∂qj
+Ai

aA
j
b∇ ∂

∂qi

∂

∂qj

 =

= Ai
a

∂Aj
b

∂qi
pc

jec +Ai
aA

j
bΓ

k
ijp

c
kec.

Thus we get

Γ̃c
ab = Γk

ijA
i
aA

j
bp

c
k +Ai

a

∂Aj
b

∂qi
pc

j. (6)

If the motion is taking place under the inertia (Q = Q̃ = 0), the trajectories of the nonholonomic
mechanical problem are going to be geodesics for the projected connection ∇̃. Equations (5) were
derived by Vrancheanu and Shouten.

Note. The projected connection ∇̃ is not a connection on the vector bundle V over M , be-
cause the parallel transport is defined only along the admissible curves. So, it is called partial or
nonholonomic connection. (The exact definition is in Section 2.2.)

2. The Shouten tensor

Let V be the distribution on M . Denote C∞(M)-module of sections on V by Γ(V ).

Definition 1. Definition 1. A nonholonomic connection on the sub-bundle V of TM is a
map ∇ : Γ(V ) × Γ(V ) → Γ(V ) with the properties:

i) ∇X(Y + Z) = ∇XY + ∇XZ,

ii) ∇X(f · Y ) = X(f)Y + f∇XY,

iii) ∇fX+gY Z = f∇XZ + g∇Y Z,

X, Y,Z ∈ Γ(V ); f, g ∈ C∞(M).

Having a morphism of vector bundles p0 : TM → V , formed by the projection on V , denote by
q0 = 1TM − p0 the projection on W , V ⊕W = TM .

Definition 2. The tensor field T∇ : Γ(V ) × Γ(V ) → Γ(V ) defined in the following way:

T∇(X,Y ) = ∇XY −∇YX − p0[X,Y ]; X,Y ∈ Γ(V )

is called the tensor of torsion for the connection ∇.

Suppose there is a positively defined metric tensor g on V :

g : Γ(V ) × Γ(V ) → C∞(M), g(X,Y ) = g(Y,X).
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Theorem 1. Given the distribution V , with p0 and g, there exists a unique nonholonomic
connection ∇ with the properties:

i) ∇Xg(Y,Z) = X(g(Y,Z)) − g(∇XY,Z) − g(Y,∇XZ) = 0,
ii) T∇ = 0.

(1)

The Theorem 1 is the generalization of a well-known theorem from differential geometry. The
proof can be found in [17].

The conditions (1) can be rewritten in the form:

i) ∇XY = ∇YX + p0[X,Y ],
ii) Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ).

(2)

By cyclic permutation of X,Y,Z in (2 ii)) and by summation we get:

g(∇XY,Z) = 1
2{X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y ))+

+g(Z, p0[X,Y ]) + g(Y, p0[Z,X]) − g(X, p0[Y,Z]}.
(3)

Let qi, (i = 1, . . . , n) be the local coordinates on M , such that the first m coordinate vector fields ∂

∂qi

are projected by projection p0 into the vector fields ea, (a = 1, . . . ,m), generating the distribution

V : p0( ∂

∂qi
) = pa

i (q)ea. Vector fields ea can be expressed in the basis ∂

∂qi
as ea = Bi

a
∂

∂qi
, with Bi

ap
b
i =

= δb
a. Now we give the coordinate expressions for the coefficients of the connection Γc

ab, defined as
∇eaeb = Γc

abec. From (3) we get:

Γc
ab = {c

ab} + gaeg
cdΩe

bd + gbeg
cdΩe

ad − Ωc
ab, (4)

where Ω is obtained from p0[ea, eb] = −2Ωc
abec as:

2Ωc
ab = pc

iea(B
i
b) − pc

ieb(B
i
a),

and {c
ab} = 1

2
gce(ea(gbe) + eb(gae) − ee(gab)).

It was shown in Section 1.3. that the equations of the nonholonomic mechanical problem, without
external forces, are the geodesic equations for the connection ∇̃. The connection ∇̃ is obtained by
projection on the sub-bundle V of the Levi-Civita connection ∇ for the metric g. The question is:
what is the relationship between the connection ∇̃ and the metric g̃, induced from g on V .

Proposition 1. The connection ∇̃, obtained by projecting the metric torsion-less connection ∇
for the metric g, is the metric torsion-less connection for the induced metric g̃ if the projector p0 is
orthogonal.

Proof.
Let p0 : TM → V be the orthogonal projector.
a) We need to prove ∇̃g̃ = 0. For the arbitrary X,Y,Z ∈ Γ(V ) we have:

∇̃X g̃(Y,Z) = X(g̃(Y,Z)) − g̃(∇̃XY,Z) − g̃(Y, ∇̃XZ). (5)

Since g̃ is induced by g, it follows that g̃(Y,Z) = g(Y,Z). In the same way, ∇̃XY = p0∇XY = ∇XY −
− U , where U ∈ Γ(V ⊥) is a vector field projected with p0 into 0. From the orthogonality condition,
U is orthogonal on X,Y and Z relatively to the metric g, so we get: g̃(∇̃XY,Z) = g(∇̃XY,Z) =
= g(∇XY − U,Z) = g(∇XY,Z). Similarly, g̃(Y, ∇̃XZ) = g(Y,∇XZ). Plugging into (5), we get:

∇̃X g̃(Y,Z) = ∇Xg(Y,Z) X,Y,Z ∈ Γ(V ),

and from the assumption ∇g = 0 we get ∇̃g̃ = 0.
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b) We need to show that the connection ∇̃ is torsion-less.

T∇̃(X,Y ) = ∇̃XY − ∇̃YX − p0[X,Y ]
= p0∇XY − p0∇YX − p0[X,Y ] = p0(∇XY −∇YX − [X,Y ]),

and since ∇ is free of torsion, the same is valid for ∇̃.

Note. Both the Wagner and the Shouten tensor, as we will see later, depend on the choice of
the projector. Wagner defined curvature tensor for a metric which is defined on the distribution V . If
we start from some mechanical problem, then there is a metric on the whole TM , which is afterwards
induced on V . According to the last Proposition, in order to get the projected connection which is
metric for the induced metric, one must choose the orthogonal projector. That means, that for the
mechanical systems there is a unique choice of the projector.

The problem of definition of the curvature tensor for the nonholonomic connections was considered
for the first time by Shouten. He defined the curvature tensor in the following way:

Definition 3. The Shouten tensor is a mapping K : Γ(V ) × Γ(V ) × Γ(V ) → Γ(V ) defined by:

K(X,Y )Z = ∇X(∇Y Z) −∇Y (∇XZ) −∇p0[X,Y ]Z − p0[q0[X,Y ], Z], (6)

where X,Y,Z ∈ Γ(V ).

To check that the Definition 3 is correct, one has to verify that K is of tensor nature, i.e. that
it is linear on X,Y,Z relatively to multiplication by the smooth functions on M . Really, by direct
check [17] we get:

K(fX, Y )Z = fK(X,Y )Z,
K(X,Y )(fZ) = fK(X,Y )Z,

K(X,Y )Z = −K(Y,X)Z.

In comparison to the curvature tensor for the connections on M , we see that the Shouten tensor (6)
has one term more, the last one in (6), and that in the third term p0 appears. The last term gives a
correction in order that K be a tensor. Note that without that last term linearity for Z relatively to
multiplication by the smooth functions would not be satisfied.

A mapping K(X,Y ) : Z → K(X,Y )Z is a morphism of C∞(M)- module Γ(V ). Since K is
anti-symmetric relatively to X,Y , a C∞(M)-linear mapping Γ(K) : Γ(∧2V ) → Γ(End(V, V )) can be
associated with the Shouten tensor by the condition:

Γ(K)(X ∧ Y )Z = K(X,Y )Z, X, Y,Z ∈ Γ(V ),

where ∧2V is the space of bivectors.

3. The Wagner tensor

3.1. The Wagner construction

Wagner constructed a curvature tensor starting from the integrability condition for the tensor equa-
tion ∇X = U where U ∈ End(V, V ), X ∈ Γ(V ). If the curvature tensor is zero, then absolute
parallelism should take place, i.e. a covariantly constant vector field in any direction should exist,
which is equivalent to the integrability of the equations ∇X = 0. Wagner noticed that if the degree
of nonholonomicity is greater then 1, then the Shouten tensor does not satisfy the condition of the
absolute parallelism, and he suggested a correction. The idea is the following. One starts with a
some metric g on V . The metric g is going to be extended to each sub-bundle Vi of the flag V =
= V0 ⊂ V1 ⊂ . . . ⊂ VN = TM . The next step, the connection on Vi and the curvature tensor
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analogous to the Shouten tensor are going to be defined. In this way, in the N -th step, the curvature
tensor which satisfies the absolute parallelism condition is constructed. The basic Wagner’s paper
where this was performed is [13].

Let the metric g be defined on the k-dimensional vector space W . Then the metric g∧ on ∧2W
is defined by the expression:

g∧(x1 ∧ y1, x2 ∧ y2) =
∣∣∣∣g(x1, x2) g(x1, y2)
g(y1, x2) g(y1, y2)

∣∣∣∣ . (1)

(The isomorphism ϕ : ∧2W ∗ → (∧2W )∗

ϕ(f ∧ g)(x ∧ y) = ω(x, y) = f(x)g(y) − f(y)g(x)

is used here.)

Lemma 1. If g is a positively definite form on W , then g∧ is also a positively defined form on
∧2W .

Consider a mapping
∆ : ∧2Γ(V ) → Γ(TM)/Γ(V ),

defined by
∆(X ∧ Y ) = [X,Y ] mod Γ(V ) , X, Y ∈ Γ(V ).

The mapping ∆ is C∞(M) - linear:

∆(fX ∧ Y ) = [fX, Y ] mod Γ(V ) = {−Y (f)X + f [X,Y ]} mod Γ(V ) =
= f [X,Y ] mod Γ(V ) = f∆(X ∧ Y ).

Observe that Im(∆) is not always equal to Γ(TM)/Γ(V ), but it is its C∞(M)-submodule, and denote

Γ(V1) = {X ∈ Γ(TM)|X mod Γ(V ) ∈ Im(∆)} .

So, we get a sequence of the C∞ submodules Γ(V0) ⊂ . . . ⊂ Γ(VN ) = Γ(TM), defined by:

Γ(Vi) = {X ∈ Γ(TM)|X mod Γ(Vi−1) ∈ Im(∆i−1)} ,
∆i(X ∧ Y ) = [X,Y ] mod Γ(Vi), i = 1, . . . , N,

(2)

where V = V0, ∆ = ∆0. Note that the sequence of sub-bundles V0 ⊂ V1 ⊂ . . . ⊂ VN = TM is a
flag of the distribution V , and N is the degree of nonholonomicity, since we reduced our attention
to the case of regular distributions. The mapping ∆i : ∧2Vi → TM/Vi is called the i-th tensor of
nonholonomicity of the distribution V .

For every point x ∈ M , there is the factor space Vi+1,x/Vi,x with the projection πi : Vi+1,x →
Vi+1,x/Vi,x. Suppose the mappings θi,x : Vi+1,x/Vi,x → Ri,x are defined, whereRi,x are some sub-spaces,
chosen transversely to Vx,i, so that Vi,x ⊕ Ri,x = Vi+1,x. Mappings qi = θi · πi and pi = 1Vi+1 − qi
are the projectors onto Ri and Vi respectively. Now we are going to extend the metric from V to the
whole TM .

Theorem 1. Let the distribution V with the metric g and the mappings θ0, . . . θN−1 are given.
Then there exists the unique metric tensor G on TM , which satisfies the conditions:

1. G|V = g.

2. In the direct sum TM = V0 ⊕R0 ⊕ . . . ⊕RN−1 the components are mutually orthogonal.

3. (G|Ri)
−1 = θi · ∆i · ((G|Vi)

∧)−1 · (θi · ∆i)∗.
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Proof.
For an arbitrary point x on M we have TxM = V0,x ⊕R0,x ⊕ . . .⊕RN−1,x. Define G|Ri,x = gi+1,x

by the condition 3 of this Theorem. By the previous Lemma, g∧0,x is a positively defined form on ∧2V0,
so we have (g∧0,x)−1 on (∧2V0)∗. The operation of conjugation preserves positive definitness, so g1,x is
also a positively definite form. By iterations we get that gi+1,x are positively definite.

The coordinate expressions for the metric enlarged from Vi−1 to Vi = Vi−1 ⊕ Ri−1 are obtained
in the following way. Let the vectors eai−1 span Vi−1. Corresponding dual base we denote by eai−1 . If
Xaie

ai is a given 1-form on Ri−1, then:

i→ g(Xaie
ai) = i→ gaibiXaiebi

=

= (θi−1 · ∆i−1)(G∧
Vi−1

)−1(θi−1 · ∆i−1)∗(Xaie
ai) =

= (θi−1 · ∆i−1)(G∧
Vi−1

)−1(Xai

i− 1 →Mai
ai−1bi−1

eai−1 ∧ ebi−1) =

= (θi−1 · ∆i−1)(g∧)ai−1bi−1ci−1di−1(
i−1 →Mai

ai−1bi−1
Xaieci−1 ∧ edi−1

) =

= (g∧)ai−1bi−1ci−1di−1(Xai

i− 1 →Mai
ai−1bi−1

i− 1 →M bi
ci−1di−1

ebi
),

where g∧ai−1bi−1ci−1di−1 is the inverse metric tensor for g∧ defined by (1), and
i−1 →M bi

ci−1di−1
are the

coordinate expressions for the (i− 1)-th tensor of nonholonomicity ∆i−1. It is obvious that

g∧ai−1bi−1ci−1di−1 = 1
2(

i−1 → gai−1ci−1
i− 1 → gbi−1di−1 − i−1 → gai−1di−1

i− 1 → gbi−1ci−1),

so, finally we get

i→ gaibi =
i−1 →Mai

ai−1bi−1

i− 1 →M bi
ci−1di−1

i− 1 → gai−1ci−1
i− 1 → gbi−1di−1 .

Let us define morphism of the vector bundles µi : Vi+1 → ∧2Vi, by:

µi =
(
B∧

i

)−1 · (θi · ∆i)∗ ·Gi+1|Ri · θi · πi. (3)

So, if X ∈ Γ(Vi), then µi(X) = 0.
Now we get the coordinate expressions for µi:

µi−1(eai) = ∗→M
ai−1bi−1
ai eai−1 ∧ ebi−1

=
i−1 →M bi

ci−1di−1

i→ gaibi

i− 1 → gci−1ai−1
i− 1 → gdi−1bi−1eai−1 ∧ ebi−1

.

The coordinate expressions for µi and those for the metrics are in the agreement with the original
Wagner’s paper [13].

We are ready to expose the Wagner’s construction for the curvature tensor for the nonholonomic
systems.

Denote by 0→ ∇ the connection for the metric g0 on V0, and by 0→ K� the Shouten tensor. Define
1→ � : Γ(V1) × Γ(V0) → Γ(V0) by:

1→ �XU = 0→ ∇p0XU+ 0→ K�(µ0(X))(U) + p0[q0X,U ],

and 1→ K� : ∧2V1 → End(V0) by the condition:

Γ( 1→ K�)(X ∧ Y )(U) = 1→ �X
1→ �Y U− 1→ �Y

1→ �XU− 1→ �p1[X,Y ]U − p0[q1[X,Y ], U ],

where X,Y ∈ Γ(V1), U ∈ Γ(V0).
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Similarly, by induction: i→ � : Γ(Vi) × Γ(V0) → Γ(V0)

i→ �XU =i−1→ �pi−1XU+ i−1→ K�(µi−1(X))(U) + p0[qi−1X,U ],
i→ K� : ∧2Vi → End(V0) X,Y ∈ Γ(Vi), U ∈ Γ(V0),

Γ( i→ K�)(X ∧ Y )U = i→ �X
i→ �Y U− i→ �Y

i→ �XU− i→ �pi[X,Y ]U − p0[qi[X,Y ], U ].

Finally for i = N we get:

N→ � : Γ(VN ) × Γ(V0) → Γ(V0),
N→ �XU =N−1→ ∇pN−1XU+ N−1→ K�(µN−1(X))(U) + p0[qN−1X,U ],

(4)

N→ K� : ∧2VN → End(V0), X, Y ∈ Γ(VN ), U ∈ Γ(V0),

Γ( N→ K�)(X ∧ Y )U = N→ �X
N→ �Y U− N→ �Y

N→ �XU− N→ �[X,Y ]U,
(5)

because pN = id, and qN = 0.

Theorem 2. The mappings i→ �, satisfy the following conditions:

1. i→ �fX+gY U = f
i→ �XU + g

i→ �Y U, f, g ∈ C∞(M)

2. i→ �X(fU) = X(f)U + f
i→ �XU, X, Y ∈ Γ(Vi)

3. N→ � is a linear connection on the vector bundle V.

The proof follows from the direct calculations.
Since N→ � is the connection on the vector bundle, according to the Theorem 2, we get that N→ K�

is the curvature tensor of the vector bundle V over M , relative to the connection N→ �, and it is called
the Wagner tensor of a nonholonomic manifold.

Note. In [17], the Wagner tensor is defined in a slightly different manner, as the mapping
K� : ∧2Γ(VN ) → Γ(End(VN−1)). The way presented here is in agreement with the original Wagner
paper [13], as it is going to be clear from the coordinate expressions given below.

3.2. Coordinate expressions for the Wagner tensor

Now we are going to derive the coordinate expressions for the Shouten tensor and the Wagner tensor.
The Latin indices ai run in the intervals 1, . . . , ni, where ni = dimVi, and Greek indices α in the
interval 1, . . . , n. Let ea be the vector fields spanning the distribution V , and p0 and q0 the projectors
to V and V ⊥ respectively. The components of the Shouten tensor Kd

abc are derived from:

K(ea, eb)(ec) = Kd
abced.

Plugging into (2.6) and using the properties of the connection ∇ we get:

Kd
abc = ea(Γd

bc) − eb(Γd
ac) + Γd

aeΓ
e
bc − Γd

beΓ
e
ac + 2Ωe

abΓ
d
ec −Mp

abΛ
d
pc. (6)

The coefficients Λd
pc are defined by p0[ep, ec] = Λd

pced, p = m+ 1, . . . , n and Mp
ab are the components

of the tensor of nonholonomicity ∆ defined by Mp
abep = q0[ea, eb]. Expressing ea in the basis of the

coordinate vector fields ∂

∂qi
as ea = Bi

a
∂

∂qi
and plugging into (6), we get the coordinate expressions

for the Shouten tensor, which coincide with those obtained in [13].
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Denote by i→ Πc
aib

the components of the connection for i→ � defined by i→ �eai
eb = i→ Πc

aib
ec,

where the vector fields eai span the distribution Vi. So, we get:

i→ Πc
aib =i−1→ p

ai−1
ai

i−1→ Πc
ai−1b+

∗→M
ai−1bi−1
ai

i−1→ Kc
ai−1bi−1b+

i−1→ qp
ai

Λc
pb (7)

In the same way we get the coordinate expressions for i→ K�:
i→ Kd

aibic
= eai(

i→Πd
bic

)−ebi
( i→Πd

aic)+
i→Πd

aie
i→Πe

bic
− i→Πd

bie
i→Πe

aic+2 i→Ωci
aibi

i→Πd
cic−

i→Mp
aibi

Λd
pc. (8)

i→ p and i→ q are the corresponding projectors to Vi and V ⊥
i and i→ Ωci

ai,bi
is defined by 2 i→ Ωci

ai,bi
eci =

= − i→ p[eai , ebi
], while i→ Mp

aibi
are the components of the i-th tensor of nonholonomicity, defined

by (2).
Finally, for i = N , we get the coordinate expressions for the Wagner tensor

N→ Kd
aN bN c = eaN

( N→Πd
bN c)−ebN

( N→Πd
aN c)+

N→Πd
aN e

N→Πe
bN c−N→Πd

bN e
N→Πe

aN c+2 N→ΩcN
aN bN

N→Πd
cNc. (9)

The vector fields eaN
are now spanning the whole TM .

3.3. Absolute parallelism and the Wagner tensor

We start from the equation

∇W = U , U ∈ Γ(End(V )), W ∈ Γ(V ). (10)

The question is if for a given endomorphism U and for every X ∈ Γ(V ), the equation:

∇XW = UX

has a solution. From (10) we get:

∇X∇YW −∇Y ∇XW −∇p0[X,Y ]W − p0[q0[X,Y ],W ] =

= ∇XUY −∇Y UX − Up0[X,Y ] − p0[q0[X,Y ],W ].

So, there exists X ∈ Γ(V1) such that:
0→ K(µ0(X))(W ) + p0[q0X,W ] = U∇(µ0(X)),

where U∇(µ0(X)) = ∇XUY −∇Y UX − Up0[X,Y ]. Then:

∇p0XW+ 0→ K(µ0(X))(W ) + p0[q0X,W ] = 1→ UX = U∇(µ0(X)) + Up0X .

The integrability conditions for the equation (10) are reduced to:
1→ �W = 1→ U. (11)

In the same way, iteratively, we reduce the integrability condition for the equation (10) to the condition:
i→ �W = i→ U.

Finally, for i = N we get:
N→ �W = N→ U.

So:
N→ K(X ∧ Y )(W ) = N→ �X

N→ �YW− N→ �Y
N→ �XW− N→ �[X,Y ]W =

= N→ �X
N→ UY − N→ �Y

N→ UX− N→ U[X,Y ].
(12)

This equation is the integrability condition for the equation (10). Therefore, in the case U = 0, the
necessary and sufficient condition for the existence of the vector fields parallel along any direction is
that the Wagner tensor is equal to zero.
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4. The rolling disc

Now, we are going to illustrate the theory exposed before by calculating the Wagner tensors in two
mechanical problems. In this section, we deal with a homogeneous disc of the unit mass and the
radius R rolling without sliding on a horizontal plane.

Note that we are going to present only basic steps of the calculations. As it is well known, the
configuration space is M = R2 × SO(3). For the local coordinates we chose x and y as coordinates of
the mass center of the disc, and the Euler angles ϕ,ψ, θ. The nonholonomic constraints follow from
the condition that the velocity of the contact point of the disc and the plane should be equal to zero.
The two nonholonomic constraints are:

ẋ+R cosϕψ̇ +R cos θ cosϕϕ̇ −R sin θ sinϕθ̇ = 0,

ẏ +R sinϕψ̇ +R cos θ sinϕϕ̇+R sin θ cosϕθ̇ = 0.

Corresponding 1-forms which define the three-dimensional distribution V are:

ω1 = dx+R cosϕdψ +R cos θ cosϕdϕ −R sin θ sinϕdθ,
ω2 = dy +R sinϕdψ +R cos θ sinϕdϕ +R sin θ cosϕdθ.

The vector fields which span the differential system N(V ) are:

e1 = R cosϕ ∂
∂x

+R sinϕ ∂
∂y

− ∂
∂ψ

,

e2 = cos θ ∂
∂ψ

− ∂
∂ϕ

,

e3 = R sin θ sinϕ ∂
∂x

−R sin θ cosϕ ∂
∂y

+ ∂
∂θ
.

First, let us calculate the degree of nonholonomicity of this mechanical system:

[e1, e2] = −R sinϕ ∂
∂x

+R cosϕ ∂
∂y

= T,

[e1, e3] = 0,
[e2, e3] = − sin θe1.

So, the distribution V is nonintegrable, and the whole TM is not generated in the first step. From:

[e1, e2] = T, [e1, e3] = 0, [e2, e3] = − sin θe1,

[e1, T ] = 0, [e2, T ] = R cosϕ ∂
∂x

+R sinϕ ∂
∂y

= U,

since e1, e2, e3, T, U span the tangent space in the every point of M , the degree of nonholonomicity
is 2.

It is well known that the kinetic energy of the system is:

2T = ẋ2 + ẏ2 + (A sin2 θ + C cos2 θ)ϕ̇2 + 2C cos θϕ̇ψ̇ + Cψ̇2 + (A+R2 cos2 θ)θ̇2

where A and C are the principle central moments of inertia of the disc in the moving frame. This
gives the metric on M :

(gij) =


1 0 0 0 0
0 1 0 0 0
0 0 A sin2 θ + C cos2 θ C cos θ 0
0 0 C cos θ C 0
0 0 0 0 A+R2 cos2 θ

 .
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As it was pointed out below the Proposition 2.1, in mechanical problems we chose the orthogonal
projector p0 from TM onto V . The vector fields annulated by p0 are:

e4 = − sinϕ(A+R2 cos2 θ) ∂
∂x

+ cosϕ(A+R2 cos2 θ) ∂
∂y

+R sin θ ∂
∂θ
,

e5 = C cosϕ ∂
∂x

+ C sinϕ ∂
∂y

+R ∂
∂ψ

.

The vector fields ea are expressed in the basis ∂

∂xi
by ea = Bi

a
∂
∂xi

. So we get:

(Bi
a) =

 R cosϕ R sinϕ 0 −1 0
0 0 −1 cos θ 0

R sin θ sinϕ −R sin θ cosϕ 0 0 1

 .

From p0

(
∂

∂xi

)
= pa

i ea, we get the coordinates of the projector:

(pa
i ) =



R cosϕ
C +R2

0 R sin θ sinϕ
A+R2

R sinϕ
C +R2

0 −R sin θ cosϕ
A+R2

− C cos θ
C +R2

−1 0

− C

C +R2
0 0

0 0 A+R2 cos2 θ
A+R2



.

Similarly, for q0 we get:

(qp
i ) =



− sinϕ
A+R2

cosϕ
C +R2

cosϕ
A+R2

sinϕ
C +R2

0 R cos θ
C +R2

0 R
C +R2

R sin θ
A+R2

0



.

The induced metric gab on V , is derived from gij :

(gab) =

R2 + C 0 0
0 A sin2 θ 0
0 0 A+R2

 .
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Now we calculate the components of the connection Γc
ab for the metric connection using the coordinate

expressions (2.4). We start with determining {c
ab}. The only nonzero coefficients are:{

2
23

}
=
{

2
32

}
= cos θ

sin θ
,
{

3
22

}
= −A sin θ cos θ

A+R2
.

The coefficients Ω we derive from −2Ωc
ab = p0[ea, eb]. Having the expressions for the commutators

of ea, it can easily be seen that the nonzero elements are:

Ω3
12 = −Ω3

21 = R2 sin θ
2(A+R2)

, Ω1
23 = −Ω1

32 = sin θ
2 .

From (2.4) we get the following nonzero components of the connection:

Γ1
23 =

− (2R2 + C) sin θ
2(C +R2)

, Γ1
32 = C sin θ

2(C +R2)
, Γ2

23 = Γ2
32 = cos θ

sin θ
,

Γ2
13 = Γ2

31 = −C
2A sin θ

, Γ3
12 = C sin θ

2(A+R2)
,

Γ3
21 =

(2R2 + C) sin θ
2(A+R2)

, Γ3
22 = −A sin θ cos θ

A+R2
.

In order to get the components of the Shouten tensor (see (3.6)), we are calculating the coeffi-
cients Λ. From:

[e4, e1] = 0, [e4, e2] = − cosϕ(A+R2 cos2 θ) ∂
∂x

− sinϕ(A +R2 cos2 θ) ∂
∂y

−R sin2 θ ∂
∂ψ

,

[e4, e3] = −R2 sinϕ cos θ sin θ ∂
∂x

+R2 cosϕ cos θ sin θ ∂
∂y

−R cos θ ∂
∂θ
, [e5, e1] = 0,

[e5, e2] = −C sinϕ ∂
∂x

+ C cosϕ ∂
∂y
, [e5, e3] = 0,

we get:

Λ1
42 =

−R(A+R2 cos2 θ − C sin2 θ)
C +R2

, Λ3
43 = −R cos θ, Λ3

52 = −RC sin θ
A+R2

.

Similarly, for the components of the tensor of nonholonomicity we get:

0→M4
12 = R

A+R2
,

1→M5
24 = A+R2

C +R2
,

where the projectors p1 and q1 to V1 and V ⊥
1 are used. Here V1 is generated by the vector fields

e1, e2, e3, e4:

(pa
i ) =



R cosϕ
C +R2

0 R sin θ sinϕ
A+R2

− sinϕ
A+R2

R sinϕ
C +R2

0 −R sin θ cosϕ
A+R2

cosϕ
A+R2

− C cos θ
C +R2

−1 0 0

− C

C +R2
0 0 0

0 0 A+R2 cos2 θ
A+R2

R sin θ
A+R2



, (qp
i ) =



cosϕ
C +R2

sinϕ
C +R2

R cos θ
C +R2

R
C +R2

0



.
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Expansion of the metric from V0 to V1 is obtained from the coordinate expression: i→ ga1b1 =
= Ma1

abM
b1
cdg

ac gbd as:

g44 = 2R2

(A+R2)2(C +R2)A sin2 θ
,

g44 = 1
g44

.

Similarly, we get the coordinate expressions for the metric expanded on V2 = TM by:

g55 = 4R2

A2(C +R2)3 sin4 θ
,

g55 = 1
g55

.

From the expanded metric, as it was mentioned before, we get the components for the morphisms µ0

and µ1:
∗→M12

4 = ( 0→M4
12)

2g11 g22 = A+R2

2R
,

∗→M24
5 = C +R2

2(A+R2)
.

Everything is prepared for the calculation of the Wagner tensor. In the coordinate expressions for
the Wagner tensor, the first two indices take values from 1 to 5, and the second two from 1 to 3.
From the antisymmetry for the first two indexes, there are 90 independent components of the Wagner
tensor. We are going to calculate three components. All calculations are performed in three steps:
the first step is the Shouten tensor, then the tensor 1→ K on V1, and finally the Wagner tensor. We
are calculating only the necessary components.

We calculate the component K2
451 of the Wagner tensor.

K2
451 = e4(

2→ Π2
51) − e5(

2→ Π2
41)+

2→ Π2
4c

2→ Πc
51− 2→ Π2

5c
2→ Πc

41,

2→ Πc
51 = ∗→M24

5
1→ Kc

241,
2→ Π2

5c = ∗→M24
5

1→ K2
24c,

2→ Πc
41 = 1→ Πc

41 = ∗→M12
4

0→ Kc
121,

2→ Π2
4c = 1→ Π2

4c = ∗→M12
4

0→ K2
12c,

1→ Kc
241 = e2(

1→ Πc
41) − e4(Γc

21) + Γc
2d

1→ Πd
41− 1→ Πc

43Γ
3
21,

1→ K2
24c = e2(

1→ Π2
4c) − e4(Γ2

1c) + Γ2
23

1→ Π3
4c− 1→ Π2

4dΓ
d
2c + 2 1→ Ω1

24Γ
2
1c,

1→ Πc
43 = ∗→M12

4
0→ Kc

123 + Λc
43,

1→ Π3
4c = ∗→M12

4
0→ K3

12c.

So, for the component K2
451, we need first the coordinate expressions for the components 0→ Kd

12c of
the Shouten tensor. From (3.6) we get:

0→ K1
121 = 0, 0→ K2

121 =
− C(4R2 + C)
4A(A+R2)

,

0→ K3
121 = 0, 0→ K1

122 = 4R2A+ 4R4 cos2 θ + C2 sin2 θ

4(A+R2)(C +R2)
,

0→ K2
122 = R2 cos θ

A+R2
,

0→ K3
122 = 0,

0→ K1
123 = 0, 0→ K2

123 = 0, 0→ K3
123 = R2 cos θ

A+R2
.

118 REGULAR AND CHAOTIC DYNAMICS, V. 8, №1, 2003



THE WAGNER CURVATURE TENSOR IN NONHOLONOMIC MECHANICS

Similarly, we get:
1→ Π1

41 = 0, 1→ Π3
41 = 0, 1→ Π2

41 =
− C(4R2 + C)

4AR
,

1→ Π2
42 = R cos θ, 1→ Π3

42 = 0,

1→ Π1
43 = 0, 1→ Π2

43 = 0, 1→ Π3
43 = 0.

Therefore:
1→ K2

241 = 0, 1→ K2
242 = 0, 1→ K1

241 = 0,

1→ K2
243=

8R4A sin2 θ−10R2C2 sin2 θ−C3 sin2 θ+8R2AC sin2 θ+4R2AC−8R4C sin2 θ+4R4C cos2 θ
8AR sin θ(C+R2)

.

So

2→ Π1
51 = ∗→M24

5
1→ K1

241 = 0, 2→ Π2
51 = ∗→M24

5
1→ K2

241 = 0, 2→ Π2
52 = ∗→M24

5
1→ K2

242 = 0.

Finally, we get
K2

451 = 0.

In the same way, we can calculate the other components of the Wagner tensor. For example, we
are calculating also K2

121 and K3
121.

From

K2
121 = e1(

2→ Π2
21) − e2(

2→ Π2
11)+

2→ Π2
1c

2→ Πc
21− 2→ Π2

2c
2→ Πc

11 + 2 2→ Ωa2
12

2→ Π2
a21,

we get:
K2

121 = Γ2
1cΓ

c
21 + 2 2→ Ωa2

12
2→ Π2

a21,

and finally:
K2

121 = 0.

Similarly K1
133 = C2

4A(R2 + C)
.

5. Ball rolling on a fixed sphere

Now we will give a construction of the Wagner tensor for the system of a homogeneous ball of unit mass
rolling on a fixed sphere S2. Denote the diameters of the ball and the sphere by r2, r1 respectively.
This system has five degrees of freedom. Let us introduce the following coordinates: the spherical
coordinates α, β on S2 and the Euler angles ψ,ϕ, θ which determine the position of the ball. The
nonholonomic constraints are derived from the condition that the velocity of the contact point is
equal to zero. There are two independent nonholonomic constraints:

(1 + k)β̇ + sin(ψ − α)θ̇ − sin θ cos(ψ − α)ϕ̇ = 0,

(1 + k)α̇+ tanβ cos(ψ − α)θ̇ + [tanβ sin θ sin(ψ − α) − cos θ]ϕ̇− ψ̇ = 0,

where k = r1/r2. So, we assume r2 = 1. Corresponding 1-forms that define the three-dimensional
distribution V are:

ω1 = (1 + k)dβ + sin(ψ − α)dθ − sin θ cos(ψ − α)dϕ,
ω2 = (1 + k)dα+ tan β cos(ψ − α)dθ + [tan β sin θ sin(ψ − α) − cos θ]dϕ− dψ = 0.
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The vector fields:

X1 = ∂
∂α

+ (1 + k) ∂
∂ψ

,

X2 = tanβ sin θ ∂
∂α

− (1 + k) sin θ cos(ψ − α) ∂
∂θ

− (1 + k) sin(ψ − α) ∂
∂ϕ

+

+ (1 + k) cos θ sin(ψ − α) ∂
∂ψ

,

X3 = sin θ ∂
∂β

− (1 + k) sin θ sin(ψ − α) ∂
∂θ

− (1 + k) cos(ψ − α) ∂
∂ϕ

−

− (1 + k) cos θ cos(ψ − α) ∂
∂ψ

span the differential system N(V ). Since

[X1,X2] = (0, 0, k cosθ cos(ψ − α) (1 + k),−k cos(ψ − α) (1 + k), k sinθ sin(ψ − α) (1 + k)),
[X1,X3] = (0, 0, k cosθ sin(ψ − α) (1 + k),−k sin(ψ − α) (1 + k),−k sinθ cos(ψ − α) (1 + k)),

[X2,X3] =
( − sin2 θ + (1 + k)sinθ sin(ψ − α) cosθ sinβ cosβ

cos2 β
,−sinθ cos(ψ − α)cosθ(1 + k),

(1 + k)2(2 cos2θ cosβ − cosβ) − (1 + k)sinθ sin(ψ − α) sinβ cosθ)
cosβ

,

− (1 + k)2 cos θ cosβ − (1 + k)sinβ sinθ sin(ψ − α)
cos β

,

sinβ cos(ψ − α) sin2 θ (1 + k)
cosβ

)
the degree of nonholonomicity is equal to one.

From the kinetic energy of the system:

2T = (1 + k)2(β̇2 + cos2 βα̇2) +A(ψ̇2 + ϕ̇2 + θ̇2 + 2cos θϕ̇ψ̇),

where A is the inertia momentum of the ball, the formula for the metric is derived

(gij) =


(1 + k)2 cos2 β 0 0 0 0

0 (1 + k)2 0 0 0
0 0 A A cos θ 0
0 0 A cos θ A 0
0 0 0 0 A

 .

We choose the orthogonal projector p0. The vector fields orthogonal to the distribution V are:

X4 = A cos(ψ − α) ∂
∂α

+A tan β cos2 β sin(ψ − α) ∂
∂β

−

− (1 + k) cos2 β cos(ψ − α) ∂
∂ψ

+ (1 + k) tan β cos2 β ∂
∂θ

X5 = A sin θ ∂
∂β

+ (1 + k) cos θ cos(ψ − α) ∂
∂ψ

−

− (1 + k) cos(ψ − α) ∂
∂ϕ

+ (1 + k) sin θ sin(ψ − α) ∂
∂θ
.
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So the induced metric on the distribution V is

(gab) =

 A+ cos2 β sin β cos β sin θ 0
sin β cos β sin θ sin2 θ(A+ sin2 β) 0

0 0 sin2 θ(1 +A)

 .

Using formula (2.4) we get:

Γ3
11 =

sinβ cosβ
sinθ (1 +A)

,Γ3
12 = −1

2
Ak −A− 2 + 2 cos2 β

1 +A
,

Γ1
13 = −(1 + k) sinθ sinβ cosβ

(1 +A)
, Γ2

13 = 1
2
Ak −A+ cos2β k − 2 + cos2β

1 +A
,

Γ3
21 = 1

2
A+Ak + 2 − 2 cos2β

1 +A
, Γ2

22 = −(1 + k)cosθ cos(ψ − α),

Γ3
22 =

(A+ sin2 β) sinθ sinβ
cosβ (1 +A)

,

Γ1
23 = k + 1

2
−A sin2 θ + cos2 β − 1 + cos2 β cos2 θ + cos2 θ

1 +A
,

Γ2
23 = − (2A − (1 + k)cos2β + 2) sinθ sinβ

2cosβ (1 +A)
,

Γ3
23 = −(1 + k)cosθ cos(ψ − α), Γ1

31 = 1
2

(−1 + k) cosβ sinβ sinθ
1 +A

,

Γ2
31 = −1

2
A+Ak + cos2 β k − cos2β + 2

1 +A
,

Γ1
32 = 1

2
(1 + k)(−A sin2 θ − 1) + (1 − k)(cos2 β cos2 θ + cos2 θ − cos2 β)

1 +A
,

Γ2
32 = 1

2
− 2(1 + k)(1 +A) sin(ψ − α) cos θ + (1 − k) sin θ sin β cos θ

1 +A
,

Γ3
33 = −(1 + k)sin(ψ − α) cosθ.

Other Γ are equal to zero. Some components of the Shouten tensor different from zero are:

0→ K1
121 = − 0→ K2

122 =
((k − 1)2A+ 4 k2) sin β cos β sin θ

4(1 +A)2
,

0→ K2
121 = −(1 + k2)(A2 +A cos2 β) + 4Ak(1 + k) + 2k(A2 −A cos2 β + 2 k cos2 β)

(1 +A)2
,

0→ K2
132 = 0→ K3

231 =
(−5A+ 2Ak + 3Ak2 − 4) cosβ sin β sin θ

4(1 +A)2
,

0→ K2
133 = −(−1 + k2) sin θ sin β cos β

1 +A
.

The following components of the Shouten tensor are zero:

0→ K3
121 = 0→ K3

122 = 0→ K1
123 = 0→ K2

123 = 0→ K3
123 = 0→ K1

131 = 0→ K2
131 = 0→ K1

132 =
0→ K2

132 = 0→ K3
133 = 0→ K1

231 = 0→ K2
231 = 0→ K1

232 = 0→ K2
232 = 0→ K3

233 = 0.
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Expansion of the metric is given by the following formulae:

g44 = 2k2

A(A+ 1)3 cos2 β cos2(ψ − α)
,

g45 =
− 2k2 sin β sin(ψ − α)

A(A+ 1)3 sin θ cos β cos(ψ − α)
,

g55 =
k2(1 − cos2 β sin2(ψ − α))

A(1 +A)3 sin2 θcos2(ψ − α)
.

One of the components of the Wagner tensor is:

K1
133 =

sin2 θ cos2 β(k2(A+ 4 sin2 β) + 2Ak +A+ 4cos2 β)
4(1 +A)

.

From the last formula we get

Theorem 1. For any k the Wagner curvature tensor is different from zero.

6. Conclusion

From the Theorem 5.1, it follows that the Wagner tensor is essentially different from the tensors
constructed by Cartan [4] and Agrachev’s school [1, 2, 3], since it doesn’t recognize the nilpotent case.
A natural question is to find the theory of Jacobi fields which corresponds to the Wagner curvature.

At the end let us note that the paper [10] the appeared very recently, dealing with geometrization
of nonholonomic mechanics, based on some later Cartan’s work. The connections studied in [10] are
generally not torsionless.

Acknowledgement. The research of both authors was partially supported by the Serbian
Ministry of Science and Technology Project No 1643. One of the authors (V. D.) has a pleasure to
thank Professor A.Agrachev and Dr. I. Zelenko for the helpful observations; his research was partially
supported by SISSA (Trieste, Italy).

References

[1] A.A.Agrachev, Yu. L. Sachkov. Lectures on geometric
control theory. Trieste, SISSA preprint. 2001.

[2] A.Agrachev, I. Zelenko. Geometry of Jacobi Curves.
I. J. Dynamical and Control Systems. V. 8. 2002.
P. 93–140.

[3] A.Agrachev, I. Zelenko. Geometry of Jacobi Curves.
II. SISSA preprint 18/2002/M.
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